THE DUNKL-WILLIAMS CONSTANT OF SYMMETRIC OCTAGONAL NORMS ON \mathbb{R}^{2} II

HIROYASU MIZUGUCHI

Abstract

Recently, the author and two other researchers constructed a calculation method for the Dunkl-Williams constant $D W(X)$ of a normed linear space X. Using the method, we determined the constant of \mathbb{R}^{2} with symmetric octagonal norms. In this paper, we calculate the Dunkl-Williams constant of its dual space. As the result, the space \mathbb{R}^{2} with symmetric octagonal norm becomes an example for which the Dunkl-Williams constant of the own space and the dual space have same value.

1. Introduction and preliminaries

This paper is a continuation of [18]. A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(a, b)\|=\|(|a|,|b|)\|$ for all $(a, b) \in \mathbb{R}^{2}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Let $A N_{2}$ be the family of all absolute normalized norms on \mathbb{R}^{2}, and let Ψ_{2} be the set of all continuous convex functions on $[0,1]$ satisfying $\max \{1-t, t\} \leq \psi(t) \leq 1$ for $t \in[0,1]$. According to [3], $A N_{2}$ and Ψ_{2} are in a one-to-one correspondence with $\psi(t)=\|(1-t, t)\|$ for $t \in[0,1]$ and

$$
\|(a, b)\|_{\psi}= \begin{cases}(|a|+|b|) \psi\left(\frac{|b|}{|a|+|b|}\right) & \text { if }(a, b) \neq(0,0) \\ 0 & \text { if }(a, b)=(0,0)\end{cases}
$$

(see also [20]).

[^0]For each $\beta \in(1 / 2,1)$, let $\psi_{\beta}(t)=\max \{1-t, t, \beta\}$. Then, $\psi_{\beta} \in \Psi_{2}$. The norm $\|\cdot\|_{\psi_{\beta}}$ associated with ψ_{β} is given by

$$
\begin{aligned}
\|(a, b)\|_{\psi_{\beta}} & =\max \{|a|,|b|, \beta(|a|+|b|)\} \\
& = \begin{cases}|a| & \left(|b| \leq \frac{1-\beta}{\beta}|a|\right) \\
\beta(|a|+|b|) & \left(\frac{1-\beta}{\beta}|a| \leq|b| \leq \frac{\beta}{1-\beta}|a|\right), \\
|b| & \left(\frac{\beta}{1-\beta}|a| \leq|b|\right) .\end{cases}
\end{aligned}
$$

Remark that the unit sphere of $\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)$ is an octagon, and that the norm $\|\cdot\|_{\psi_{\beta}}$ is symmetric, that is, $\|(a, b)\|_{\psi_{\beta}}=\|(b, a)\|_{\psi_{\beta}}$ for all $(a, b) \in \mathbb{R}^{2}$.

Throughout this paper, the term "normed linear space" always means a real normed linear space which has two or more dimension. Let X be a normed linear space, and let B_{X} and S_{X} denote the unit ball and the unit sphere of X, respectively. In [12], the Dunkl-Williams constant $D W(X)$ of a normed linear space X was introduced:

$$
D W(X)=\sup \left\{\frac{\|x\|+\|y\|}{\|x-y\|}\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|: x, y \in X \backslash\{0\}, x \neq y\right\}
$$

We collect some basic properties of the Dunkl-Williams constant:
(i) $2 \leq D W(X) \leq 4$ for any normed linear space $X([5])$.
(ii) X is an inner product space if and only if $D W(X)=2([5,14])$.
(iii) X is uniformly non-square if and only if $D W(X)<4([1,12])$.

However, it is very hard to calculate the Dunkl-Williams constant. It is not known for almost all normed linear spaces.

In [18], we determined the Dunkl-Williams constant of \mathbb{R}^{2} with $\|\cdot\|_{\psi_{\beta}}$ for all $\beta \in(1 / 2,1)$:

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)\right)= \begin{cases}\frac{2}{\beta^{2}}\left\{(1-\beta)^{2}+\beta^{2}\right\} & (1 / 2<\beta \leq 1 / \sqrt{2}) \\ 4\left\{(1-\beta)^{2}+\beta^{2}\right\} & (1 / \sqrt{2} \leq \beta<1)\end{cases}
$$

Our aim in this paper is to calculate the Dunkl-Williams constant of its dual space. Finally, we obtain that the Dunkl-Williams constant of \mathbb{R}^{2} with $\|\cdot\|_{\psi_{\beta}}$ always coincide with that of its dual space.

2. The dual norm of $\|\cdot\|_{\psi_{\beta}}$

For $\psi \in \Psi_{2}$, a function ψ^{*} on $[0,1]$ is defined by

$$
\psi^{*}(s)=\sup \left\{\frac{(1-t)(1-s)+t s}{\psi(t)}: t \in[0,1]\right\}
$$

for $s \in[0,1]$. It was proved that $\psi^{*} \in \Psi_{2}$ and that $\|\cdot\|_{\psi^{*}} \in A N_{2}$ is the dual norm of $\|\cdot\|_{\psi}$, that is, $\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)^{*}$ is identified with $\left(\mathbb{R}^{2},\|\cdot\|_{\psi^{*}}\right)(c f . \quad[15,16,17])$. A norming functional f of $x=\left(x_{1}, x_{2}\right) \in\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ is identified with an element $\left(\alpha_{1}, \alpha_{2}\right) \in\left(\mathbb{R}^{2},\|\cdot\|_{\psi^{*}}\right)$ such that

$$
\begin{equation*}
\left\|\left(\alpha_{1}, \alpha_{2}\right)\right\|_{\psi}^{*}=1 \quad \text { and } \quad\left\langle\left(x_{1}, x_{2}\right),\left(\alpha_{1}, \alpha_{2}\right)\right\rangle=\left\|\left(x_{1}, x_{2}\right)\right\|_{\psi} . \tag{1}
\end{equation*}
$$

We denote by $D\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right), x\right)$ the set of all elements $\left(\alpha_{1}, \alpha_{2}\right) \in\left(\mathbb{R}^{2},\|\cdot\|_{\psi}^{*}\right)$ satisfying the condition (1).

For $\beta \in(1 / 2,1)$, we determine the convex function $\psi_{\beta}^{*} \in \Psi_{2}$ and the dual norm $\|\cdot\|_{\psi_{\beta}^{*}}$ of $\|\cdot\|_{\psi_{\beta}}$.

Proposition 2.1. Let $\beta \in(1 / 2,1)$. Then

$$
\psi_{\beta}^{*}(s)= \begin{cases}1-\frac{2 \beta-1}{\beta} s & (0 \leq s \leq 1 / 2), \\ \frac{1-\beta}{\beta}+\frac{2 \beta-1}{\beta} s & (1 / 2 \leq s \leq 1) .\end{cases}
$$

Proof. Fix $s \in[0,1]$. We define the function f_{s} from $[0,1]$ into \mathbb{R} by

$$
f_{s}(t)=\frac{(1-t)(1-s)+t s}{\psi_{\beta}(t)} .
$$

We note that $\psi_{\beta}^{*}(s)=\max \left\{f_{s}(t): 0 \leq t \leq 1\right\}$ and calculate the maximum of f_{s} on $[0,1]$. By the definition of ψ_{β}, we have

$$
f_{s}(t)= \begin{cases}1-s+\frac{s t}{1-t} & (0 \leq t \leq 1-\beta) \\ \frac{1-s-(1-2 s) t}{\beta} & (1-\beta \leq t \leq \beta) \\ s+\frac{(1-s)(1-t)}{t} & (\beta \leq t \leq 1)\end{cases}
$$

If $0 \leq s \leq 1 / 2$, then the function $f_{s}(t)$ is increasing on $[0,1-\beta]$ and is decreasing on $[1-\beta, 1]$. Hence we have

$$
\psi_{\beta}^{*}(s)=f_{s}(1-\beta)=1-\frac{2 \beta-1}{\beta} s .
$$

Suppose that $1 / 2 \leq s \leq 1$. Then the function $f_{s}(t)$ is increasing on $[0, \beta]$ and is decreasing on $[\beta, 1]$. Hence we have

$$
\psi_{\beta}^{*}(s)=f_{s}(\beta)=\frac{1-\beta}{\beta}+\frac{2 \beta-1}{\beta} s .
$$

Thus we obtain this proposition.
From this result, we easily obtain the following
Proposition 2.2. Let $\beta \in(1 / 2,1)$. Then

$$
\|(a, b)\|_{\psi_{\beta}^{*}}= \begin{cases}|a|+\frac{1-\beta}{\beta}|b| & (|a| \geq|b|) \\ \frac{1-\beta}{\beta}|a|+|b| & (|a| \leq|b|)\end{cases}
$$

The Dunkl-Williams constant of $\left(\mathbb{R},\|\cdot\|_{\psi_{\beta}}\right)^{*}$ coincides with that of $\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)$ and so we calculate $D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right)$ in the following sections.

3. The calculation method

In [19], we obtain a calculation method of the Dunkl-Williams constant. When we make use of the calculation method, the notion of Birkhoff orthogonality plays an important role. We recall that $x \in X$ is said to be Birkhoff orthogonal to $y \in X$, denoted by $x \perp_{B} y$, if $\|x\| \leq\|x+\lambda y\|$ for all $\lambda \in \mathbb{R}$. This notion has been studied in $[2,6,7,9,10,11]$ and so on.

To construct a calculation method, we introduced some notations related to Birkhoff orthogonality (cf. [18, 19]): For each $x \in S_{X}$, we define the subset $V(x)$ of X by $V(x)=\left\{y \in X: x \perp_{B} y\right\}$. For each $x \in S_{X}$ and each $y \in V(x)$, we put

$$
\Gamma(x, y)=\left\{\frac{\lambda+\mu}{2}: \lambda \leq 0 \leq \mu,\|x+\lambda y\|=\|x+\mu y\|\right\}
$$

and $m(x, y)=\sup \{\|x+\gamma y\|: \gamma \in \Gamma(x, y)\}$. We define the positive number $M(x)$ by

$$
M(x)=\sup \{m(x, y): y \in V(x)\} .
$$

Using these notions, we obtained a calculation method for the Dunkl-Williams constant.

Proposition 3.1 ([19]). Let X be a normed linear space. Then,

$$
D W(X)=2 \sup \left\{M(x): x \in S_{X}\right\} .
$$

For two-dimensional spaces, Proposition 3.1 has the following improvement.

Proposition 3.2 ([19]). Let X be a two-dimensional normed linear space. Then,

$$
D W(X)=2 \sup \left\{M(x): x \in \operatorname{ext}\left(B_{X}\right)\right\}
$$

where $\operatorname{ext}\left(B_{X}\right)$ denotes the set of all extreme points of B_{X}.
From Proposition 3.2 and [18, Proposition 2.5], we obtain the following result concerning ($\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}$).

Proposition 3.3. Let $\beta \in(1 / 2,1)$. Then

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right)=2 \max \{M((1,0)), M((\beta, \beta))\}
$$

Proof. It is easy to see that $\operatorname{ext}\left(B_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)}\right)$ is the set of all vertices of the octagon $S_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)}$, that is,

$$
\operatorname{ext}\left(B_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)}\right)=\{(\pm 1,0),(0, \pm 1)\} \cup\left\{\left(\varepsilon_{1} \beta, \varepsilon_{2} \beta\right):\left|\varepsilon_{1}\right|=\left|\varepsilon_{2}\right|=1\right\}
$$

Since $\|\cdot\|_{\psi_{\beta}^{*}}$ is a symmetric absolute normalized norm on \mathbb{R}^{2}, the map $\left(x_{1}, x_{2}\right) \mapsto$ $\left(-x_{2}, x_{1}\right)$ is an isometric isomorphism from $\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)$ onto itself. Hence, by [18, Proposition 2.5], we have

$$
M((0,1))=M((-1,0))=M((0,-1))=M((1,0))
$$

and

$$
M\left(\left(\varepsilon_{1} \beta, \varepsilon_{2} \beta\right)\right)=M((\beta, \beta))
$$

Thus, we obtain

$$
\begin{aligned}
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right) & =2 \sup \left\{M(x): x \in \operatorname{ext}\left(B_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)}\right)\right\} \\
& =2 \max \{M((1,0)), M((\beta, \beta))\}
\end{aligned}
$$

by Proposition 3.2.
For simplicity, we write $\|\cdot\|_{\beta}^{*}$ for $\|\cdot\|_{\psi_{\beta}^{*}}$ and let $X_{\beta}^{*}=\left(\mathbb{R}^{2},\|\cdot\|_{\beta}^{*}\right)$. In addition, we put $e_{1}=(1,0)$ and $x_{\beta}=(\beta, \beta)$. Then, by the preceding lemma, we have $D W\left(X_{\beta}^{*}\right)=2 \max \left\{M\left(e_{1}\right), M\left(x_{\beta}\right)\right\}$. To determine $D W\left(X_{\beta}^{*}\right)$, we calculate $M\left(e_{1}\right)$ and estimate $M\left(x_{\beta}\right)$.

4. The calculation of $M\left(e_{1}\right)$

In this section, we calculate $M\left(e_{1}\right)$ under the assumption $1 / 2<\beta \leq 1 / \sqrt{2}$. We first determine the set $V\left(e_{1}\right)$.

The following is an important characterization of Birkhoff orthogonality.
Lemma 4.1 (James, 1947 [11]). Let X be a normed linear space, and let x and y be two elements of X. Then, $x \perp_{B} y$ if and only if there exists a norming functional f of x such that $f(y)=0$.

From this lemma, one can easily have that

$$
V\left(e_{1}\right)=\left\{\left(y_{1}, y_{2}\right):\left\langle\left(y_{1}, y_{2}\right),\left(\alpha_{1}, \alpha_{2}\right)\right\rangle=0 \text { for some }\left(\alpha_{1}, \alpha_{2}\right) \in D\left(X_{\beta}^{*}, e_{1}\right)\right\} .
$$

Henceforth, let $k_{\beta}=\frac{1-\beta}{\beta}$. Then $\sqrt{2}-1 \leq k_{\beta}<1$ since $1 / 2<\beta \leq 1 / \sqrt{2}$, and $\beta=\left(1+k_{\beta}\right)^{-1}$.

Lemma 4.2. $V\left(e_{1}\right)=\left\{\alpha(c(1+s), 1): s \in\left[-1,-\left(1-k_{\beta}\right)\right],|c|=1, \alpha \in \mathbb{R}\right\}$.
Proof. It is easy to see that $\left(\psi_{\beta}^{*}\right)_{R}^{\prime}(0)=-\left(1-k_{\beta}\right)$, where $\left(\psi_{\beta}^{*}\right)_{R}^{\prime}(0)$ is the right derivative of ψ_{β}^{*} at $t=0$. According to $[3,16]$, we have

$$
D\left(X_{\beta}^{*}, e_{1}\right)=\left\{(1, c(1+s)): s \in\left[-1,-\left(1-k_{\beta}\right)\right],|c|=1\right\} .
$$

Thus we have

$$
\begin{aligned}
V\left(e_{1}\right) & =\left\{\left(y_{1}, y_{2}\right):\left\langle\left(y_{1}, y_{2}\right),\left(\alpha_{1}, \alpha_{2}\right)\right\rangle=0 \text { for some }\left(\alpha_{1}, \alpha_{2}\right) \in D\left(X_{\beta}^{*}, e_{1}\right)\right\} \\
& =\left\{\alpha(-c(1+s), 1): s \in\left[-1,-\left(1-k_{\beta}\right)\right],|c|=1, \alpha \in \mathbb{R}\right\} \\
& =\left\{\alpha(c(1+s), 1): s \in\left[-1,-\left(1-k_{\beta}\right)\right],|c|=1, \alpha \in \mathbb{R}\right\},
\end{aligned}
$$

as desired.
To reduce the amount of calculation, we make use of some results used in [18] (cf. [19]). We note that

$$
2+k_{\beta}=\frac{1+\beta}{\beta} \geq \frac{\beta}{1-\beta}=k_{\beta}^{-1}
$$

since $1 / 2<\beta \leq 1 / \sqrt{2}$.
Lemma 4.3. $M\left(e_{1}\right)=\sup \left\{m\left(e_{1},(1,-t)\right): t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}\right\}$.
Proof. By the preceding lemma, $\left\{\alpha(c(1+s), 1): s \in\left(-1,-\left(1-k_{\beta}\right)\right),|c|=1, \alpha \in \mathbb{R}\right\}$ is a dense subset of $V\left(e_{1}\right)$. On the other hand,

$$
\begin{aligned}
& \left\{\alpha(c(1+s), 1): s \in\left(-1,-\left(1-k_{\beta}\right)\right),|c|=1, \alpha \in \mathbb{R}\right\} \\
& =\left\{\alpha\left(1, \frac{c}{1+s}\right): s \in\left(-1,-\left(1-k_{\beta}\right)\right),|c|=1, \alpha \in \mathbb{R}\right\} .
\end{aligned}
$$

Since the function $s \mapsto 1 /(1+s)$ is continuous and decreasing, it maps $\left(-1,-\left(1-k_{\beta}\right)\right)$ onto $\left(k_{\beta}^{-1}, \infty\right)$. Thus one can have that

$$
\begin{aligned}
& \left\{\alpha\left(1, \frac{c}{1+s}\right): s \in\left(-1,-\left(1-k_{\beta}\right)\right),|c|=1, \alpha \in \mathbb{R}\right\} \\
& =\left\{\alpha(1, c t): t \in\left(k_{\beta}^{-1}, \infty\right),|c|=1, \alpha \in \mathbb{R}\right\}
\end{aligned}
$$

From this, it follows that $\left\{\alpha(1, c t): t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\},|c|=1, \alpha \in \mathbb{R}\right\}$ is also a dense subset of $V\left(e_{1}\right)$. Since the map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1},-x_{2}\right)$ is an isometric isomorphism from X_{β}^{*} onto itself, we have

$$
M\left(e_{1}\right)=\sup \left\{m\left(e_{1}, \alpha(1,-t)\right): t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}, \alpha \in \mathbb{R}\right\}
$$

by [18, Proposition 2.5 and Lemma 2.7]. Finally, applying [18, Lemma 2.4], we obtain $M\left(e_{1}\right)=\sup \left\{m\left(e_{1},(1,-t)\right): t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}\right\}$.

For each $t \in \mathbb{R}$, put $y_{t}=(1,-t)$. We give the formula of $\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}$ for all $t \in\left(k_{\beta}^{-1}, \infty\right)$ and all $\lambda \in \mathbb{R}$.

Lemma 4.4. Let $t \in\left(k_{\beta}^{-1}, \infty\right)$, and let

$$
a_{t}=\frac{1}{t-1} \quad \text { and } \quad b_{t}=-\frac{1}{t+1} .
$$

Then

$$
\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}= \begin{cases}-k_{\beta}-\left(t+k_{\beta}\right) \lambda & (\lambda \leq-1) \\ k_{\beta}-\left(t-k_{\beta}\right) \lambda & \left(-1 \leq \lambda \leq b_{t}\right) \\ 1-\left(k_{\beta} t-1\right) \lambda & \left(b_{t} \leq \lambda \leq 0\right) \\ 1+\left(k_{\beta} t+1\right) \lambda & \left(0 \leq \lambda \leq a_{t}\right) \\ k_{\beta}+\left(t+k_{\beta}\right) \lambda & \left(a_{t} \leq \lambda\right)\end{cases}
$$

Proof. First we note that $e_{1}+\lambda y_{t}=(1+\lambda,-t \lambda)$ and that

$$
-1<-\frac{1}{t+1}=b_{t}<0<\frac{1}{t-1}=a_{t} .
$$

By the definition of $\|\cdot\|_{\beta}^{*}$, we have

$$
\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}= \begin{cases}|1+\lambda|+k_{\beta}|-t \lambda| & (|1+\lambda| \geq|-t \lambda|), \\ k_{\beta}|1+\lambda|+|-t \lambda| & (|1+\lambda| \leq|-t \lambda|) .\end{cases}
$$

On the other hand, one has

$$
(1+\lambda)^{2}-(-t \lambda)^{2}=-(t+1)(t-1)\left(\lambda-a_{t}\right)\left(\lambda-b_{t}\right)
$$

Thus, we obtain this lemma.
By the preceding lemma, we immediately have the following
Lemma 4.5. Let $t \in\left(k_{\beta}^{-1}, \infty\right)$. Then the function $\lambda \mapsto\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}$ is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$.

We consider the relationship among $\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*},\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}$ and $\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$.
Lemma 4.6. Let $t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}$. Then the following hold:
(i) If $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$, then $\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}-y_{t}\right\|_{\beta}^{*}<\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}$.
(ii) If $t \in\left(2+k_{\beta}, \infty\right)$, then $\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$.

Proof. By Lemma 4.4, we have

$$
\left\|e_{1}-y_{t}\right\|_{\beta}^{*}=t \quad \text { and } \quad\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}=1+\frac{k_{\beta} t+1}{t-1}
$$

which implies that

$$
\left\|e_{1}-y_{t}\right\|_{\beta}^{*}-\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}=t-1-\frac{k_{\beta} t+1}{t-1}=\frac{t}{t-1}\left\{t-\left(2+k_{\beta}\right)\right\} .
$$

Thus, $\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}>\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$ if $t<2+k_{\beta}$, and $\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$ if $t>2+k_{\beta}$.

Suppose that $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$. Then, as was mentioned above, $\left\|e_{1}-y_{t}\right\|_{\beta}^{*}<\| e_{1}+$ $a_{t} y_{t} \|_{\beta}^{*}$. Moreover, since $-1<b_{t}<0$, by Lemma 4.5, we have $\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$.

Next we assume that $t \in\left(2+k_{\beta}, \infty\right)$. Then we have $\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}<\left\|e_{1}-y_{t}\right\|_{\beta}^{*}$. Further, by Lemma 4.4, we obtain

$$
\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}=1+\frac{k_{\beta} t-1}{t+1}<1+\frac{k_{\beta} t+1}{t-1}=\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*} .
$$

This shows (ii).
Let $t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}$. Then, the intermediate value theorem guarantees that the function $\lambda \mapsto\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}$ maps $(-\infty, 0]$ onto $[1, \infty)$ and $[0, \infty)$ onto $[1, \infty)$. Thus, for any $\mu \in[0, \infty)$, there exists $\lambda \in(-\infty, 0]$ such that $\left\|e_{1}+\lambda y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}$. Furthermore, by Lemma 4.5, this gives a one-to-one correspondence between $[0, \infty)$ and $(-\infty, 0]$. Let p_{t}, q_{t}, r_{t} be real numbers such that $p_{t}<0<q_{t}, r_{t},\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}=$ $\left\|e_{1}+p_{t} y_{t}\right\|_{\beta}^{*},\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+q_{t} y_{t}\right\|_{\beta}^{*}$, and $\left\|e_{1}-y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+r_{t} y_{t}\right\|_{\beta}^{*}$. Then we have the following

Lemma 4.7. Let $t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}$. Then the following hold:
(i) If $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$, then $p_{t}<-1<b_{t}<0<q_{t}<r_{t}<a_{t}$ and

$$
p_{t}=-a_{t}-\frac{2 k_{\beta}}{k_{\beta}+t}, \quad q_{t}=-\frac{k_{\beta} t-1}{k_{\beta} t+1} b_{t}, \quad \text { and } \quad r_{t}=\frac{t-1}{k_{\beta} t+1} .
$$

(ii) If $t \in\left(2+k_{\beta}, \infty\right)$, then $-1<p_{t}<b_{t}<0<q_{t}<a_{t}<r_{t}$ and

$$
p_{t}=-\frac{t+k_{\beta}}{t-k_{\beta}} a_{t}, \quad q_{t}=-\frac{k_{\beta} t-1}{k_{\beta} t+1} b_{t}, \quad \text { and } \quad r_{t}=\frac{t-k_{\beta}}{t+k_{\beta}} .
$$

Proof. Suppose that $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$. Then we clearly have $-1<b_{t}<0<a_{t}$. Using Lemma 4.6 (i), we have the following diagram:

$$
\begin{aligned}
+:\left\|e_{1}+q_{t} y_{t}\right\|_{\beta} & <\left\|e_{1}+r_{t} y_{t}\right\|_{\beta}
\end{aligned}<\underset{\|}{\|} \quad\left\|e_{1}+a_{t} y_{t}\right\|_{\beta} .
$$

Thus, by Lemma 4.5, it follows that $p_{t}<-1<b_{t}<0<q_{t}<r_{t}<a_{t}$. Then we have

$$
\begin{aligned}
&-k_{\beta}-\left(t+k_{\beta}\right) p_{t}=\left\|e_{1}+p_{t} y_{t}\right\|_{\beta}^{*} \\
&=\left\|e_{1}+a_{t} y_{t}\right\|_{\beta}^{*}=k_{\beta}+\left(t+k_{\beta}\right) a_{t}, \\
& 1+\left(k_{\beta} t+1\right) q_{t}=\left\|e_{1}+q_{t} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+b_{t} y_{t}\right\|_{\beta}^{*}=1-\left(k_{\beta} t-1\right) b_{t} \text { and } \\
& 1+\left(k_{\beta} t+1\right) r_{t}=\left\|e_{1}+r_{t} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}-y_{t}\right\|_{\beta}^{*}=t .
\end{aligned}
$$

Thus one can obtain (i). One can show (ii) similarly, so we omit the proof.
Next, we consider the set $\Gamma\left(e_{1}, y_{t}\right)$. As was mentioned, for each $\mu \in[0, \infty)$ there exists a unique $\lambda_{\mu} \in(-\infty, 0]$ such that $\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}$. Then it follows that

$$
\Gamma\left(e_{1}, y_{t}\right)=\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\}
$$

Lemma 4.8. Let $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$. Then,

$$
\Gamma\left(e_{1}, y_{t}\right)=\left[\frac{-1+r_{t}}{2}, 0\right]
$$

Proof. By Lemma 4.7 (i), we have $p_{t}<-1<b_{t}<0<q_{t}<r_{t}<a_{t}$.
Suppose that $0 \leq \mu \leq q_{t}$. Then $b_{t} \leq \lambda_{\mu} \leq 0$, and so we have

$$
1-\left(k_{\beta} t-1\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(k_{\beta} t+1\right) \mu .
$$

Thus we have

$$
\lambda_{\mu}=-\frac{k_{\beta} t+1}{k_{\beta} t-1} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{\mu}{k_{\beta} t-1}
$$

Since $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$, the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[0, q_{t}\right]$. Thus we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, q_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, 0\right] .
$$

Next, we suppose that $q_{t} \leq \mu \leq r_{t}$. Then $-1 \leq \lambda_{\mu} \leq b_{t}$, and so we have

$$
k_{\beta}-\left(t-k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(k_{\beta} t+1\right) \mu
$$

From this we have

$$
\lambda_{\mu}=-\frac{1-k_{\beta}}{t-k_{\beta}}-\frac{k_{\beta} t+1}{t-k_{\beta}} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{1-k_{\beta}}{2\left(t-k_{\beta}\right)}+\frac{\left(1-k_{\beta}\right) t-\left(1+k_{\beta}\right)}{2\left(t-k_{\beta}\right)} \mu
$$

Since $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$, we have $\left(1-k_{\beta}\right) t-\left(1+k_{\beta}\right)<0$ and hence the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[q_{t}, r_{t}\right]$, and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[q_{t}, r_{t}\right]\right\}=\left[\frac{-1+r_{t}}{2}, \frac{b_{t}+q_{t}}{2}\right] .
$$

In the case of $r_{t} \leq \mu \leq a_{t}$, we have $p_{t} \leq \lambda_{t} \leq-1$. Then we have

$$
-k_{\beta}-\left(t+k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(k_{\beta} t+1\right) \mu
$$

It follows that

$$
\lambda_{\mu}=-\frac{1+k_{\beta}}{t+k_{\beta}}-\frac{k_{\beta} t+1}{t+k_{\beta}} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{1+k_{\beta}}{2\left(t+k_{\beta}\right)}+\frac{\left(1-k_{\beta}\right)(t-1)}{2\left(t+k_{\beta}\right)} \mu .
$$

Since $1<k_{\beta}^{-1}<t$, the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is increasing on $\left[r_{t}, a_{t}\right]$. Thus we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[r_{t}, a_{t}\right]\right\}=\left[\frac{-1+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

Finally, we assume $a_{t} \leq \mu$. Then $\lambda_{\mu} \leq p_{t}$ and hence

$$
-k_{\beta}-\left(t+k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=k_{\beta}+\left(t+k_{\beta}\right) \mu .
$$

Thus we have

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{k_{\beta}}{t+k_{\beta}}=\frac{a_{t}+p_{t}}{2} .
$$

Since the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is continuous, one has that

$$
\begin{aligned}
\Gamma\left(e_{1}, y_{t}\right) & =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[\frac{b_{t}+q_{t}}{2}, 0\right] \cup\left[\frac{-1+r_{t}}{2}, \frac{b_{t}+q_{t}}{2}\right] \cup\left[\frac{-1+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \\
& =\left[\frac{-1+r_{t}}{2}, 0\right] .
\end{aligned}
$$

We remark that

$$
2+k_{\beta}=\frac{1+\beta}{\beta} \leq \frac{1}{2 \beta-1}=\frac{1+k_{\beta}}{1-k_{\beta}}
$$

since $1 / 2<\beta \leq 1 / \sqrt{2}$.
Lemma 4.9. Let $t \in\left(2+k_{\beta}, \infty\right)$. Then

$$
\Gamma\left(e_{1}, y_{t}\right)=\left[\frac{-1+r_{t}}{2}, 0\right] .
$$

Proof. By Lemma 4.7 (ii), we have $-1<p_{t}<b_{t}<0<q_{t}<a_{t}<r_{t}$. Suppose that $0 \leq \mu \leq q_{t}$. Then $b_{t} \leq \lambda_{\mu} \leq 0$ and so

$$
1-\left(k_{\beta} t-1\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(k_{\beta} t+1\right) \mu .
$$

As in the proof of the preceding lemma, we have

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{\mu}{k_{\beta} t-1},
$$

which implies that the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[0, q_{t}\right]$. Thus we obtain

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, q_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, 0\right] .
$$

In the case of $q_{t} \leq \mu \leq a_{t}$, we have $p_{t} \leq \lambda_{\mu} \leq b_{t}$ and hence

$$
k_{\beta}-\left(t-k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(k_{\beta} t+1\right) \mu .
$$

Thus, we have

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{1-k_{\beta}}{2\left(t-k_{\beta}\right)}+\frac{\left(1-k_{\beta}\right) t-\left(1+k_{\beta}\right)}{2\left(t-k_{\beta}\right)} \mu .
$$

This implies that the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[q_{t}, a_{t}\right]$ if $t \leq\left(1+k_{\beta}\right) /(1-$ k_{β}), and is increasing if $t \geq\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)$. Hence we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[q_{t}, a_{t}\right]\right\}= \begin{cases}{\left[\frac{a_{t}+p_{t}}{2}, \frac{b_{t}+q_{t}}{2}\right]} & \left(2+k_{\beta}<t \leq \frac{1+k_{\beta}}{1-k_{\beta}}\right) \\ {\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right]} & \left(\frac{1+k_{\beta}}{1-k_{\beta}} \leq t<\infty\right)\end{cases}
$$

Assume that $a_{t} \leq \mu \leq r_{t}$. Then we have $-1 \leq \lambda_{\mu} \leq p_{t}$ and so

$$
k_{\beta}-\left(t-k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=k_{\beta}+\left(t+k_{\beta}\right) \mu .
$$

Thus, we obtain

$$
\lambda_{\mu}=-\frac{t+k_{\beta}}{t-k_{\beta}} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{k_{\beta}}{t-k_{\beta}} \mu
$$

It follows that the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[a_{t}, r_{t}\right]$, and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[a_{t}, r_{t}\right]\right\}=\left[\frac{-1+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

In the case of $r_{t} \leq \mu$, we have $\lambda_{\mu} \leq-1$. Thus we have

$$
-k_{\beta}-\left(t+k_{\beta}\right) \lambda_{\mu}=\left\|e_{1}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|e_{1}+\mu y_{t}\right\|_{\beta}^{*}=k_{\beta}+\left(t+k_{\beta}\right) \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=-\frac{k_{\beta}}{t+k_{\beta}}=\frac{-1+r_{t}}{2} .
$$

Finally, if $2+k_{\beta}<t \leq\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)$, then

$$
\begin{aligned}
\Gamma\left(e_{1}, y_{t}\right) & =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[\frac{b_{t}+q_{t}}{2}, 0\right] \cup\left[\frac{a_{t}+p_{t}}{2}, \frac{b_{t}+q_{t}}{2}\right] \cup\left[\frac{-1+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \\
& =\left[\frac{-1+r_{t}}{2}, 0\right] .
\end{aligned}
$$

On the other hand, if $\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right) \leq t<\infty$, then

$$
\begin{aligned}
\Gamma\left(e_{1}, y_{t}\right) & =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[\frac{b_{t}+q_{t}}{2}, 0\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{-1+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \\
& =\left[\min \left\{\frac{b_{t}+q_{t}}{2}, \frac{-1+r_{t}}{2}\right\}, \max \left\{0, \frac{a_{t}+p_{t}}{2}\right\}\right] .
\end{aligned}
$$

However, we have

$$
\frac{a_{t}+p_{t}}{2}=-\frac{k_{\beta}}{t-k_{\beta}} a_{t}<0
$$

and

$$
\begin{aligned}
\frac{b_{t}+q_{t}}{2}-\frac{-1+r_{t}}{2} & =\frac{t\left\{k_{\beta}^{2} t+k_{\beta}\left(1+k_{\beta}\right)-1\right\}}{\left(t+k_{\beta}\right)\left(k_{\beta} t-1\right)(t+1)} \\
& >\frac{t\left(k_{\beta}^{2}+2 k_{\beta}-1\right)}{\left(t+k_{\beta}\right)\left(k_{\beta} t-1\right)(t+1)} \geq 0
\end{aligned}
$$

since $k_{\beta}^{-1} \leq 2+k_{\beta}<t$ and $\sqrt{2}-1 \leq k_{\beta}<1$. Thus we obtain this lemma.
Now, we calculate $M\left(e_{1}\right)$. We note that the formulas of $\frac{-1+r_{t}}{2}$ in Lemmas 4.8 and 4.9 are not the same.

Proposition 4.10. $M\left(e_{1}\right)=1+k_{\beta}^{2}$.
Proof. By Lemma 4.3, $M\left(e_{1}\right)=\sup \left\{m\left(e_{1}, y_{t}\right): t \in\left(k_{\beta}^{-1}, \infty\right) \backslash\left\{2+k_{\beta}\right\}\right\}$. In the case of $t \in\left(k_{\beta}^{-1}, 2+k_{\beta}\right)$, we have $b_{t}<\frac{-1+r_{t}}{2}<0$. Indeed, one has

$$
0>\frac{-1+r_{t}}{2}=\frac{-2+\left(1-k_{\beta}\right) t}{2\left(k_{\beta} t+1\right)}
$$

and

$$
\frac{-1+r_{t}}{2}-b_{t}=\frac{\left(1-k_{\beta}\right) t-2}{2\left(k_{\beta} t+1\right)}+\frac{1}{1+t}=\frac{\left(1-k_{\beta}\right)(t-1) t}{2\left(k_{\beta} t+1\right)(1+t)}>0 .
$$

It follows from $1<k_{\beta}^{-1}<t$ that

$$
\begin{aligned}
\left\|e_{1}+\frac{-1+\tau_{t}}{2} y_{t}\right\|_{\beta}^{*} & =1+\frac{\left(k_{\beta} t-1\right)\left\{-\left(1-k_{\beta}\right) t+2\right\}}{2\left(k_{\beta} t+1\right)} \\
& <1+\frac{\left(k_{\beta} t-1\right)\left(1+k_{\beta}\right)}{2\left(k_{\beta} t+1\right)} .
\end{aligned}
$$

Since the function $t \mapsto\left(k_{\beta} t-1\right) /\left(1+k_{\beta} t\right)$ is strictly increasing,

$$
\frac{\left(k_{\beta} t-1\right)\left(1+k_{\beta}\right)}{2\left(k_{\beta} t+1\right)}<\frac{\left\{k_{\beta}\left(2+k_{\beta}\right)-1\right\}\left(1+k_{\beta}\right)}{2\left\{1+k_{\beta}\left(2+k_{\beta}\right)\right\}}=\frac{k_{\beta}^{2}+2 k_{\beta}-1}{2\left(1+k_{\beta}\right)} .
$$

On the other hand, we have

$$
k_{\beta}^{2}-\frac{k_{\beta}^{2}+2 k_{\beta}-1}{2\left(1+k_{\beta}\right)}=\frac{2 k_{\beta}^{3}+\left(1-k_{\beta}\right)^{2}}{2\left(1+k_{\beta}\right)}>0 .
$$

Thus we obtain

$$
\left\|e_{1}+\frac{-1+\tau_{t}}{2} y_{t}\right\|_{\beta}^{*}<1+k_{\beta}^{2},
$$

and hence

$$
m\left(e_{1}, y_{t}\right)=\max \left\{\left\|e_{1}+\frac{-1+r_{t}}{2} y_{t}\right\|_{\beta}^{*},\left\|e_{1}\right\|_{\beta}^{*}\right\}<1+k_{\beta}^{2}
$$

by [18, Lemma 2.6].
Let $t \in\left(2+k_{\beta}, \infty\right)$. Since $k_{\beta}<1$, we have

$$
b_{t}=-\frac{1}{t+1}<-\frac{k_{\beta}}{t+k_{\beta}}=\frac{-1+r_{t}}{2}<0,
$$

and so

$$
\left\|e_{1}+\frac{-1+r_{t}}{2} y_{t}\right\|_{\beta}^{*}=1+\frac{k_{\beta}\left(k_{\beta} t-1\right)}{t+k_{\beta}} .
$$

From the fact that the function $t \mapsto\left(k_{\beta} t-1\right) /\left(t+k_{\beta}\right)$ is strictly increasing, it follows that

$$
\frac{k_{\beta}\left(k_{\beta} t-1\right)}{t+k_{\beta}}<k_{\beta}^{2} .
$$

Hence, by [18, Lemma 2.6], we have

$$
m\left(e_{1}, y_{t}\right)=\max \left\{\left\|e_{1}+\frac{-1+r_{t}}{2} y_{t}\right\|_{\beta}^{*},\left\|e_{1}\right\|_{\beta}^{*}\right\}<1+k_{\beta}^{2} .
$$

Thus, by Lemma 4.3, we obtain $M\left(e_{1}\right) \leq 1+k_{\beta}^{2}$.

Finally, since

$$
M\left(e_{1}\right) \geq 1+\frac{k_{\beta}\left(k_{\beta} t-1\right)}{t+k_{\beta}}
$$

for each $t \in\left(2+k_{\beta}, \infty\right)$, we have $M\left(e_{1}\right) \geq 1+k_{\beta}^{2}$. This implies that $M\left(e_{1}\right)=$ $1+k_{\beta}^{2}$.

5. The estimation of $M\left(x_{\beta}\right)$

As in the above section, we suppose that $1 / 2<\beta \leq 1 / \sqrt{2}$. We prove $M\left(x_{\beta}\right) \leq$ $1+k_{\beta}^{2}$. To do this, we start with determining the set $V\left(x_{\beta}\right)$.

Lemma 5.1. $V\left(x_{\beta}\right)=\left\{\alpha y_{t}: t \in\left[k_{\beta}, k_{\beta}^{-1}\right], \alpha \in \mathbb{R}\right\}$.
Proof. First we note that

$$
x_{\beta}=(\beta, \beta)=\frac{1}{\psi_{\beta}^{*}(1 / 2)}\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

One can have $\left(\psi_{\beta}^{*}\right)_{L}^{\prime}(1 / 2)=-\left(1-k_{\beta}\right)$ and $\left(\psi_{\beta}^{*}\right)_{R}^{\prime}(1 / 2)=1-k_{\beta}$, where $\left(\psi_{\beta}^{*}\right)_{L}^{\prime}(1 / 2)$ and $\left(\psi_{\beta}^{*}\right)_{R}^{\prime}(1 / 2)$ are respectively the left and right derivative of ψ_{β}^{*} at $t=1 / 2$. According to [3, 16], we have

$$
D\left(X_{\beta}^{*}, x_{\beta}\right)=\left\{\frac{1}{2}\left(1+k_{\beta}-s, 1+k_{\beta}+s\right): s \in\left[-\left(1-k_{\beta}\right), 1-k_{\beta}\right]\right\} .
$$

Thus,

$$
\begin{aligned}
V\left(x_{\beta}\right) & =\left\{\alpha\left(1+k_{\beta}+s,-\left(1+k_{\beta}-s\right)\right): s \in\left[-\left(1-k_{\beta}\right), 1-k_{\beta}\right], \alpha \in \mathbb{R}\right\} \\
& =\left\{\alpha\left(1,-\frac{1+k_{\beta}-s}{1+k_{\beta}+s}\right): s \in\left[-\left(1-k_{\beta}\right), 1-k_{\beta}\right], \alpha \in \mathbb{R}\right\}
\end{aligned}
$$

Since the function $s \mapsto\left(1+k_{\beta}-s\right) /\left(1+k_{\beta}+s\right)$ is continuous and decreasing, it maps $\left[-\left(1-k_{\beta}\right), 1-k_{\beta}\right]$ onto $\left[k_{\beta}, k_{\beta}^{-1}\right]$. Therefore one can obtain $V\left(x_{\beta}\right)=\left\{\alpha y_{t}: t \in\right.$ $\left.\left[k_{\beta}, k_{\beta}^{-1}\right], \alpha \in \mathbb{R}\right\}$.

As in Lemma 4.3, we reduce the amount of calculation.
Lemma 5.2. $M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta}, y_{t}\right): t \in\left(1, k_{\beta}^{-1}\right)\right\}$
Proof. By Lemma 5.1, it is clear that $\left\{\alpha y_{t}: t \in\left(k_{\beta}, k_{\beta}^{-1}\right) \backslash\{1\}, \alpha \in \mathbb{R}\right\}$ is the dense subset of $V\left(x_{\beta}\right)$. Since an isometric isomorphism $\left(x_{1}, x_{2}\right) \mapsto\left(x_{2}, x_{1}\right)$ maps αy_{t} to $\alpha(-t, 1)=-\alpha t y_{1 / t}$, we have

$$
M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta}, \alpha y_{t}\right): t \in\left(1, k_{\beta}^{-1}\right), \alpha \in \mathbb{R}\right\}
$$

by [18, Proposition 2.5 and Lemma 2.7]. Thus we obtain

$$
M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta}, y_{t}\right): t \in\left(1, k_{\beta}^{-1}\right)\right\}
$$

by [18, Lemma 2.4].
Next we give the formula of $\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}$ for all $t \in\left(1, k_{\beta}^{-1}\right)$ and all $\lambda \in \mathbb{R}$.
Lemma 5.3. Let $t \in\left(1, k_{\beta}^{-1}\right)$, and let

$$
c_{t}=\frac{1}{\left(1+k_{\beta}\right) t} \quad \text { and } \quad d_{t}=\frac{2}{\left(1+k_{\beta}\right)(t-1)} .
$$

Then

$$
\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}= \begin{cases}\frac{1-k_{\beta}}{1+k_{\beta}}-\left(k_{\beta}+t\right) \lambda & \left(\lambda \leq-\left(1+k_{\beta}\right)^{-1}\right) \\ 1-\left(t-k_{\beta}\right) \lambda & \left(-\left(1+k_{\beta}\right)^{-1} \leq \lambda \leq 0\right) \\ 1+\left(1-k_{\beta} t\right) \lambda & \left(0 \leq \lambda \leq c_{t}\right) \\ \frac{1-k_{\beta}}{1+k_{\beta}}+\left(1+k_{\beta} t\right) \lambda & \left(c_{t} \leq \lambda \leq d_{t}\right) \\ -\frac{1-k_{\beta}}{1+k_{\beta}}+\left(k_{\beta}+t\right) \lambda & \left(d_{t} \leq \lambda\right)\end{cases}
$$

Proof. First we note that

$$
x_{\beta}+\lambda y_{t}=\left(\left(1+k_{\beta}\right)^{-1}+\lambda,\left(1+k_{\beta}\right)^{-1}-t \lambda\right)
$$

and that

$$
-\left(1+k_{\beta}\right)^{-1}<0<c_{t}=\frac{1}{\left(1+k_{\beta}\right) t}<\frac{2}{\left(1+k_{\beta}\right)(t-1)}=d_{t} .
$$

It follows from the definition of $\|\cdot\|_{\beta}^{*}$ that

$$
\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}=\left\{\begin{aligned}
&\left|\left(1+k_{\beta}\right)^{-1}+\lambda\right|+k_{\beta}\left|\left(1+k_{\beta}\right)^{-1}-t \lambda\right| \\
&\left(\left|\left(1+k_{\beta}\right)^{-1}+\lambda\right| \geq\left|\left(1+k_{\beta}\right)^{-1}-t \lambda\right|\right) \\
& k_{\beta}\left|\left(1+k_{\beta}\right)^{-1}+\lambda\right|+\left|\left(1+k_{\beta}\right)^{-1}-t \lambda\right| \\
&\left(\left|\left(1+k_{\beta}\right)^{-1}+\lambda\right| \leq\left|\left(1+k_{\beta}\right)^{-1}-t \lambda\right|\right)
\end{aligned}\right.
$$

On the other hand, we have

$$
\left\{\left(1+k_{\beta}\right)^{-1}+\lambda\right\}^{2}-\left\{\left(1+k_{\beta}\right)^{-1}-t \lambda\right\}^{2}=(t+1)(t-1)\left(d_{t}-\lambda\right) \lambda .
$$

From this, one can obtain this lemma.
The following lemma is an easy consequence of Lemma 5.3.
Lemma 5.4. Let $t \in\left(1, k_{\beta}^{-1}\right)$. Then the function $\lambda \mapsto\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}$ is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$.

We clarify the relationship among $\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}^{*},\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*}$ and $\| x_{\beta}-(1+$ $\left.k_{\beta}\right)^{-1} y_{t} \|_{\beta}^{*}$.

Lemma 5.5. Let $t \in\left(1, k_{\beta}^{-1}\right)$. Then

$$
\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}^{*}<\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*}<\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*} .
$$

Proof. By Lemma 5.3, we have

$$
\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}^{*}=\frac{1+t}{\left(1+k_{\beta}\right) t} \quad \text { and } \quad\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*}=\frac{1+t}{1+k_{\beta}}
$$

Since $t>1$, we have $\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}^{*}<\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*}$. Moreover,

$$
\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*}=\frac{1}{1+k_{\beta}}\left\{1-k_{\beta}+\frac{2\left(1+k_{\beta} t\right)}{t-1}\right\}
$$

and so

$$
\begin{aligned}
\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*}-\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*} & =\frac{1}{1+k_{\beta}}\left\{-\left(k_{\beta}+t\right)+\frac{2\left(1+k_{\beta} t\right)}{t-1}\right\} \\
& =\frac{\left(2+k_{\beta}-t\right)(t+1)}{\left(1+k_{\beta}\right)(t-1)}
\end{aligned}
$$

On the other hand, since $t<k_{\beta}^{-1}$, we have

$$
2+k_{\beta}-t>2+k_{\beta}-k_{\beta}^{-1} \geq 0
$$

Thus we obtain $\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*}<\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*}$.
Let $t \in\left(1, k_{\beta}^{-1}\right)$. Then, the function $\lambda \mapsto\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}$ maps $(-\infty, 0]$ onto $[1, \infty)$ and $[0, \infty)$ onto $[1, \infty)$. Thus by Lemma 5.4 , for any $\mu \in[0, \infty)$, there exists a unique $\lambda \in(-\infty, 0]$ such that $\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}$. Now, let $\rho_{t}, \sigma_{t}, \tau_{t}$ be real numbers such that $\rho_{t}, \tau_{t}<0<\sigma_{t},\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\rho_{t} y_{t}\right\|_{\beta}^{*},\left\|x_{\beta}-\left(1+k_{\beta}\right)^{-1} y_{t}\right\|_{\beta}^{*}=$ $\left\|x_{\beta}+\sigma_{t} y_{t}\right\|_{\beta}^{*}$, and $\left\|x_{\beta}+d_{t} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\tau_{t} y_{t}\right\|_{\beta}^{*}$. Then, we have the following lemma. The proof is similar to that of Lemma 4.7 (i) and so we omit it.

Lemma 5.6. Let $t \in\left(1, k_{\beta}^{-1}\right)$. Then $\tau_{t}<-\left(1+k_{\beta}\right)^{-1}<\rho_{t}<0<c_{t}<\sigma_{t}<d_{t}$ and

$$
\rho_{t}=-\frac{1-k_{\beta} t}{t-k_{\beta}} c_{t}, \quad \sigma_{t}=\frac{k_{\beta}+t}{\left(1+k_{\beta} t\right)\left(1+k_{\beta}\right)}, \quad \text { and } \quad \tau_{t}=\frac{2\left(1-k_{\beta}\right)}{\left(1+k_{\beta}\right)\left(k_{\beta}+t\right)}-d_{t} .
$$

We consider the set $\Gamma\left(x_{\beta}, y_{t}\right)$. As was mentioned, for each $\mu \in[0, \infty)$ there exists a unique $\lambda_{\mu} \in(-\infty, 0]$ such that $\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}$. Then it follows that

$$
\Gamma\left(x_{\beta}, y_{t}\right)=\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\}
$$

We remark that

$$
1<\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}=\frac{1-\beta}{\beta(3-4 \beta)} \leq \frac{\beta}{1-\beta}=k_{\beta}^{-1}
$$

since $1 / 2<\beta \leq 1 / \sqrt{2}$.

Lemma 5.7. Let $t \in\left(1, k_{\beta}^{-1}\right)$. Then

$$
\Gamma\left(x_{\beta}, y_{t}\right)= \begin{cases}{\left[0, \frac{d_{t}+\tau_{t}}{2}\right]} & \left(1<t \leq \frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}\right) \\ {\left[0, \frac{c_{t}+\rho_{t}}{2}\right]} & \left(\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1} \leq t<k_{\beta}^{-1}\right)\end{cases}
$$

Proof. By Lemma 5.6, we have $\tau_{t}<-\left(1+k_{\beta}\right)^{-1}<\rho_{t}<0<c_{t}<\sigma_{t}<d_{t}$. Suppose that $0 \leq \mu \leq c_{t}$. Then Lemma 5.4 guarantees that $\rho_{t} \leq \lambda_{\mu} \leq 0$, and so

$$
1-\left(t-k_{\beta}\right) \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}=1+\left(1-k_{\beta} t\right) \mu
$$

Hence we have

$$
\lambda_{\mu}=-\frac{1-k_{\beta} t}{t-k_{\beta}} \mu
$$

which implies that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{\left(1+k_{\beta}\right)(t-1)}{2\left(t-k_{\beta}\right)} \mu
$$

Since $t \in\left(1, k_{\beta}^{-1}\right)$, the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is increasing on $\left[0, c_{t}\right]$, and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, c_{t}\right]\right\}=\left[0, \frac{c_{t}+\rho_{t}}{2}\right] .
$$

Next, we suppose that $c_{t} \leq \mu \leq \sigma_{t}$. Then we have $-\left(1+k_{\beta}\right)^{-1} \leq \lambda_{\mu} \leq \rho_{t}$, and so

$$
1-\left(t-k_{\beta}\right) \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}=\frac{1-k_{\beta}}{1+k_{\beta}}+\left(1+k_{\beta} t\right) \mu
$$

From this, we have

$$
\lambda_{\mu}=\frac{2 k_{\beta}}{\left(1+k_{\beta}\right)\left(t-k_{\beta}\right)}-\frac{1+k_{\beta} t}{t-k_{\beta}} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}}{\left(1+k_{\beta}\right)\left(t-k_{\beta}\right)}+\frac{\left(1-k_{\beta}\right) t-\left(1+k_{\beta}\right)}{2\left(t-k_{\beta}\right)} \mu
$$

Since $t \in\left(1, k_{\beta}^{-1}\right),\left(1-k_{\beta}\right) t-\left(1+k_{\beta}\right)<0$ and hence the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is decreasing on $\left[c_{t}, \sigma_{t}\right]$. Thus we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[c_{t}, \sigma_{t}\right]\right\}=\left[\frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}, \frac{c_{t}+\rho_{t}}{2}\right] .
$$

In the case of $\sigma_{t} \leq \mu \leq d_{t}$, we have $\tau_{t} \leq \lambda_{\mu} \leq-\left(1+k_{\beta}\right)^{-1}$. Then we have

$$
\frac{1-k_{\beta}}{1+k_{\beta}}-\left(k_{\beta}+t\right) \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}=\frac{1-k_{\beta}}{1+k_{\beta}}+\left(1+k_{\beta} t\right) \mu
$$

It follows that

$$
\lambda_{\mu}=-\frac{1+k_{\beta} t}{k_{\beta}+t} \mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{\left(1-k_{\beta}\right)(t-1)}{2\left(k_{\beta}+t\right)} \mu .
$$

This shows that the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is increasing on $\left[\sigma_{t}, d_{t}\right]$, and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[\sigma_{t}, d_{t}\right]\right\}=\left[\frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}, \frac{d_{t}+\tau_{t}}{2}\right] .
$$

Finally, we assume that $d_{t} \leq \mu$. Then it follows from $\lambda_{\mu} \leq \tau_{t}$ that

$$
\frac{1-k_{\beta}}{1+k_{\beta}}-\left(k_{\beta}+t\right) \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}^{*}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}^{*}=-\frac{1-k_{\beta}}{1+k_{\beta}}+\left(k_{\beta}+t\right) \mu .
$$

Thus we have

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{1-k_{\beta}}{\left(1+k_{\beta}\right)\left(k_{\beta}+t\right)}=\frac{d_{t}+\tau_{t}}{2} .
$$

Since the function $\mu \mapsto \frac{\lambda_{\mu}+\mu}{2}$ is continuous, we obtain

$$
\begin{aligned}
\Gamma\left(x_{\beta}, y_{t}\right)= & \left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
= & {\left[0, \frac{c_{t}+\rho_{t}}{2}\right] \cup\left[\frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}, \frac{c_{t}+\rho_{t}}{2}\right] } \\
& \cup\left[\frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}, \frac{d_{t}+\tau_{t}}{2}\right] \\
= & {\left[\min \left\{0, \frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}\right\}, \max \left\{\frac{c_{t}+\rho_{t}}{2}, \frac{d_{t}+\tau_{t}}{2}\right\}\right] . }
\end{aligned}
$$

However, one has

$$
\frac{-\left(1+k_{\beta}\right)^{-1}+\sigma_{t}}{2}=\frac{\left(1-k_{\beta}\right)(t-1)}{2\left(k_{\beta}+t\right)} \sigma_{t}>0
$$

and

$$
\frac{d_{t}+\tau_{t}}{2}-\frac{c_{t}+\rho_{t}}{2}=\frac{(1+t)\left(3 k_{\beta}-1\right)}{2 t\left(1+k_{\beta}\right)\left(t+k_{\beta}\right)\left(t-k_{\beta}\right)}\left\{\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}-t\right\} .
$$

Thus, we have this lemma.
Now we estimate $M\left(x_{\beta}\right)$.
Proposition 5.8. $M\left(x_{\beta}\right) \leq 1+k_{\beta}^{2}$.
Proof. By Lemma 5.2, we have $M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta}, y_{t}\right): t \in\left(1, k_{\beta}^{-1}\right)\right\}$.
First we suppose that $t \in\left(1, k_{\beta}\left(1+k_{\beta}\right) /\left(3 k_{\beta}-1\right)\right]$. Since

$$
\frac{d_{t}+\tau_{t}}{2}=\frac{1-k_{\beta}}{\left(1+k_{\beta}\right)\left(k_{\beta}+t\right)}<\frac{1}{\left(1+k_{\beta}\right) t}=c_{t},
$$

we have $0<\frac{d_{t}+\tau_{t}}{2}<c_{t}$. Hence we obtain

$$
\left\|x_{\beta}+\frac{d_{t}+\tau_{t}}{2} y_{t}\right\|_{\beta}^{*}=1+\frac{\left(1-k_{\beta}\right)\left(1-k_{\beta} t\right)}{\left(1+k_{\beta}\right)\left(k_{\beta}+t\right)} .
$$

From the fact that the function $t \mapsto\left(1-k_{\beta} t\right) /\left(k_{\beta}+t\right)$ is strictly decreasing, it follows that

$$
\frac{\left(1-k_{\beta}\right)\left(1-k_{\beta} t\right)}{\left(1+k_{\beta}\right)\left(k_{\beta}+t\right)}<\frac{\left(1-k_{\beta}\right)^{2}}{\left(1+k_{\beta}\right)^{2}},
$$

which implies

$$
\left\|x_{\beta}+\frac{d_{t}+\tau_{t}}{2} y_{t}\right\|_{\beta}^{*}<1+\frac{\left(1-k_{\beta}\right)^{2}}{\left(1+k_{\beta}\right)^{2}}<1+k_{\beta}^{2}
$$

since $\left(1-k_{\beta}\right) /\left(1+k_{\beta}\right)<k_{\beta}$. Thus for each $t \in\left(1, k_{\beta}\left(1+k_{\beta}\right) /\left(3 k_{\beta}-1\right)\right]$, we have

$$
m\left(x_{\beta}, y_{t}\right)=\max \left\{\left\|x_{\beta}\right\|_{\beta}^{*},\left\|x_{\beta}+\frac{d_{t}+\tau_{t}}{2} y_{t}\right\|_{\beta}^{*}\right\}<1+k_{\beta}^{2}
$$

by [18, Lemma 2.6].
Let $t \in\left[k_{\beta}\left(1+k_{\beta}\right) /\left(3 k_{\beta}-1\right), k_{\beta}^{-1}\right)$. Then we obtain

$$
0<\frac{c_{t}+\rho_{t}}{2}=\frac{t-1}{2 t\left(t-k_{\beta}\right)}<\frac{1}{2 t}<\frac{1}{\left(1+k_{\beta}\right) t}=c_{t} .
$$

By Lemma 5.4, we obtain

$$
\begin{aligned}
\left\|x_{\beta}+\frac{c_{t}+\rho_{t}}{2} y_{t}\right\|_{\beta}^{*} & <\left\|x_{\beta}+\frac{1}{2 t} y_{t}\right\|_{\beta}^{*} \\
& =1+\frac{1-k_{\beta} t}{2 t} \\
& <1+\frac{1-k_{\beta}^{2}\left(1+k_{\beta}\right)\left(3 k_{\beta}-1\right)^{-1}}{2 k_{\beta}\left(1+k_{\beta}\right)\left(3 k_{\beta}-1\right)^{-1}} \\
& =1+\frac{\left(1-k_{\beta}\right)\left(k_{\beta}^{2}+2 k_{\beta}-1\right)}{2 k_{\beta}\left(1+k_{\beta}\right)} .
\end{aligned}
$$

Since $\sqrt{2}-1 \leq k_{\beta}<1$, we have

$$
k_{\beta}^{2}-\frac{\left(1-k_{\beta}\right)\left(k_{\beta}^{2}+2 k_{\beta}-1\right)}{2 k_{\beta}\left(1+k_{\beta}\right)}=\frac{2 k_{\beta}^{2}\left(k_{\beta}^{2}+2 k_{\beta}-1\right)+\left(1-k_{\beta}\right)^{3}}{2 k_{\beta}\left(1+k_{\beta}\right)}>0,
$$

and so

$$
\left\|x_{\beta}+\frac{c_{t}+\rho_{t}}{2} y_{t}\right\|_{\beta}^{*}<1+k_{\beta}^{2} .
$$

Hence, by [18, Lemma 2.6], we have

$$
m\left(x_{\beta}, y_{t}\right)=\max \left\{\left\|x_{\beta}\right\|_{\beta}^{*},\left\|x_{\beta}+\frac{c_{t}+\rho_{t}}{2} y_{t}\right\|_{\beta}^{*}\right\}<1+k_{\beta}^{2} .
$$

Thus we obtain $M\left(x_{\beta}\right) \leq 1+k_{\beta}^{2}$.

6. The Dunkl-Williams constant of $\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}$

As was mentioned in Section 2, the equality $D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)=D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right)$ holds for all $\beta \in(1 / 2,1)$. From this fact, we obtain the main result.

Theorem 6.1. Let $\beta \in(1 / 2,1)$. Then the following hold:
(i) If $\beta \in(1 / 2,1 / \sqrt{2}]$, then

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)=D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right)=\frac{2}{\beta^{2}}\left\{(1-\beta)^{2}+\beta^{2}\right\}
$$

(ii) If $\beta \in[1 / \sqrt{2}, 1)$, then

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)=D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)\right)=4\left\{(1-\beta)^{2}+\beta^{2}\right\} .
$$

Proof. As in the above sections, we write X_{β}^{*} for $\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}^{*}}\right)$.
(i) Suppose $\beta \in(1 / 2,1 / \sqrt{2}]$. Then by Proposition 3.3, we have

$$
D W\left(X_{\beta}^{*}\right)=2 \max \left\{M\left(x_{\beta}\right), M\left(e_{1}\right)\right\} .
$$

Thus, by Propositions 4.10 and 5.8 , we obtain

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)=D W\left(X_{\beta}^{*}\right)=2\left(1+k_{\beta}^{2}\right)=\frac{2}{\beta^{2}}\left\{(1-\beta)^{2}+\beta^{2}\right\}
$$

as desired.
(ii) For each $\beta \in(1 / 2,1)$, it is easy to check that X_{β}^{*} is isometrically isomorphic to $X_{1 / 2 \beta}^{*}$ under the identification

$$
X_{\beta}^{*} \ni\left(x_{1}, x_{2}\right) \longleftrightarrow \frac{1}{2 \beta}\left(x_{1}+x_{2}, x_{1}-x_{2}\right) \in X_{1 / 2 \beta}^{*}
$$

since $\max \left\{\left|x_{1}+x_{2}\right|,\left|x_{1}-x_{2}\right|\right\}=\left|x_{1}\right|+\left|x_{2}\right|$ for all $x_{1}, x_{2} \in \mathbb{R}$. If $\beta \in[1 / \sqrt{2}, 1)$, then $1 / 2 \beta \in(1 / 2,1 / \sqrt{2}]$ and hence by (i)

$$
\begin{aligned}
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)=D W\left(X_{\beta}^{*}\right) & =D W\left(X_{1 / 2 \beta}^{*}\right) \\
& =\frac{2}{(1 / 2 \beta)^{2}}\left\{(1-(1 / 2 \beta))^{2}+(1 / 2 \beta)^{2}\right\} \\
& =4\left\{(1-\beta)^{2}+\beta^{2}\right\} .
\end{aligned}
$$

Therefore we obtain this theorem.

Remark 6.2. From Theorem 6.1 and $\left[18\right.$, Theorem 3.1], $D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)\right)$ coincide with $D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)^{*}\right)$ for all $\beta \in(1 / 2,1)$.

Let X^{*} denote the dual space of a Banach space X. It is known that $C_{N J}(X)=$ $C_{N J}\left(X^{*}\right)$, where $C_{N J}(X)$ is the von Neumann-Jordan constant of $X[4,13]$. On the other hand, the equality $J(X)=J\left(X^{*}\right)$ does not necessarily hold for the James constant $J(X)[8,21]$. It will be interesting to wonder if the equality $D W(X)=$ $D W\left(X^{*}\right)$ holds for any Banach space X.

References

[1] M. Baronti and P. L. Papini, Up and down along rays, Riv. Mat. Univ. Parma (6) 2* (1999), 171-189.
[2] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
[3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, Cambridge, 1973.
[4] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math. (2) 38 (1937), 114-115.
[5] C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), 53-54.
[6] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319.
[7] M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.
[8] J. Gao and K.-S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser. A 48 (1990), 101-112.
[9] R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291-302.
[10] R. C. James, Inner product in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566.
[11] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
[12] A. Jiménez-Melado, E. Llorens-Fuster and E. M. Mazcuñán-Navarro, The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl. 342 (2008), 298-310.
[13] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
[14] W. A. Kirk and M. F. Smiley, Another characterization of inner product spaces, Amer. Math. Monthly 71 (1964), 890-891.
[15] K.-I. Mitani and K.-S. Saito, Dual of two dimensional Lorentz sequence spaces, Nonlinear Anal. 71 (2009), 5238-5247.
[16] K.-I. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex Anal. 10 (2003), 89-107.
[17] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-ditect sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
[18] H. Mizuguchi, K.-S. Saito and R. Tanaka, The Dunkl-Williams constant of symmetric octagonal norms on \mathbb{R}^{2}, Nihonkai Math. J. 23 (2012), 93-113.
[19] H. Mizuguchi, K.-S. Saito and R. Tanaka, On the calculation of the DunklWilliams constant of normed linear spaces, Cent. Eur. J. Math. 11 (2013), 1212-1227.
[20] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[21] K.-S. Saito, N. Komuro and K.-I. Mitani, How to calculate the James constants of Banach spaces, Proc. of 4th International Symposium on Banach and Function Spaces IV (2013), 211-224.
(Hiroyasu Mizuguchi) Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
E-mail address: mizuguchi@m.sc.niigata-u.ac.jp

Received October 2, 2014

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Dunkl-Williams constant, absolute normalized norm, norming functional.

