A STRONGER NONCOMMUTATIVE EGOROFF'S THEOREM

CHARLES A. AKEMANN AND G. A. BAGHERI-BARDI

Abstract

We prove a stronger version of Egoroff's theorem in the non-commutative setting.

Egoroff's theorem in abstract measure theory plays a fundamental role. It says
Theorem 1. Let (\mathcal{X}, μ) be a measure space with $\mu(\mathcal{X})<\infty$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex-valued measurable functions which converges at almost every point of \mathcal{X} to a complex-valued function f. If $\epsilon>0$, there is a measurable set $E \subseteq \mathcal{X}$ with $\mu(\mathcal{X}-E) \leq \epsilon$ such that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on E.

Ignoring a set of measure $<\epsilon / 2$, we can assume that $\left\{f_{n}\right\}_{n=1}^{\infty}$ are all bounded, so without lost of generality they are bounded by 1 and $f=0$. This is routine measure theory, but it uses strongly the fact that we have sequenatial convergence. Using these reductions, we now have the following version of Egoroff's Theorem.

Theorem 2. Let (\mathcal{X}, μ) be a measure space with $\mu(\mathcal{X})<\infty$. Let A be a uniformly bounded set of measurable functions which contains 0 in its L^{1} norm closure. If $\epsilon>$ 0 , there is a measurable set $E \subseteq \mathcal{X}$ with $\mu(\mathcal{X}-E) \leq \epsilon$ and a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset A$ that converges uniformly to 0 on E.

Let \mathcal{H} be a Hilbert space and $\mathbf{B}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H}. A noncommutative version of this theorem was proved by Saito in [3] as follows.

Theorem 3. Let \mathcal{M} be a von Neumann algebra in $\mathbf{B}(\mathcal{H})$. Let A be a bounded subset of \mathcal{M} such that 0 lies in its strong closure \bar{A}. Then, for any positive $\mu \in \mathcal{M}_{*}$ and any $\epsilon>0$, there exist a projection e_{0} in \mathcal{M} and a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ in A such that

$$
\lim _{n \rightarrow \infty}\left\|a_{n} e_{0}\right\|=0, \mu\left(1-e_{0}\right) \leq \epsilon
$$

A part of Saito's proof (for which he was forced to use the boundedness assumption) is based on this point: Let $\left\{a_{i}\right\}$ be a uniformly bounded net in $\mathbf{B}(\mathcal{H})$ which strongly converges to zero then $\left\{a_{i}^{*} a_{i}\right\}$ strongly converges to zero too. We show by an example that the boundedness assumption is needed for this point.

[^0]Example 4. Let $\left\{e_{n}\right\}_{1}^{\infty}$ be an orthonormal set in \mathcal{H} and consider the rank one projection p_{n} onto $\mathbb{C} e_{n}$. Then 0 is in the strong closure of $S=\left\{\sqrt{n} p_{n}: n \in \mathbb{N}\right\}$ (see Example C. 10 of [5]). We list below two points concerning this example:
(1) Every norm bounded net in S has many finite distinct elements. Therefore there is no norm bounded net in S which converges to 0 with related to the strong operator topology. We now apply the principle of uniform boundedness to conclude there is no sequence in S which converges to 0 with related to the strong operator topology too.
(2) There is a net $\left\{a_{i}\right\}$ in S converging to 0 in the strong operator topology. The squares of elements of S are all the form $n p_{n}$. Let $h=\sum_{n} \frac{1}{n} e_{n}$ then $n p_{n}(h)=e_{n}$. So there is no subnet of $\left\{n p_{n}\right\}$ strongly convergent to 0 . Since $\left\{a_{i}^{2}\right\}$ does converge to zero in the weak operator topology then $\left\{a_{i}^{2}\right\}$ can not strongly converge to anything.

This example makes sense we cannot apply Saito's theorem for $S \subseteq \mathcal{M}=B(H)$. We make a change in Saito's proof to show the bounded assumption is redundant. This is an important benefit since the strong operator topology is metric on bounded subsets of \mathcal{M}. Our proof makes it clear that this part of Egoroff's Theorem is not about sequences.

Theorem 5. Let \mathcal{M} be a von Neumann algebra in $\mathbf{B}(\mathcal{H})$. Let A be an arbitrary subset of \mathcal{M} and \bar{A} be its strong closure. Take an arbitrary element $a \in \bar{A}$. Then, for any positive $\mu \in \mathcal{M}_{*}$, any projection $e \in \mathcal{M}$ and any $\epsilon>0$, there exist a projection $e_{0} \leq e$ in \mathcal{M} and a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ in A such that

$$
\lim _{n \rightarrow \infty}\left\|\left(a_{n}-a\right) e_{0}\right\|=0, \mu\left(e-e_{0}\right) \leq \epsilon
$$

Proof. Let $\left\{a_{i}\right\}_{i \in I}$ be a net in \mathcal{A} which is strongly convergent to a.
Step 1. Let us consider projections $p_{1, i}=\chi_{\left[0, \frac{1}{2}\right]}\left(\left|\left(a-a_{i}\right) e\right|\right)$ in $e \mathcal{M} e$.

- We have $\left\|\left(a-a_{i}\right) p_{1, i}\right\| \leq \frac{1}{2}$ for every $i \in I$. To prove it

$$
\begin{aligned}
\left\|\left(a-a_{i}\right) p_{1, i}\right\|^{2} & =\left\|p_{1, i}\left(a-a_{i}\right)^{*}\left(a-a_{i}\right) p_{1, i}\right\| \\
& =\left\|p_{1, i} e\left(a-a_{i}\right)^{*}\left(a-a_{i}\right) e p_{1, i}\right\| \\
& =\left\|p_{1, i}\left|\left(a-a_{i}\right) e\right|^{2} p_{1, i}\right\| \\
& =\left\|\left|\left(a-a_{i}\right) e\right| p_{1, i}\right\|^{2} \leq\left(\frac{1}{2}\right)^{2} .
\end{aligned}
$$

- We show the net $\left\{p_{1, i}\right\}_{i \in I}$ strongly converges to e and conclude there is $k_{1} \in I$ with $\mu\left(e-p_{1, k_{1}}\right) \leq \frac{\epsilon}{2}$ (since μ is normal). Based on definition of projections $p_{1, i}$'s, we have

$$
\frac{1}{2}\left(e-p_{1, i}\right) \leq\left|\left(a-a_{i}\right) e\right| .
$$

But $\left\{\left|\left(a-a_{i}\right) e\right|\right\}$ is strongly convergent to 0 . This point is obtained by the fact that $\left\{a-a_{i}\right\}$ strongly goes to zero and the following equality.

$$
\left\|\left|\left(a-a_{i}\right) e\right| \zeta\right\|=\left\|\left(a-a_{i}\right) e \zeta\right\| \quad(\zeta \in \mathcal{H})
$$

Step 2. We now consider projections $p_{2, i}=\chi_{\left[0, \frac{1}{4}\right]}\left(\left|\left(a-a_{i}\right) p_{1, k_{1}}\right|\right)$ in $p_{1, k_{1}} \mathcal{M} p_{1, k_{1}}$. Similar to the step 1,

- We have $\left\|\left(a-a_{i}\right) p_{2, i}\right\| \leq \frac{1}{2^{2}}$ for every $i \in I$. To prove it

$$
\begin{aligned}
\left\|\left(a-a_{i}\right) p_{2, i}\right\|^{2} & =\left\|p_{2, i}\left(a-a_{i}\right)^{*}\left(a-a_{i}\right) p_{2, i}\right\| \\
& =\left\|p_{2, i} p_{1, k_{1}}\left(a-a_{i}\right)^{*}\left(a-a_{i}\right) p_{1, k_{1}} p_{2, i}\right\| \\
& =\left\|p_{2, i}\left|\left(a-a_{i}\right) p_{1, k_{1}}\right|^{2} p_{2, i}\right\| \\
& =\left\|\left|\left(a-a_{i}\right) p_{1, k_{1}}\right| p_{2, i}\right\|^{2} \leq\left(\frac{1}{4}\right)^{2} .
\end{aligned}
$$

- There is $k_{2} \in I$ with $\mu\left(p_{1, k_{1}}-p_{2, k_{2}}\right) \leq \frac{\epsilon}{2^{2}}$.

By induction we obtain a decreasing sequence $\left\{p_{n, k_{n}}\right\}_{n=1}^{\infty}$ in \mathcal{M} which should be strongly convergent to a projection $e_{0} \in \mathcal{M}$. Then we get

$$
\mu\left(e-e_{0}\right) \leq \epsilon \text { and } \lim _{n \rightarrow \infty}\left\|\left(a-a_{k_{n}}\right) e_{0}\right\| \leq \lim _{n \rightarrow \infty}\left\|\left(a-a_{k_{n}}\right) p_{n, k_{n}}\right\|=0 .
$$

Acknowledgements. The authors are deeply grateful to the referee for valuable suggestions which have contributed to the final preparation of the paper.

References

1. I. Kaplansky, A theorem on rings of operators, Pacific J. Math., 1 (1951), 227232.
2. W. Rudin, Real and Complex Analysis, MacGraw-Hill Book C., 1966.
3. K. Saito, Non commutative extension of Lusin's theorem, Tohoku Math. J., 19 (1967), 332-340.
4. M. Takesaki, Theory of operator algebra I, Springer-Verlag, New York, 1979.
5. Iain Raeburn and P. Dana Williams, Morita Equivalnce and continuous-Trace C^{*}-algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998.
(C. A. Akemann) Department of Mathematics, University of California, Santa Barbara, California 93106 USA.
E-mail address: Akemann@math.ucsb.edu
(G. A. Bagheri-Bardi) Department of Mathematics, Persian Gulf University, Boushehr 75168, Iran. E-mail address: alihoular@gmail.com , bagheri@mailpgu.ac.ir

Received April 9, 2014
Revised April 20, 2014

[^0]: 2010 Mathematics Subject Classification. Primary 46L10.
 Key words and phrases. von Neumann algebras, Noncommutative Egoroff's theorem.

