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CHARACTERIZATIONS OF REGULAR NORMS ON R”
RYOTARO TANAKA AND KICHI-SUKE SAITO

ABSTRACT. In this paper, we study regular norms on R™. It is shown that the
class of regular norms is a natural generalization of that of generalized Day-James
type norms. Furthermore, using absolute norms, we give some characterizations

of regular norms.

1. Introduction

Let AN,, denote the family of all absolute normalized norms on R", where a norm
|| - || on R™ is said to be absolute if

(a1, az, ..., an)|| = [[(las], a2, - -, aa])
for all (aq,aq,...,a,) € R", and normalized if
II(1,0,...,0)|| = ||(0,1,0,...,0)|]| = [|(0,...,0,1)]| = 1.

As in Saito-Kato-Takahashi [8], AN, and ¥, are in a one-to-one correspondence
under the equation 1 (s) = ||s||, for all s € A,,, where

=1

An:{(31,52,...,5n)GR":ZSZ':L siZOfori:1,2,...,n},

and V,, is the set of all continuous convex functions on A,, which satisfy the following

conditions:
¥(1,0,...,0) =1(0,1,0,...,0) =9(0,...,0,1) =1,

and for all i =1,2,...,n with s; < 1,

S1 Si—1 Sit+1 Sn
s > (1— s L E sy
¢(517527 78>—< S)Flp(l_Sz 1—81» 1_81' 1_87,>
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We remark that the norm || - ||, associated with 1) is given by

— EA || )
(Z '“") v <ZZ;1 il adl

0 i

||<a1’a2’ s >an)||¢ =

From this result, we can consider many non-/,-type norms easily. Now let

no p\1/p :
i if 1 <p<oo,
wp(ShSQ?"'aSn) - { (Z’L_l ) . p
max{sy, $2,...,8,} if p=o0.
Then ¢, € U,, and, as is easily seen, the {,-norm || - ||, is associated with ¢,. For

some other results concerning absolute normalized norms, we refer the reader to
(3,4,5,7,8,9].

In [10], we showed that every n-dimensional real normed linear space is isometri-
cally isomorphic to the space R™ endowed with a normal norm, where a norm || - ||
on R™ is said to be normal if it satisfies || - ||1 < || || < || - [[oo- This generalizes the
result of Alonso [1] which states that any two-dimensional real normed linear space
is a generalized Day-James space (cf. Nilsrakoo and Saejung [6]). A generalized
Day-James space is defined for each 1, ¢ € U, as the space R? endowed with the
norm

[(a,b)|l, if ab >0,
b =
(@, b)] { ll(a,b)]|, if ab <O0.

Let NN,, denote the set of all normal norms on R™.
In this paper, we focus on the following type of norms on R"™.

Definition 1.1 ([11]). A norm || - || on R™ is said to be regular if it is normalized
and
(a1, az,. .., an)|l = 1?1?3}(71 (a1, ..o ak—1,0, a1, .., an)|

for all (a1, as,...,a,) € R". Let RN, denote the family of all reqular norms on R™.

In the previous paper [11], we studied orthogonal bases and a structure of finite
dimensional normed linear spaces, and regular norms appeared on that occasion
inevitably. So it is natural to consider the structure of regular norms on R™.

The aim of this paper is to present some characterizations of regular norms on R"
analogous to the work of Saito-Kato-Takahashi [§].
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2. Preliminaries

We recall some results on AN,,, RN,, and NN,. The following is an important
characterization of absolute norms on R”. The proof can be found in [2, Proposition
IV.1.1] (see, also [8, Lemma 4.1]).

Proposition 2.1. A norm || -|| on R™ is absolute if and only if it is monotone, that
is, if |a;| < |bi| for alli=1,2,...,n then ||(a1,a2,...,a,)|| < ||(b1, b2, ..., 0,)].

In [11, Theorem 3.6], the RN,, version of this result was proved. To state this
result, some preparations are needed. For each n > 2, define a 2"~ x n matrix R
by the formulas

1
Ry,

1 1 1
LR

1

Fix a positive integer n > 2. Let
th
|

62n—1
Then, the ;-quadrant of R™ is given by

where R, is the set of all nonnegative real numbers, and 6; - x denotes the pointwise
product of #; and z.
Using €2;-quadrants, we can consider the following weakened monotonicity.

Definition 2.2 ([11]). A norm || - || is said to be semi-monotone if

H(CLl,CLQ, s Jan)H S H(b17b27 s 7bn)||

whenever (ay,ag, ..., a,), (b1,ba, ..., by) € Q; for some i and |ag| < |bg| for all k =
1,2,...,n, or equivalently, whenever (ai, az, ..., a,), (b1, ba, ..., by,) satisfies apby > 0
and |ag| < |bg| for all k =1,2,... n.

Regular norms on R™ are characterized by semi-monotonicity. We prove the fol-
lowing result only for the sake of completeness.
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Proposition 2.3 ([11]). A normalized norm || - || on R™ is reqular if and only if it
18 semi-monotone.

Proof. Every semi-monotone norm is clearly regular. So we only prove that regular-

ity implies semi-monotonicity. Suppose that || - || is regular. Then
l(ay,az, ... ,a,)| > ax |(ar, ..., ak—1,0, ki1, - an)|

for all (aq,aq,...,a,) € R". If t > 1, we have

[(a1, az, ..., an)|
< (T=t"Hla1, ., ap-1,0,app1, .- an)|
+t Y (ay, ..., ap_1, tag, Gpg, - ., an)||
< (L—=t"YHllar, .., ap—1, tag, Qg .. an)|
+t7(ay, . .., ap1, tag, Gri, - - an)|
= |l(a1, ..., ap_1, tag, arsr, ..., an)ll

for all (ay,as9,...,a,) € R"and all k =1,2,...,n.
Now, let (ay,as,...,a,) and (b, by, ..., b,) be elements of R™ such that |a;| < |b;]
and a;b; > 0 for all : = 1,2,...,n. Then, by the preceding paragraph, we obtain

H(a17a27 s 7an)|| S ||(b17a27 c ‘7an)||

S H(blab%a& tee 7a‘n)H

S ||(b17 b27 o 7bn)||
Thus the norm || - || is semi-monotone. O

We conclude this section with the following basic relationship among AN,,, RN,
and NN,,.

Proposition 2.4. AN,, C RN,, C NN,,. In particular, RNy = N Ns.

3. Regular norms on R?

In this section, we consider the results in the case R3. The reason for this is that
the results for R? illustrate all the mechanism involved in the induction to follow.
A norm || - || on R? is said to be regular if it is normalized and

1z, y, 2)|| = max{||(z,y, 0)[|, | (=, 0, 2) ||, (0, 9, 2)[[}

for all (z,y,z) € R3.
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For each vector p = (a,b, c¢) € R3, we define Q(p) and Az(p) by
Q(p) = {(ax,by,cz) € R : z,y, 2 > 0},
As(p) = {(as,bt,cu) € R*: (s,t,u) € As},
where
As={(s,t,u) €ER®:5,t,u>0, s+t+u=1}
Recall that

1 1 1 01
1 1 -1 0
Bi=11 1 1|° 92 ’
1 -1 1 0,
and

0 =Q0) = {(z,y,2) € R*: z,y,2 > 0},
Q= Q0;) = {(z,y,—2) €R®: z,y, 2 > 0},
Q3 = Q03) = {(z,—y,—2) €ER® 1 2,9, 2 > 0},
Q= Q0) = {(z,~y,2) €R®: z,y,2 > 0}

Putting ©3 = {601, 0, 05,04}, we have
4

R* = | J(Q(0) UQ(~6y).

i=1

The following lemmas are needed in the sequel.

Lemma 3.1. Let 0;,0; € O5. Then

(6, N Q(8;) = O (92' ; 9]') ,
Q(6;) NQ(—=6,) = Q (9" ; 93') .

Lemma 3.2. Let §;,0; € ©3. Then

As(6;) N As(6;) = As ( '
(

N
_l_
S
.
~——

As(0;) N Ag(—0;) = As

<
S
o ||
SP
N——

Regular norms on R? have the following property.
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Proposition 3.3. Suppose that || - || € RN3. Let

p1(s,tu) = ||(s, 2, u)l
902(87t7u) - ||(Svt7 _u)||7
903(57t7u) = H(Sa ,—U)H,
pals, t,u) = ||(s, —t, )],
for all (s,t,u) € Az. Then, (01, pa, ©3,04) € (U3)* and
[(z,y, 2) g, if (2,9, 2) € Q6:) UQ(—0,
H(x y Z)H _ H(xayaZ)Hm (JZ Y,z ) € Q(92) UQ(_92
T (9, 2)llps i (2,y,2) € Q(03) UQ(—b5
H(xvyJZ)HSM ((E Y,z ) (84> U Q<_04

Proof. First, we show that ¢; € W3 for i = 1,2,3,4. Take an arbitrary (s,t,u) € As.

If s<1thent+wu>0and

p1(s) = (s, t, v
> (0, t,u)]
t
= (t 0, ——
(t+v) ( ’t+u’t+u>H
t U
= (t 0, —— .
e (0 )
Ift <1 then s+ wu > 0 and
p1(s) = [|(s,t, v
> ||(s,0,u)]
= (o)
S+ u S+ u
s U
(S+u)¢1<s—|—u s+u>'
If w<1then s+¢>0and
e1(s) = [|(s, t,u)
> ||(s,t,0)]]
t
= t 0
s+ )H<s+t’s+t’ )H
S t
= t — 0.
(S+ )901 (S—l—t’S—Ft’ )

Thus we have ¢, € U3. Similarly, one can easily have g, @3, 04 € V3.
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Next, we suppose that x,y, z > 0. It may be assumed that (z,y, z) # 0. Then we

have

Iz, y,2)|| = (x +y +2)

T y z )
r+y+zx+y+zr+y+z

(@+y+2) ( ’ Y © )
= (T z 9 9
YT s fy 2 ctyt2 24ty +2

- ||(£L',y,Z>||<p1,

H(x,y, _Z)H = (iB—i—y—l—Z)

T Y —Z
r+y+zr+y+z r4+y+z

(4 +2) x Y z )
=\ z 9 Y
Y 72 rt+ytz r+ty+z r+y+z

= [(z,9, 2) [l
= ||<£L‘, Y, _Z)l|<,027

Iz, =y, =2)[l = (z +y + 2)

(x+y+z’x+y+z’x+y+z)H

:(m+y+z)<pg(

T y z )
r+y+z e+y+z2r+y+z
= lI(2, 9, 2) |l
= ||(z, =y, =2)llgs>

||(JI, —y,Z)H = (I+y+z)

)
r+y+zrty+zxty+z

(x+y+2) x Y z >
=\ z 9 Y
Yo ey y 12 rtyt2 21y +2

= ||(.’E,y, Z)HSM
= [|(@, =¥, 2) [l s-
Thus we have
[(z,y, 2)lo if (z,,2) € Q(01) UQ(=01),
H(x y Z)” _ ||(l‘,y,2’>||‘p2 if (:L',y, Z) € 9(02) U Q(_02)a
e ||(5L’,y,Z>||<p3 if (‘raya Z) € Q(03) U Q(_e?))a
(2,9, 2) s if (2,9,2) € Q02) UQ(—04).

This completes the proof.

4

From this result, it turns out that RN is a generalization of the class of generalized

Day-James type norms.
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Next, we present a characterization of regular norms on R? similar to [8, Theorem
2.5].

Lemma 3.4. Let || - || € RNz and let F = (1,02, p3,¢4) be the element of (¥3)*
defined as in Proposition 3.3. Ifi,j € {1,2,3,4}, then

pills], [¢], [ul) = @;(Is], [¢], [u])
for all (s,t,u) € As((8; +6;)/2) U As((6; — 65)/2).
Proof. By Proposition 3.3, we have || - ||, = || - [|,, on Q((0; +6;)/2) UQ((0; —0;)/2).
Take arbitrary (s,t,u) € As((0; +0;)/2) U As((0; — 0;)/2). Since || - [|,, and || - [|,,

are absolute, we obtain

], [2], ul)

901'(|5’7‘t’7|u|) = ®i

[s, 1¢], Jul)l,

= @ (Is], [, [ul).
Thus we have ¢;(|s], |t], |u]) = ¢;(|s], |t], |u|) whenever (s,t,u) € As((6; +6;)/2) U
As((0; — 6;)/2). O

Let ®3 denote the family of all elements of (¥3)* satisfying the following condition:
If i, j € {1,2,3,4}, then

wills], [, ul) = w;(Is], [t [u])

for all (S, t, U) € Ag((el + 9J>/2) U Ag((&z — 0])/2)
Our aim is to show that RNz and ®3 are in a one-to-one correspondence. To this
end, some lemmas are needed.

Lemma 3.5. Let ¢ € U3 and let || - || be a function on R3 defined by

(2, y, )l = max{[| (2", y ™ 2 "), 127, 7, 27)lw}

for all (x,y, z) € R3, where x — x and x — 1~ is defined by
2t =max{z,0} and 2z~ = max{—z,0},
respectively. Then || - [|5 is a norm on R3. Moreover,

G, y: 25 = (g, 2) [y

whenever x,y,z > 0 or x,y,z < 0.

The following lemma is the converse of Lemma 3.4.
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Lemma 3.6. Let F' = (1, @2, 3, 04) € ®3. Ifi,j € {1,2,3,4}, then

I
on Q((6; + 0,)/2) UQ((6; — 6;)/2).

o = I g

Proof. Let i,j € {1,2,3,4}. Suppose that (z,y,2) € Q((6; +0,)/2) UQ((6; — 6,)/2).
We may assume that  # 0. Then we have

( x | y | z >€A3(9i+9j)UA3(0i_9j)‘
2| + [yl + 2] 2] + |y| + |2]" [2] + [y] + || 2 2

Since F' € $3, we have

12 1] 2]
(2,9, 2) i:<\xr+ry\+\zr>H( | |
¢ R I R
] vl 2]
— (o] + Iyl + =D, ( 7 |
o E o 1 e+ o+ 7]
2] ] 2]
=(\f€|+|y|+|2|)s0-( | |
T W+ 12 T+ [+ ] e+ o[+ 17
12 1] 2]
=<|a:|+|y|+|z|>H< | |
2+ byl + 1 Tl + i = 10 Tl + 121,
= ||(I7y7 Z)”SO]"
This completes the proof. ]

We now present a characterization of regular norms on R3. Then some prepara-
tions are needed.

Theorem 3.7. The following holds:

(i) Let || - || € RN3 and let F = (p1, pa, 93, p4) be the element of (V3)* defined
as in Proposition 3.3. Then F € ®j.

(ii) Let F = (¢1, pa, 3, p4) € P3 and let || - || be the function on R defined by

||(337?Ja Z)”F - maX{H(x, Y, Z)H@? ||(I7y7 _Z)H@a ||(‘T7 —-Y, _Z)H@u ||((L’, —-Y, Z)”@}
for all (z,y,z) € R®. Then || - ||r € RN3 and

pr(s t,u) = [|(s,t,0)
pals, t,u) = [|(s, 1, —u)||r,
wa(s:t,u) = [|(s, =, —u)||p,
pa(s, t,u) = [|(s, =t u)||r,

for all (s,t,u) € As.
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Proof. (i) This is just a statement of Lemma 3.4.
(ii) Let || - || s be the functions on R defined by

1z, y, 2)llea = (2,9, 2) 1

1z, y, )2 = (12, 9, =2) |z,

1z, y, 2l es = (2, =y, =2) ||z,

1@, y, ) pa = 12, =y, 2) |z,
for all (z,y,2) € R3%. Then, it is easy to see that each || - |; is a norm on R*. We
note that

ol = pa llell,

for all € R3, which implies that || - || is a norm on R™.

Next, we prove that ||z||r = ||z

»; Whenever = € Q(6;) UQ(—6;). Let z,y,z > 0.
Then we have

”(xaya Z)“FJ = H(x>ya Z)”fp\l = H('Tvyaz)nsﬁ
by Lemma 3.5. By Lemmas 2.1, 3.5 and 3.6, we also have

1y, 2)llp2 = (2,9, =2) |5
= max{|[(z, 4, 0)ll4,, [1(0,0, )|, }
= max{|(z,y,0)llx, [1(0,0, 2)[|¢, }
< [1(z,y, )l

1,y 2)lrs = Nl (z, =y, =)l
= max{||(z,0,0) s, 10, 2)[l s }
= max{|[(z, 0,0)llo,, [1(0, 9, 2)[l, }
< 1@y, 2) [l

and
(2,9, 2)|ra = (2, —y, 2)|l@
= max{|[(z,0, 2) |4, [1(0,y, 0) [l }

= max{[|(z,0, 2)[|,, [|(0,4,0)l,, }
S ”(x> Y, Z)H‘Pl'

Thus we obtain

Iy e = s e ,2) = 9,21
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for all (z,y, z) € Q(6;). This also implies ||z||r = ||z||,, for all z € Q(—6;). Similarly,

one can prove that ||z||p = ||z||,, whenever z € Q(6;) U Q(—6;). We remark that
this shows

pr(s, t,u) = [|(s, ¢, u)r,

pals, t,u) = [|(s, 1, —u)||p,

ws(s, t,u) = [|(s, =t, —u)l|F,

pa(s, t,u) = [|(s, =t u) ||

for all (s,t,u) € As.
Finally, take an arbitrary (z,y, 2) € R3. Then there exists i € {1,2, 3,4} such that
(fL’, Y, Z) S Q(el) U Q(_Gl) We note that (l‘, Y O>7 (.T, 07 Z), (O, Y, Z) < Q(QZ) U Q<_62)7

and so we have

max{||(z,y, 0)|[ ¢, I(z, 0, 2) ||, [I(0, 9, 2) [}

= max{[|(z,y,0)llo;, (=, 0, 2)ll¢;, [10, 5, )l }
< |[(z,y,2)l,,
= l(z,y,2)llr
by Lemma 2.1. Hence, we obtain | - || € RNs. This completes the proof. O

Thus, RN3 and ®3 are in a one-to-one correspondence under the equation

pr(s,tu) = (s, t,u)lr,
pa(s,t,u) = ||(s, 8, —u)||r,
wa(s,t,u) = ||(s, —t, —u)]|F,
pa(s,t,u) = ||(s, —t,u)||r
for all (s,¢,u) € As.
4. Regular norms on R”
In this section, we consider RN,,. For each vector p = (ay,as,...,a,) € R", we

define Q(p) and A, (p) by
Q(p) = {(altl, agtg, Ce ,antn) — Rn . tl,tg, PN ,tn 2 O},
A, (p) = {(a1s1,a280, ..., anSy) € R™ : (81,82,...,8,) € Ap},

where

n
A, = {(31,52,...,sn) eR":51,89,...,8, >0, Zsizl}'
i=1
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Fix a positive integer n > 2. Recall that

6277.—1
Q; = Q(6;) for each i =1,2,...,2" ! and

R = | J () ua(-9)),

0€O,

where ©,, = {6; : 1 <i < 2" 1}
The following lemmas are generalization of Lemmas 3.1 and 3.2.

Lemma 4.1. Let 0;,0; € ©,,. Then

Q(6:) N Q6;) = O (92' u 9]’) |
Q(6:) N Q(=6;) = O (

Lemma 4.2. Let 0;,0; € ©,,. Then

foralli=1,2,...,2" %
Then, regular norms on R™ have the following property.

Proposition 4.3. Let || - || € RN,,. For eachi € {1,2,...,2" 1} let

%’(8) = ||(Ti1317 72582, . .. ,TmSn)H-

for all s = (s1,59,...,8,) € An. Then, (@1, 00,...,0om-1) € (F,)¥" "

|z||,, whenever x € Q(6;) U Q(—0;).
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Proof. Suppose that i € {1,2,...,2"7'}. First, we show that ¢; € ¥,. Take an
arbitrary (si1,sg,...,8,) € A,. For each k € {1,2,...,n} with s, < 1, we obtain

©i(s) = ||(rivs1, rizs2, - -, Tinsn) ||
> |[(rizst, - - Tie=1)Sk=15 0, , Ti(hg1)Sk415 - - - TinSn) ||
Ti151 T'i(k—1)Sk—1 Ti(k+1)Sk+1 TinSn
=(1-— - 0 -
S1 Sk—1 Sk+1 Sn
=(1- ; .. 0 .. )
( 8k>§01(1_8k, 71—Sk’ ’1—8k7 ’1—8k>

Thus we have ¢; € V,,.
Next, we suppose that @ = (rjty, rota, ..., Tintn) € Q(0;). It may be assumed
that = # 0. Then we have

- i1l Tioto Tintn
HI’H: tf H( ) n ey )H
; Z?:l te 2621 17 Z?:l ty

z”: np ( t ta t >
- Y4 % n 3 n P n
—1 Dop—1te Dop—y b D i1 te

= ||l

P

This also implies ||z|| = |||, if # € Q(—6;) . Hence we obtain |jz| = |z,
whenever z € (6;) U Q(—60;). This completes the proof. O

As in the case n = 3, Proposition 4.3 shows that the set RN, is a generalization
of that of generalized Day-James type norms.

We next present a characterization of regular norms on R™. A one-to-one corre-
spondence between RN, and a certain subset of (¥,,)%""" will be given.

2n—1

Lemma 4.4. Let ||-|| € RN,, and let F = (1,92, . .., ¢n) be the element of (V,,)
defined as in Proposition 4.8. Ifi,j € {1,2,...,2"" 1} then

illsal,[sal, - [snl) = @[l [sal, - - s [snl)
for all (s1,82,...,8,) € An((6; +6;)/2) UA,((6; —6;)/2).

Proof. By Proposition 4.3, we have || ||, = || - [|,, on Q((6; +6;)/2) UQ((0; —0;)/2).
Take an arbitrary s = (s1, S2,...,5,) € A, ((0; +6;)/2) UA,((6; —0;)/2). Then, we

note that
0; +0; 0, — 0;
cQ(2—"2lyul 22—
en (57 )un(5)
and [s| = (|s1],[s2],- .-, |sa]) € A,. Since || - ||, and || - ||, are absolute, we obtain
willsl) = llslle: = lslle; = w5(Is]).
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Thus we have
wills1l; |s2], - - -5 [snl) = @j(ls1l; [s2l, - - -5 [sal)
whenever s € A, ((6; +0;)/2) UA,((0; — 6,)/2). O

Let ®,, denote the set of all elements of (¥,,)2" " satisfying the following condition:
Ifi,j€{1,2,...,21}, then

901'(‘51|7 ’52‘7 SR ‘Sn|) = @j(‘sﬂ, ‘82|7 SRR |Sn‘)

fOI' all (517 S92y ..., Sn) I~ An((el + 93)/2) @) An((el — 6])/2)
Our aim is to show that RN,, and ®,, are in a one-to-one correspondence.

Lemma 4.5. Let ¢ € U,, and let || - || be the function on R™ defined by

[

||(:L‘1,l‘2, e ’xn>||¢ = max{||(mf,x;, ce 7$:)H¢7 ||(l‘1_,?[72_, s "'L‘;)Hw}
for all (z1,22,...,2,) ER". Then |- |5 is a norm on R"™. Moreover,
H(xbx??""xn)HqZ = [[(z1, 22, ..., 20) [l
whenever x1,To, ..., Ty >0 or x1,%9,...,2, < 0.

The following lemma is the converse of Lemma 4.4 in a sense.

Lemma 4.6. Let F' = (01,09, ...,0m-1) € ®p. Ifi,j € {1,2,...,2"7 1} then

- lloe = 11+ Ml

on Q((0; +6;)/2) UQ((6; — 65)/2).

Proof. Let © = (x1,22,...,%,) € Q(0; +6,)/2) UQ((0; — 6;)/2). We may assume
that « # 0. Then by Lemmas 4.1 and 4.2, we have

<Ze=1 |zel” 3 iy el Py ‘5’7@‘) 2 2
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Since || - ||,, and || - ||, are absolute, we have

i) (2 st =)
; — Ty
T\G Z?ﬂlxel’Z?:llwel’ i [zl S,

(o) (el )
—1 Ze el Dl 3 [l

(Sl ) o (el el )
—1 ’ Ze ylae D00 e 30 |l
: )

= (Dl H - R )
— > 1‘554‘ D e D0 |l o

= HxH%"

This completes the proof. O
Regular norms on R™ are characterized as follows:

Theorem 4.7. The following holds:

(i) Let ||-|| € RN, and let F = (@1, @, . .., pn) be an element of (U,)%"" defined
as i Proposition 4.3. Then F' € ®,,.
(ii) Let F = (1,09, ..., pm-1) € @, and let || - |7 be a function on R™ defined

by

(21,22, ..., 20) || F = 1;%%35_1 [(ray, rioa, - o TinTn) |5

for all (xy,29,...,2,) € R". Then || -||r € RN,, and
wi(s) = [[(rias1,mias2, - - s Tinsn) |7
for all s = (s1,82,...,8,) € Ay and all i € {1,2,...,n}.

Proof. (i) This is just a statement of Lemma 4.4.
(ii) For each i € {1,2,...,2" '} let || - ||p; be the function on R™ defined by

HxHF’L = ||(riaz1, oo, - - - Tin ) 7n
for all z = (x1,29,...,2,) € R™ Then, it is easy to see that || - ||s; is a norm on

R™. We note that
][ = max{||z|jz : 1 <i <2771}

for all x € R™, which implies that || - || is a norm on R™.
Next, we prove that ||z||z = ||z||,, whenever z € Q(6;) U Q(—0;). Let

r = (raty, riota, ., Tinln) € .
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Then
(rity,mhts, . rit,) = (t,ta, .. 1),
and so, by Lemma 4.5,
1(rivty, inta, - i to) o = It t2, - 1)

Take an arbitrary j € {1,2,...,2"7 '} with ¢ # j. Put yp = rjrats for all k €
{1,2,...,n}. Then we have

©i

y+: tk ifT'ik:Tjk,
k 0 if Tik 7é Tik-

and

_ 0 if Tik = Tjk,
Y = .
tk if Tik 7é Tjk-

So, by Lemma 4.1, we have z = (riay;, 7i2ys - -, Tyt ) € Q((0; +0;)/2) and w =
(rityy , Ti2Ys - - Tinly ) € Q((0; — 6;)/2). Thus, from the absoluteness of || - ||, and
| - [l4,, and Lemmas 2.1 and 4.6, we obtain

1152, yn)llg = max{ll (i 43w oy W w2 )l b

= max{]|zlly,, [lwlly, }

oi}
= max{[| (1, 435 U)o 1w 42 0l }
S ”(tla t27 s 7tn)

Therefore we have ||z||p = ||(¢1,t2,...,tn)

= max{|[z[¢;, [[w

Pi

o; = ||z|ls;- Moreover, this implies
o, for any x € Q(6,)UQ(—6;).

|z||F = ||z||y, on Q2(—6;). Hence we obtain ||z||p = ||z

We remark that this implies

@i(s) = [(riusi, rias2, - - s insn) |7
for all s = (s1,89,...,8,) € A, and all i € {1,2,...,n}.
Finally, take an arbitrary = (21,22, ...,z,) € R™. Then there exists a positive

integer 7 € {1,2,...,2"7'} such that = € Q(6;) U Q(—6;). We note that
(@1, .., 21,0, Tpq1, ) € Q6;) U Q(—0;)

for each k =1,2,...,n. Since || - ||, is absolute, we have
(z1,. .. @51, 0, Tpg1, )|l p = || (21, - - - s The1, 0, Tio1, Tn) || 5,
< |1, 22, .-, 20)] o,
= |(x1, 22, ..., 2,)||F
by Lemma 2.1. Hence, the norm || - || is regular. This completes the proof. U
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Thus, RN,, and ®,, are in a one-to-one correspondence under the equation

%‘(3) = H('f’ilsl, 7282, . .. 7Tin3n>||F

for all s = (s1,82,...,5,) € A, and all i = 1,2,...,2""L. Obviously, every absolute
normalized norm || - ||, on R™ is a regular norm induced by (¢, 1, ..., ).
Finally, we show some simple facts about regular norms.

Proposition 4.8. &, = U2

Proof. Suppose that (o1, ps) € ¥2. We recall that

1 1
RI =
2 (1_1>7

A, (“’ SRS ‘”) — Ag(1,0) = {(1,0)}.

A, <(1, 1)—(1,-1)

Thus we have

. ):AAQDZ{@U}

Since ¢;(1,0) = ¢;(0,1) =1 for i = 1,2, we obtain (p1, pa) € Do. O

This is the reason why generalized Day-James spaces can be defined for any choice
of ¥, € Uy; however, if n > 3, then this is not the case.

Remark. Suppose that n > 3. Let F = (2,000, .., %) € (\Iln)Qn_l. We recall
that ¢, = (1,1,...,1) and 6, = (1,...,1,—1), and so we have

0, + 0 2
An( 1;— 2> = {(81782,...,8711,0) € (RJr)nZZSk:l},
k=1
A, (81;92) —{(0,....0,1)}.

In particular,
1 1 01 + 0o
= ey —— JANS :
° (n—r ’n—1’0)e ( 2 )

However, then we obtain

a(s) = llsll = 7= > == = il = Vin(o)

Thus F ¢ ®,, and so ®, C (¥,)¥". Moreover, since s € Q(f;) N Q(6,), it is
impossible that F' induces a regular norm on R™ in the sense of Theorem 4.7.
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