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COMMUTING PAIRS OF NORMAL OPERATORS

OSAMU HATORI

Abstract. We give a condition on commutativity of a pair of normal operators

with respect to the continuous functional calculus. We show a generalization of

the theorem of Fuglede and Putnum with respect to the continuous functional

calculus.

1. Introduction

Among the several conditions characterizing commutativity of C∗-algebras from

various points of view [1, 2, 5, 6, 7, 8, 11, 12, 13] we mention Jeang and Ko [5] gave

a characterization of commutativity of C∗-algebras with respect to the continuous

functional calculus. The author gives a condition of commutativity of self-adjoint

operators with respect to the continuous functional calculus in [4, Corollary 3.2].

In this paper we study conditions on commutativity for normal operators with

respect to the continuous functional calculus. We also show a generalization of the

famous commutativity theorem of Fuglede and Putnam.

Throughout the paper an operator means a bounded linear operator on a complex

Hilbert space. The complex plane is denoted by C and R denotes the set of all real

numbers. The spectrum of an operator a is denoted by σ(a).

2. A condition of commutativity

Proposition 2.1. Let Ω be a domain in C. Suppose that a function f : Ω → C is

continuous but not analytic. Then there exists z0 ∈ Ω, ε0 > 0 and a positive integer

n0 such that; 1) {z0 +w+ z : w ∈ C with |w| ≤ 1/n0 and z ∈ C with |z| ≤ ε0} ⊂ Ω:

2) there exists a sequence {sm} of complex linear combinations of constant functions

and the functions of the form

{z ∈ C : |z| ≤ ε0} ∋ z 7→ f(z0 + w + αz)
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with w ∈ C, |w| ≤ 1/n0 and α ∈ R∪iR, |α| < 1 such that sm(z) uniformly converges

to z̄ on {z ∈ C : |z| ≤ ε0}. Moreover, if u is a normal operator with ∥u∥ ≤ ε0, then

sm(u) is well defined and lim sm(u) = u∗.

Proof. Since f is not analytic there exists a point z1 ∈ Ω such that f is not analytic

on any neighourhood of z1. We can choose a sufficiently small ε1 > 0 such that

{z ∈ C : |z − z1| ≤ 2ε1} ⊂ Ω. Let ω : C → R be a continuously differentiable

(with respect to x = Rew and y = Imw for w ∈ C) function such that ω ≥ 0 on C,
ω(w) = 0 for |w| ≥ 1, and ∫

|w|≤1

ω(w)dxdy = 1.

For a positive integer n put

ωn(w) = n2ω(nw), w ∈ C.

Then ωn is a continuously differentiable function such that ωn ≥ 0 on C, ωn(w) = 0

for |w| ≥ 1/n and ∫
|w|≤1/n

ωn(w)dxdy = 1.

For a sufficiently large n

Fn(z) =

∫
|w|≤1/n

f(z − w)ωn(w)dxdy, z ∈ {z ∈ C : |z − z1| ≤ 2ε1}

is well defined and continuously differentiable on {z ∈ C : |z − z1| < 2ε1}. It is

easy to see that Fn uniformly converges to f on {z ∈ C : |z − z1| ≤ ε1} as n tends

to infinity. Since f is not analytic on {z : |z − z1| < ε1}, there exists a positive

integer n0 such that Fn0 is not analytic on {z : |z − z1| < ε1}. Hence there exists

a z0 ∈ C with |z0 − z1| < ε1 such that
∂Fn0

∂z̄
(z0) ̸= 0. Choose an arbitrary positive

real number ε0 with 2ε0 < ε1 − |z1 − z0|. As Fn0 is continuously differentiable on

{z : |z − z1| < 2ε1} we have that (Fn0(z0 + δz) − Fn0(z0))/δ uniformly converges

to
∂Fn0

∂x
(z0) Re z +

∂Fn0

∂y
(z0) Im z on {z : |z| ≤ ε0} as 1 > δ → 0. We also have that

(Fn0(z0+iδz)−Fn0(z0))/δ uniformly converges to
∂Fn0

∂x
(z0)(− Im z)+

∂Fn0

∂y
(z0) Re z on

{z : |z| ≤ ε0} as 1 > δ → 0. We denote ∥g∥ = sup|z|≤ε0 |g(z)| for a complex-valued

function g(z) on {z : |z| ≤ ε0}. Let ϵ > 0 be arbitrary. Then there exists 0 < δϵ < 1

such that∥∥∥∥Fn0(z0 + δϵz)− Fn0(z0)

δϵ
+ i

Fn0(z0 + iδϵz)− Fn0(z0)

δϵ
− 2

∂Fn0

∂z̄
(z0)z̄

∥∥∥∥ < ϵ,

as (
∂Fn0

∂x
(z0) Re z +

∂Fn0

∂y
(z0) Im z

)
+ i

(
∂Fn0

∂x
(z0)(− Im z) +

∂Fn0

∂y
(z0) Re z

)
= 2

∂Fn0

∂z̄
(z0)z̄.
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By the definition of Fn0 the Riemann sum for the integral which defines Fn0 uniformly

converges to Fn0 on {z : |z − z1| ≤ ε1} hence on {z : |z − z0| ≤ ε0}. Therefore there

exists a tϵ of the complex linear combination of a constant and the functions of the

form

z 7→ f(z0 + w + z)

on {z : |z| ≤ ε0} for |w| ≤ 1/n0 such that

∥Fn0(z0 + z)− tϵ(z)∥ < δϵϵ.

As 0 < δϵ < 1 we have∥∥∥∥tϵ(δϵz)− Fn0(z0)

δϵ
+ i

tϵ(iδϵz)− Fn0(z0)

δϵ
− 2

∂Fn0

∂z̄
(z0)z̄

∥∥∥∥
≤
∥∥∥∥Fn0(z0 + δϵz)− Fn0(z0)

δϵ
+ i

Fn0(z0 + iδϵz)− Fn0(z0)

δϵ
− 2

∂Fn0

∂z̄
(z0)z̄

∥∥∥∥
+

∥∥∥∥Fn0(z0 + δϵz)− tϵ(δϵz)

δϵ

∥∥∥∥+

∥∥∥∥Fn0(z0 + iδϵz)− tϵ(iδϵz)

δϵ

∥∥∥∥
≤ϵ+ 2

∥∥∥∥Fn0(z0 + z)− tϵ(z)

δϵ

∥∥∥∥ < 3ϵ.

As
∂Fn0

∂z̄
(z0) ̸= 0, we obtain that there is a sequence {sm(z)} of complex linear

combinations of constant functions and the functions of the form

z 7→ f(z0 + w + αz)

for |w| ≤ 1/n0, α ∈ R ∪ iR with |α| < 1 such that sm(z) uniformly converges to z̄

on {z : |z| ≤ ε0} as m → ∞. In fact, for a positive integer m we may choose sm(z)

as
1

2δ 1
m

∂Fn0

∂z̄
(z0)

{
(t 1

m
(δ 1

m
z)− Fn0(z0)) + i(t 1

m
(iδ 1

m
z)− Fn0(z0))

}
.

Suppose that u is a normal operator with ∥u∥ ≤ ε0. Then σ(u) ⊂ {z : |z| ≤ ε0}.
Hence sm(u) is well defined. As sm(z) uniformly converges to z̄ on {z : |z| ≤ ε0} as

m → ∞ we have lim sm(u) = u∗. □

Theorem 2.2. Let Ωj be a domain in C and fj : Ωj → C a non-constant continuous

function for j = 1, 2. Let uj be a normal operator for j = 1, 2. Suppose that

f1(λ1 + µ1u1)f2(λ2 + µ2u2) = f2(λ2 + µ2u2)f1(λ1 + µ1u1) (1)

holds for every complex number λj and µj ∈ R ∪ iR with σ(λj + µjuj) ⊂ Ωj for

j = 1, 2. Then u1u2 = u2u1.
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Proof. Suppose that both of f1 and f2 are analytic. Since fj is not constant, there

is a zj ∈ Ωj with f ′
j(zj) ̸= 0. For a sufficiently small δ > 0, σ(zj + δuj) ⊂ Ωj, hence

fj(zj + δuj) is well defined. By (1) we infer that

((f1(z1 + δu1)− f1(z1))/δ)((f2(z2 + δu2)− f2(z2))/δ)

= ((f2(z2 + δu2)− f2(z2))/δ)((f1(z1 + δu1)− f1(z1))/δ).

Letting δ → 0 we have

f ′
1(z1)u1f

′
2(z2)u2 = f ′

2(z2)u2f
′
1(z1)u1,

and u1u2 = u2u1 since f ′
1(z1) ̸= 0 and f ′

2(z2) ̸= 0.

Suppose that neither f1 nor f2 is analytic. By Proposition 2.1 there exists

zj ∈ Ωj, εj > 0 and a positive integer nj such that; 1) {zj + w + z : w ∈
C with |w| ≤ 1/nj and z ∈ C with |z| ≤ εj} ⊂ Ωj: 2) there exists a sequence {s(j)m }
of complex linear combinations of constant functions and the functions of the form

{z ∈ C : |z| ≤ εj} ∋ z 7→ fj(zj + w + αz) (2)

with w ∈ C, |w| ≤ 1/nj and α ∈ R ∪ iR, |α| < 1 such that s
(j)
m (z) uniformly

converges to z̄ on {z ∈ C : |z| ≤ εj} for j = 1, 2. Choose a δ > 0 so that ∥δuj∥ ≤ εj
for j = 1, 2. Then s

(j)
m (δuj) is well defined and converges to δu∗

j for j = 1, 2. As s
(j)
m

is a linear combination of the functions of the form fj(zj +w+α·) with |w| ≤ 1/nj,

we infer that

s(1)m (δu1)s
(2)
m (δu2) = s(2)m (δu2)s

(1)
m (δu1).

Letting m → ∞ we have δu∗
1δu

∗
2 = δu∗

2δu
∗
1. Hence we have u1u2 = u2u1.

Suppose that f1 (resp. f2) is analytic and f2 (resp. f1) is not. In a way similar

to the above we have

u1u
∗
2 = u∗

2u1 (resp. u∗
1u2 = u2u

∗
1).

By the theorem of Fuglede and Putnam we have that u1u2 = u2u1. □

3. A generalization of the theorem of Fuglede and Putnam

The famous theorem of Fuglede and Putnam [3, 9] states that if u∗a = av∗ holds

for normal operators u and v and an operator a, then ua = av (cf. [10]). The

theorem can be restated as follows; if f(u)a = af(v), then ua = av, where f

denotes the complex conjugation; f(z) = z̄. Instead of f(z) = z̄, for examples,

f(z) = |z|, f(z) = z̄n (n ≥ 2), f(z) = exp z̄ do not induce the conclusion ua = av

even if f(u)a = af(v) holds. But applying the theorem of Fuglede and Putnam it is

not difficult to prove by simple calculations that f(λ+ µu)a = af(λ+ µv) for every

pair of complex numbers λ and µ induces that ua = av for the case where f(z) = |z|
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or f(z) = z̄n (n ≥ 2) or f(z) = exp z̄. Applying Proposition 2.1 we prove that it is

the case for any non-constant continuous function f .

Theorem 3.1. Let f be a non-constant complex-valued continuous function on a do-

main Ω in the complex plane C. Let a be an operator and u and v normal operators.

Suppose that

f(λ+ µu)a = af(λ+ µv) (3)

holds for every λ ∈ C and µ ∈ R ∪ iR such that σ(λ + µu), σ(λ + µv) ⊂ Ω. Then

we have

ua = av.

Proof. Suppose that f is analytic. As f is not constant, there is z0 ∈ Ω with f ′(z0) ̸=
0. In a way similar to the proof of Theorem 2.2 we have that f ′(z0)ua = af ′(z0)v.

Hence we infer that ua = av.

Suppose that f is not analytic. By Proposition 2.1 there exists a positive integer

n0, z0 ∈ Ω, an ε0 > 0, and a sequence {sm(z)} of complex linear combinations of

constant functions and the functions on {z ∈ C : |z| ≤ ε0} of the form

{z ∈ C : |z| ≤ ε0} ∋ z 7→ f(z0 + w + αz)

with w ∈ C, |w| ≤ 1/n0 and α ∈ R ∪ iR, |α| < 1 such that lim sm(b) = b∗ for

any normal operator b with ∥b∥ ≤ ε0. For the given normal operators u and v,

choose a small positive δ with ∥δu∥ ≤ ε0 and ∥δv∥ ≤ ε0. Then we have by (3) that

sm(δu)a = asm(δv). Letting m → ∞ we have δu∗a = aδv∗, so that u∗a = av∗. By

the theorem of Fuglede and Putnam we conclude that ua = av. □
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