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UNIQUENESS OF THE EXTENSION OF ISOMETRIES
ON THE UNIT SPHERES IN NORMED LINEAR

SPACES

TATSUYA NOGAWA

Abstract. In this paper we show that the extension of a surjective isometry on

the unit sphere in a normed linear space is unique.

1. Introduction

In [3], Mazur and Ulam studied a property of the isometries T from a normed

real-linear space X onto a normed real-linear space Y . They proved the so-called

Mazur-Ulam theorem stating that T − T (0) must be a real-linear map. We refer

to [1, 5] for the proof of the theorem. Mankiewicz [2] gave a generalization of the

theorem which if U is a non-empty open connected set of X, V is a open set of Y

and f : U → V is a surjective isometry, then there exists an affine isometry T from

X onto Y such that the restriction T |U to U is equal to f .

Moreover, the Mazur-Ulam theorem has been generalized in many directions.

Tingley [4] have proposed the so-called Tingley problem. The problem is as follows:

let SX , SY be the unit sphere in X, Y , respectively, and f : SX → SY a surjective

isometry. Is f necessarily the restriction to SX of a linear, or affine, transformation?

In this paper, we study the uniqueness of the extension of f for the problem when

f can be extended. The following is a main theorem in this paper.

Theorem 1.1. Let X, Y be normed real-linear spaces with the unit sphere SX , SY ,

respectively, and f : SX → SY a surjective isometry. If there exists a surjective

isometry T : X → Y such that the restriction T |SX
to SX is equal to f , then such a

map is unique.

The above theorem can be proved by applying Theorem 1.3.4 in [1]. In this

paper, we give an alternative simple proof of Theorem 1.1 by applying Lemma 2.1

in the next section. We also note that Lemma 2.1 gives a short and simple proof of

Theorem 1.3.4 in [1].
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2. Proof of Theorem 1.1

We begin with the following lemma.

Lemma 2.1. Let y be an element in X. Then, ∥y − x∥ = 1 for any x ∈ SX if and

only if y = 0.

Proof. If y = 0, then ∥y−x∥ = 1 for every x ∈ SX . We verify the converse. Suppose

that there exists an element z ̸= 0 such that ∥z − x∥ = 1 holds for any x ∈ SX .

Putting z1 =
z

∥z∥ ∈ SX , we have the equation

1 = ∥z − z1∥ =

∥∥∥∥z − z

∥z∥

∥∥∥∥ =

∣∣∣∣1− 1

∥z∥

∣∣∣∣ ∥z∥ = |∥z∥ − 1|.

Therefore we get ∥z∥ = 2 by the above equality. However,

1 = ∥z − (−z1)∥ = ∥z + z1∥ =
∥∥∥z + z

2

∥∥∥ =
3

2
∥z∥ = 3,

since −z1 ∈ SX . This is a contradiction. □

The main theorem is proved by applying Lemma 2.1.

Proof of Theorem 1.1. Let T ′ : X → Y be a surjective isometry such that the

restriction T ′|SX
to SX is equal to f . We prove T ′(0) = 0. For any y ∈ SY , there

exists an element x ∈ SX such that T ′(x) = f(x) = y since f is a surjection.

Therefore we have

∥T ′(0)− y∥ = ∥T ′(0)− T ′(x)∥ = ∥0− x∥ = 1.

Applying Lemma 2.1 for T ′(0), we obtain T ′(0) = 0. We also get T (0) = 0 in the

same way. By the Mazur-Ulam theorem, T and T ′ are real-linear maps. As T and

T ′ are homogeneous, we deduce the equation

T (z) = ∥z∥T
(

z

∥z∥

)
= ∥z∥f

(
z

∥z∥

)
= ∥z∥T ′

(
z

∥z∥

)
= T ′(z)

for any z ̸= 0. This imply that T = T ′, and the proof is completed. □
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