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AN EXAMPLE OF 2× 2 HYPERBOLIC
CONSERVATION LAWS ADMITTING

DELTA-SHOCK WAVES

HIROKI OHWA

Abstract. In this paper we show that for some specific initial data, the Riemann

problem for a simple model of 2 × 2 hyperbolic conservation laws has solutions

containing delta-shock waves.

1. Introduction

We consider the Riemann problem for a system of conservation laws,

ut + f(v)x = 0, vt +
(v2
2

)
x
= 0, t > 0, −∞ < x < ∞, (1.1)

(u(x, 0), v(x, 0)) =

{
(u−, v−), x < 0 ,

(u+, v+), x > 0 .
(1.2)

Here u and v are functions of t and x, and f is C2 function of two real variables u

and v. Our main assumption is that

d

dv
f(v) > 0. (1.3)

System (1.1) is a simple model of a hyperbolic system of conservation laws which

do not contain the product u and v, admitting a delta-shock wave which is a Dirac

delta function supported on a shock. Note that many systems of conservation laws

which are discussed about the existence of delta-shock waves, contain the product

u and v.

To investigate the validity of delta-shock waves, Tan, Zhang and Zheng [13] con-

sider the Riemann problem for a hyperbolic system of conservation laws,

ut +
(
u2
)
x
= 0, vt +

(
uv

)
x
= 0, (1.4)
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with initial data (1.2). They introduce a viscosity term in the first equation of (1.4),

ut +
(
u2
)
x
= ϵtuxx, vt +

(
uv

)
x
= 0, ϵ > 0, (1.5)

and by using the notion of delta-shock waves, discuss the existence of solutions to

the Riemann problem (1.4), (1.2).

In [7], Hu extends the existence results of [13] by using a vanishing viscosity

approach introduced by Dafermos[1] and by Tupciev [14]. (See [2], [4], [5], [6], [9],

[10], [11], [12] and [15] for the applications of the vanishing viscosity approach.) He

considers the regularized problem

ut +
(
u2
)
x
= ϵtuxx, vt +

(
uv

)
x
= ϵtvxx, ϵ > 0, (1.6)

with initial data (1.2), and by using the notion of delta-shock waves, proves that

self-similar solutions (uϵ, vϵ) of (1.6), (1.2) converge weakly to the solutions (u, v) of

the Riemann problem (1.4), (1.2). See also [3] and [8].

By combining the vanishing viscosity approach with the notion of delta-shock

waves, the existence of solutions to the Riemann problem for several examples of

conservation laws can be discussed without difficulty. In fact, for many systems of

conservation laws which contain the product u and v, the existence of solutions is

discussed. One of the reasons for this is to avoid annoying arguments to determine

a limit of the critical points of solutions to the regularized problem. However,

the existence of solutions containing delta-shock waves generated by the vanishing

viscosity approach, is guaranteed under a definite condition concerning a limit of

the critical points of solutions to the regularized problem. Indeed, only when a limit

of the critical points of solutions to the regularized problem is equal to the value of

a discontinuity point of v, the existence results of solutions containing delta-shock

waves in [7] and [8] are guaranteed (cf. [3] and [13]). For this reason, since there is a

possibility that for all initial data (u±, v±), the Riemann problem (1.4), (1.2) has no

solutions containing delta-shock waves, we slightly doubt the validity of delta-shock

waves generated by the vanishing viscosity approach.

The purpose of this paper is to further clarify the validity of delta-shock waves

generated by the vanishing viscosity approach. Moreover, we show a negative associ-

ation between the product u and v and the existence of delta-shock waves. Note that

there has been very few study designed for these purposes. By using the vanishing

viscosity approach, we shall prove that for some specific initial data, the Riemann

problem (1.1), (1.2) has solutions containing delta-shock waves.

We now mention the construction in this paper. Section 2 is devoted to proving

the existence of solutions to the regularized problem

ut + f(v)x = ϵtuxx, vt +
(v2
2

)
x
= ϵtvxx, ϵ > 0, (1.7)
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with initial data (1.2). The form of the viscosity operator on the right-hand side

of (1.7) has been adopted so that the invariance property of (1.1) under the trans-

formation (t, x) 7→ (at, ax), a > 0, is preserved by (1.7). As a consequence of this

invariance property, the solution of (1.7), (1.2) is a function
(
uϵ(x/t), vϵ(x/t)

)
of the

single variable ξ = x/t, where
(
uϵ(x/t), vϵ(x/t)

)
is the solution of the boundary–

value problem

ϵu
′′

ϵ (ξ) = f(vϵ)
′ − ξu

′

ϵ(ξ), ϵv
′′

ϵ (ξ) =
(v2ϵ
2

)′

− ξv
′

ϵ(ξ), (1.8)(
uϵ(−∞), vϵ(−∞)

)
= (u−, v−),

(
uϵ(∞), vϵ(∞)

)
= (u+, v+), (1.9)

where ′ denotes differentiation with respect to ξ. Therefore, in Section 2 we show

that for every fixed ϵ > 0, the boundary–value problem (1.8), (1.9) has smooth

solutions. In Section 3 we prove that for some specific initial data, limit solutions of

(1.8), (1.9) generate the solutions which contain delta-shock waves, of the Riemann

problem (1.1), (1.2).

2. Existence of solutions to (1.8), (1.9)

In this section, we prove the following result on the existence of solutions to (1.8),

(1.9) under condition (1.3):

Theorem 2.1. Assume that condition (1.3) is satisfied. Then, for every ϵ > 0,

there exists a smooth solution of (1.8), (1.9).

This theorem follows from the following theorem, which is shown in Theorem 3.1

of Dafermos [1], under the assumption that we have a apriori bounds on the solution

(cf. [10]):

Theorem 2.2. Consider the two-parameter family of the boundary–value problems

ϵu
′′
(ξ) = µf(v(ξ))

′ − ξu
′
(ξ), ϵv

′′
(ξ) = µ

(v2(ξ)
2

)′

− ξv
′
(ξ), (2.1)(

u(−L), v(−L)
)
= (µu−, µv−),

(
u(L), v(L)

)
= (µu+, µv+), (2.2)

with parameters L ≥ 1, µ ∈ [0, 1]. Assume that there exists a positive constant M

depending at most on ϵ, f, (u−, v−), (u+, v+) (and thus independent of L and µ) such

that any solution (u(ξ), v(ξ)) of (2.1), (2.2) satisfies

sup
(−L,L)

|u(ξ)| ≤ M, sup
(−L,L)

|v(ξ)| ≤ M. (2.3)

Then, for every ϵ > 0, there exists a smooth solution of (1.8), (1.9).

From Theorem 2.2 it is sufficient for the proof of Theorem 2.1 to prove a priori

estimate (2.3). In proving estimate (2.3), one is helped by the following lemma:
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Lemma 2.3. Assume that condition (1.3) is satisfied and let (u(ξ), v(ξ)) be a solu-

tion of (2.1), (2.2) with 1 ≤ L ≤ ∞. Then, one of the following holds:

(i) Both u(ξ) and v(ξ) are constant on (−L,L).

(ii) u(ξ) has, at most, one critical point, which u(ξ) necessarily must attain a max-

imum (or minimum), in (−L,L), while v(ξ) is a strictly decreasing (or increasing)

function with no critical point in (−L,L).

Proof. Note that when µ = 0, a simple computation shows that both u(ξ) and

v(ξ) are constant on (−L,L). Suppose now that µ > 0 and let (u(ξ), v(ξ)) be a

nonconstant solution of (2.1), (2.2) on (−L,L).

First, we investigate the property of v(ξ). Suppose that τ is a critical point of

v(ξ). We then have

ϵv
′′
(τ) = µv(τ)v

′
(τ)− τv

′
(τ) = 0

so that v
′′
(τ) = 0. However, by the uniqueness of solution to (2.1), (2.2) (cf.

Lemma 4.1 in [1]), this means that v(ξ) is a constant on (−L,L) which implies a

contradiction. Therefore, for the nonconstant function v(ξ), v(ξ) must be a strictly

increasing function or a strictly decreasing function with no critical point in (−L,L).

Next, we investigate the property of u(ξ). Suppose that τ is a critical point of

u(ξ). We then have

ϵu
′′
(τ) = µ

df(v)

dv

∣∣∣
ξ=τ

v
′
(τ)− τu

′
(τ) = µ

df(v)

dv

∣∣∣
ξ=τ

v
′
(τ)

so that there are the following three possibilities of behaviours at ξ = τ : (I) u
′′
(τ) >

0, v
′
(τ) > 0; (II) u

′′
(τ) < 0, v

′
(τ) < 0; (III) u

′′
(τ) = 0, v

′
(τ) = 0. However, by

the uniqueness of solution to (2.1), (2.2), case (III) corresponds to (u(ξ), v(ξ)) being

constant on (−L,L), which implies a contradiction. Therefore, if τ is a critical point

of u(ξ), then we have either (I) or (II). In other words, for the nonconstant function

u(ξ), u(ξ) must attain either a maximum or a minimum at the critical point τ .

Note that it is clear that nonconstant function u(ξ) has at most one critical point

in (−L,L). Thus the proof of Lemma 2.3 is complete. □

By Lemma 2.3, v(ξ) is monotone. If u(ξ) also is monotone, then a priori estimate

(2.3) clearly holds. Therefore, it is sufficient for the proof of estimate (2.3) to deal

with the following two cases:

Case 1: u(ξ) is strictly increasing on (−L, τ), attains a maximum at τ , and is

strictly decreasing on (τ, L), while v(ξ) is strictly decreasing on (−L,L).

Case 2: u(ξ) is strictly decreasing on (−L, τ), attains a minimum at τ , and is

strictly increasing on (τ, L), while v(ξ) is strictly increasing on (−L,L).
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The following proposition plays an important role in proving various estimates on

the solution:

Proposition 2.4. Assume that condition (1.3) is satisfied and let (u(ξ), v(ξ)) be a

solution of (2.1), (2.2) with 1 ≤ L ≤ ∞. Moreover, denote by ū = max{|u−|, |u+|}
the maximums of |u±|. Then, we have the following:

(i) If u(ξ) is strictly increasing on (−L, τ), attains a maximum at τ , and is strictly

decreasing on (τ, L), while v(ξ) is strictly decreasing on (−L,L), then the following

inequalities hold for some constant N ≥ 0 which depends solely on f, v−, v+:∫ β

α

u(ξ)dξ ≤ (β − α)ū+N for every interval (α, β) ⊂ (−L,L), (2.4)

−ū ≤ u(ξ) ≤ ū+
N

|ξ − τ |
for all ξ ∈ [−L,L]\τ . (2.5)

(ii) If u(ξ) is strictly decreasing on (−L, τ), attains a minimum at τ , and is strictly

increasing on (τ, L), while v(ξ) is strictly increasing on (−L,L), then the following

inequalities hold for some constant N ≥ 0 which depends solely on f, v−, v+:

−
∫ β

α

u(ξ)dξ ≤ (β − α)ū+N for every interval (α, β) ⊂ (−L,L), (2.6)

−ū− N

|ξ − τ |
≤ u(ξ) ≤ ū for all ξ ∈ [−L,L]\τ . (2.7)

Proof. We only prove (i), because (ii) is proved by arguments similar to the proof

of (i).

We now prove inequality (2.4). If u(α) > ū, then we set

η = sup
{
ξ ∈ [−L, α) : u(ξ) ≤ ū

}
.

Note that this set is nonempty in view of the definition of ū. On the other hand, if

u(α) ≤ ū, then we set

η = inf
{
ξ ∈ (α, β) : u(ξ) ≥ ū

}
.

Note also that if this set is empty, then inequality (2.4) is satisfied for any N ≥ 0.

Similarly, if u(β) > ū, then we set

θ = inf
{
ξ ∈ (β, L] : u(ξ) ≤ ū

}
,

while if u(β) ≤ ū, then we set

θ = sup
{
ξ ∈ (α, β) : u(ξ) ≥ ū

}
.

By the choices of η and θ, we have u
′
(η) ≥ 0, u

′
(θ) ≤ 0 and∫ β

α

[
u(ξ)− ū

]
dξ ≤

∫ θ

η

[
u(ξ)− ū

]
dξ = −

∫ θ

η

ξu
′
(ξ)dξ. (2.8)
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Therefore, integrating the second equation in (2.1) over (η, θ), and using u
′
(η) ≥ 0,

u
′
(θ) ≤ 0 and (2.8), we obtain∫ β

α

u(ξ)dξ ≤ (β − α)ū+ µf
(
v(η)

)
− µf

(
v(θ)

)
≤ (β − α)ū+N.

Therefore, inequality (2.4) is proved.

From inequality (2.4) we can easily check inequality (2.5). Indeed, if ξ < τ , then

we have

u(ξ) =
1

τ − ξ

∫ τ

ξ

u(ξ)dζ ≤ 1

τ − ξ

∫ τ

ξ

u(ζ)dζ ≤ ū+
N

τ − ξ
, (2.9)

while if ξ > τ , then we have

u(ξ) =
1

ξ − τ

∫ ξ

τ

u(ξ)dζ ≤ 1

ξ − τ

∫ ξ

τ

u(ζ)dζ ≤ ū+
N

ξ − τ
. (2.10)

Thus inequality (2.5) is proved and the proof of Proposition 2.4 is complete. □

We now prove Theorem 2.1 by proving estimates (2.3) in Cases 1 and 2. We

only prove estimate (2.3) in Case 1, because (2.3) in Case 2 is proved by arguments

similar to the proof of estimate (2.3) in Case 1.

In Case 1, it is sufficient to estimate u(τ) from above. In estimating u(τ) from

above, we assume that u(τ) > ū ≥ 0, because it is clear that inequality (2.3) in the

case of u(τ) ≤ ū holds. We fix ξ0 < τ such that u(ξ0) = ū, and let ξ̄ denote the

point in (τ, L] with the property u(ξ̄) = u(ξ) for any ξ ∈ [ξ0, τ). Integrating the first

equation in (2.1) over (ξ, ξ̄), we obtain

ϵu
′
(ξ̄)− ϵu

′
(ξ) = µ

(
f(v(ξ̄))− f(v(ξ))

)
−

∫ ξ̄

ξ

ζu
′
(ζ)dζ. (2.11)

Noting that ξ ∈ [ξ0, τ), since u
′
(ξ̄) ≤ 0 and

−
∫ ξ̄

ξ

ζu
′
(ζ)dζ =

∫ ξ̄

ξ

(
u(ζ)− u(ξ)

)
dζ ≥ 0, (2.12)

inequality (2.11) gives

ϵu
′
(ξ) ≤ µ

(
f(v(ξ̄))− f(v(ξ))

)
≤ N, (2.13)

where N is a nonnegative constant which depends solely on f, v−, v+.

Fixed ξ1 ∈ [ξ0, τ), integrating (2.13) over (ξ1, τ), we deduce

u(τ) ≤ u(ξ1) +
N

ϵ
(τ − ξ1). (2.14)
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If τ − ξ0 < 1, then, choosing ξ1 = ξ0, we have

u(τ) ≤ ū+
N

ϵ
. (2.15)

On the other hand, if τ − ξ0 ≥ 1, then, choosing ξ1 = τ − 1 and using (2.5), we have

u(τ) ≤ ū+
N

|ξ1 − τ |
+

N

ϵ
(τ − ξ1) = ū+

(
1 +

1

ϵ

)
N. (2.16)

Thus estimate (2.3) in Case 1 is proved and the proof of Theorem 2.1 is complete.

3. Existence of delta-shock waves

In this section, we prove that for some specific initial data, the limit solutions of

(1.8), (1.9) generate the solutions which contain delta-shock waves, of the Riemann

problem (1.1), (1.2). More precisely, we prove the following theorem:

Theorem 3.1. Assume that condition (1.3) is satisfied and let (uϵ(ξ), vϵ(ξ)) be a

solution of the boundary-value problem (1.8), (1.9). If u− = u+, v− + v+ = 0 with

v− > v+, then there exists a subsequence (still labeled by (uϵ(ξ), vϵ(ξ))) such that

(uϵ(ξ), vϵ(ξ)) converges weakly to (Hu(ξ) + sδ(ξ), Hv(ξ)), where

Hu(ξ) =

{
u−, ξ < 0 ,

u+, ξ > 0 ,
Hv(ξ) =

{
v−, ξ < 0 ,

v+, ξ > 0 ,

δ(ξ) is the Dirac δ-function supported at ξ = 0 and s is the strength of δ(ξ) with

s = f(v−)−f(v+). Moreover, the limit function is a solution of the Riemann problem

(1.1), (1.2).

Remark 3.2. We remark that even if u− ̸= u+, v− + v+ = 0 with v− > v+, then the

assertion of Theorem 3.1 holds. However, as the purpose of this paper is concerned,

we limit the discussion to the case of u− = u+, v− + v+ = 0 with v− > v+.

Before proving Theorem 3.1, we state some preliminary results. In the rest of this

paper, we assume that condition (1.3) is satisfied.

The following lemma asserts that if u− ̸= u+, v− > v+, then uϵ(ξ) is bell-shaped

and vϵ(ξ) is monotone:

Lemma 3.3. Let (uϵ(ξ), vϵ(ξ)) be a solution of (1.8), (1.9) and suppose that u− =

u+, v− > v+. Then, uϵ(ξ) is strictly increasing on (−∞, τϵ), attains a maximum

at τϵ, and is strictly decreasing on (τϵ,∞), while vϵ(ξ) is strictly decreasing on

(−∞,∞).

Proof. By Lemma 2.3, it is sufficient to prove that uϵ(ξ) is nonconstant on (−∞,∞).
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If uϵ(ξ) is constant on (−∞,∞), then we have u
′
ϵ(ξ) = u

′′
ϵ (ξ) = 0 for (−∞,∞).

Therefore, it follows that v
′
ϵ(ξ) = 0 for (−∞,∞). But this contradicts to condition

v− > v+. Thus, the proof of Lemma 3.3 is complete. □

The following result gives estimates for determining whether or not uϵ(ξ) is a

function of uniformly bounded variation:

Proposition 3.4. Let (uϵ(ξ), vϵ(ξ)) be a solution of (1.8), (1.9). Suppose that uϵ(ξ)

is strictly increasing on (−∞, τϵ), attains a maximum at τϵ, and is strictly decreasing

on (τϵ,∞), while vϵ(ξ) is strictly decreasing on (−∞,∞). If |τϵ| > δ for any δ > 0,

then the following inequality holds for some constant N ≥ 0 which depends solely on

f, v−, v+:

uϵ(ξ) ≤ ū+
N

δ
for all ξ ∈ (−∞,∞). (3.1)

Proof. Suppose first that τϵ > δ. Then, for any k > τϵ, integrating the first equation

in (1.8) over (τϵ, k), we have

ϵu
′

ϵ(k)− ϵu
′

ϵ(τϵ) = f(vϵ(k))− f(vϵ(τϵ)) + τϵ(uϵ(τϵ)− uϵ(k)) +

∫ k

τϵ

uϵ(ξ)− uϵ(k) dξ

so that

0 > f(vϵ(k))− f(vϵ(τϵ)) + τϵ(uϵ(τϵ)− uϵ(k)). (3.2)

Passing to k → ∞ in (3.2), we obtain

0 ≥ f(v+)− f(vϵ(τϵ)) + τϵ(uϵ(τϵ)− u+). (3.3)

Therefore, we have

uϵ(τϵ) ≤
f(vϵ(τϵ))− f(v+)

τϵ
+ u+ ≤ N

δ
+ u+. (3.4)

Thus inequality (3.1) in the case of τϵ > δ is proved.

Next, suppose that τϵ < −δ. Then, for any k < τϵ, integrating the first equation

in (1.8) over (k, τϵ), we have

ϵu
′

ϵ(τϵ)− ϵu
′

ϵ(k) = f(vϵ(τϵ))− f(vϵ(k)− τϵ(uϵ(τϵ)− uϵ(k)) +

∫ τϵ

k

uϵ(ξ)− uϵ(k) dξ

so that

0 > f(vϵ(τϵ))− f(vϵ(k))− τϵ(uϵ(τϵ)− uϵ(k)). (3.5)

Passing to k → −∞ in (3.5), we obtain

0 ≥ f(vϵ(τϵ))− f(v−)− τϵ(uϵ(τϵ)− u−). (3.6)
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Therefore, we have

uϵ(τϵ) ≤
f(vϵ(τϵ))− f(v−)

τϵ
+ u− ≤ N

δ
+ u−. (3.7)

Thus inequality (3.1) in the case of τϵ < −δ is proved and the proof of Proposition

3.4 is complete. □

From now on, let τϵ =
{
ξ ∈ (−∞,∞) : u

′
ϵ(ξ) = 0

}
for every ϵ > 0. When

u− = u+, v− > v+, by possibly taking a subsequence, there exists τ0 with |τ0| ≤ ∞
such that τϵ → τ0 as ϵ → 0+. The following proposition provides the key ingredient

in the existence proof of the solutions containing delta-shock waves:

Proposition 3.5. Let (uϵ(ξ), vϵ(ξ)) be a solution of (1.8), (1.9). If u− = u+, v− >

v+, then we have the following:

(i) If 0 < |τ0| ≤ ∞, then there exists a subsequence (still labeled by (uϵ(ξ), vϵ(ξ)))

and a bounded function (u(ξ), v(ξ)) such that

(uϵ(ξ), vϵ(ξ)) → (u(ξ), v(ξ)), a.e. as ϵ → 0+. (3.8)

Moreover, the limit function (u(ξ), v(ξ)) satisfies

f(v(ξ))
′ − ξu

′
(ξ) = 0,

(v2(ξ)
2

)′

− ξv
′
(ξ) = 0 (3.9)

in the sense of distributions at any ξ ∈ (−∞,∞). In particular, if ξ0 is a point of

discontinuity of (u(ξ), v(ξ)), then we have the Rankine-Hugoniot condition

f(v(ξ0+))− f(v(ξ0−)) = ξ0
(
u(ξ0+)− u(ξ0−)

)
,

v(ξ0+) + v(ξ0−)

2
= ξ0. (3.10)

(ii) If τ0 = 0, then there exists a subsequence (still labeled by (uϵ(ξ), vϵ(ξ))) and a

locally integrable function (u(ξ), v(ξ)) such that

(uϵ(ξ), vϵ(ξ)) → (u(ξ), v(ξ)), a.e. as ϵ → 0+, (3.11)
|u(ξ)| ≤

N

|ξ|
+ ū, ξ ∈ (−∞,∞)\0 ,

|v(ξ)| ≤ v̄, ξ ∈ (−∞,∞) ,

(3.12)

where v̄ = max{|v−|, |v+|}. Moreover, the limit function (u(ξ), v(ξ)) satisfies

f(v(ξ))
′ − ξu

′
(ξ) = 0,

(v2(ξ)
2

)′

− ξv
′
(ξ) = 0 (3.13)

in the sense of distributions at any ξ ∈ (−∞,∞)\0. In particular, if ξ0 ̸= 0 is a

point of discontinuity of (u(ξ), v(ξ)), then we have the Rankine-Hugoniot condition

f(v(ξ0+))− f(v(ξ0−)) = ξ0
(
u(ξ0+)− u(ξ0−)

)
,

v(ξ0+) + v(ξ0−)

2
= ξ0. (3.14)
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Proof. We prove the first assertion. By Proposition 3.4, uϵ(ξ) is uniformly bounded

with respect to ϵ on (−∞,∞). Therefore, by using arguments similar to Dafermos

[1] and Dafermos and DiPerna [2], we see that the first assertion holds.

Next, we prove the second assertion. By (2.5), uϵ(ξ) is uniformly bounded with

respect to ϵ on the interval I2 = [−2,−1
2
] ∪ [1

2
, 2]. Applying the Helly’s theorem,

there exists a convergent subsequence of (uϵ(ξ), vϵ(ξ)) (still labeled by (uϵ(ξ), vϵ(ξ))).

Similarly, we can extract a convergent subsequence of (uϵ(ξ), vϵ(ξ)) on the interval

I3 = [−3,−1
3
] ∪ [1

3
, 3]. Continue this process on each the interval the interval In =

[−n,− 1
n
] ∪ [ 1

n
, n], n = 4, 5, .... Finally, by a standard diagonal process, we can

construct a subsequence which converges at each ξ ̸= 0 to a function (u(ξ), v(ξ))

defined on (−∞,∞)\0. Note that v(ξ) is locally integrable on (−∞,∞) by (2.4)

and the Fatou’s lemma. Since the limit function (u(ξ), v(ξ)) clearly satisfies (3.12),

(3.13) and (3.14), the proof of Proposition 3.5 is complete. □

We now state some properties of the limit function (u(ξ), v(ξ)) constructed in

Proposition 3.5.

The following lemma describes the behaviour of (u(ξ), v(ξ)) at the boundary:

Lemma 3.6. The limit function (u(ξ), v(ξ)) satisfies the following boundary condi-

tion:

(u(−∞), v(−∞)) = (u−, v−), (u(∞), v(∞)) = (u+, v+). (3.15)

Proof. We only prove equation (3.15) in the case of τ0 = 0, because equation (3.15)

in the case of 0 < |τ0| ≤ ∞ is proved by arguments similar to Dafermos [1].

Let δ > 1. From (2.5), we have

|uϵ(ξ)| ≤ ū+
N

δ
for ξ ∈ (−∞,−δ] ∪ [δ,∞). (3.16)

Setting

Uϵ(ξ) =

uϵ(ξ)

vϵ(ξ)

 , F (Uϵ(ξ)) =

f(vϵ(ξ))

v2(ξ)

2

 ,

from (1.8) we obtain

d

dξ

(
exp

(ξ2
2ϵ

)
U

′

ϵ(ξ)
)
=

1

ϵ
∇F (Uϵ(ξ))U

′

ϵ(ξ) exp
(ξ2
2ϵ

)
. (3.17)

Integrating (3.17) over (δ, ξ), we have

exp
(ξ2
2ϵ

)
U

′

ϵ(ξ)− exp
(δ2
2ϵ

)
U

′

ϵ(δ) =
1

ϵ

∫ ξ

δ

∇F (Uϵ(ζ))U
′

ϵ(ζ) exp
(ζ2
2ϵ

)
dζ. (3.18)
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Therefore, it follows from the Gronwall’s inequality that

|U ′

ϵ(ξ)| ≤ |U ′

ϵ(δ)| exp
(δ2 + 2α(ξ − δ)− ξ2

2ϵ

)
, ξ > δ, (3.19)

where α = supξ∈[δ,∞) |∇F (Uϵ(ξ))|, which is a nonnegative constant which is inde-

pendent of ϵ on account of (3.16).

Integrating (3.18) over (δ, δ + 1), we obtain

U
′

ϵ(δ)

∫ δ+1

δ

exp
(δ2 − ξ2

2ϵ

)
dξ = Uϵ(δ + 1)− Uϵ(δ)−

1

ϵ

∫ δ+1

δ

F
(
Uϵ(ξ)

)
dξ

+
1

ϵ
F
(
Uϵ(δ)

) ∫ δ+1

δ

exp
(δ2 − ξ2

2ϵ

)
dξ

+
1

ϵ2

∫ δ+1

δ

∫ ξ

δ

ζF
(
Uϵ(ζ)

)
exp

(ζ2 − ξ2

2ϵ

)
dζdξ. (3.20)

It is easy to check that for sufficiently small ϵ > 0,∫ δ+1

δ

exp
(δ2 − ξ2

2ϵ

)
dξ ≥

∫ δ+1

δ

exp
((2δ + 1)(δ − ξ)

2ϵ

)
dξ ≥ ϵ

2δ + 1
. (3.21)

Therefore, by (3.16), (3.20) and (3.21), we have

|U ′

ϵ(δ)| ≤ Kϵ−3, (3.22)

where K is a positive constant which is independent of ϵ. Thus, inequalities (3.19)

and (3.22) give

|U ′

ϵ(ξ)| ≤ Kϵ−3 exp
(δ2 + 2α(ξ − δ)− ξ2

2ϵ

)
, ξ > δ. (3.23)

Recalling that Uϵ(ξ) → U(ξ) = (u(ξ), v(ξ)), a.e. as ϵ → 0+, we obtain from (3.23)

U(ξ) = U+ = (u+, v+) for ξ > max{δ, α+ |α− δ|}. By arguments similar to the case

of U(∞) = U+, we can prove U(−∞) = U− = (u−, v−) for ξ < −max{δ, α+ |α−δ|}.
Thus the proof of Lemma 3.6 is complete. □

The following lemma describes the form of v(ξ):

Lemma 3.7. Let σ = v−+v+
2

with v− > v+. Then, for any δ > 0 we have the

following:

v(ξ) =

{
v−, uniformly for ξ < σ − δ,

v+, uniformly for ξ > σ + δ.
(3.24)

Proof. Since vϵ(ξ) is a strictly decreasing function, we can define ξϵ = vϵ(ξϵ) and

ξv = limϵ→0+ ξϵ, |ξv| < ∞. Let ϵ be sufficiently small such that ξϵ < ξv +
δ
4
= ξ0 − δ

4

for ξ0 = ξv +
δ
2
. From the second equation in (1.8), we have

v
′

ϵ(ξ) = v
′

ϵ(ξ0) exp
(∫ ξ

ξ0

vϵ(ζ)− ζ

ϵ
dζ

)
. (3.25)
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Integrating (3.25) over (ξ0, ξ0 + ϵ), we obtain

vϵ(ξ0 + ϵ)− vϵ(ξ0) = v
′

ϵ(ξ0)

∫ ξ0+ϵ

ξ0

exp
(vϵ(ζ)− ζ

ϵ
dζ

)
dξ. (3.26)

Noting that∫ ξ0+ϵ

ξ0

exp
(∫ ξ

ξ0

vϵ(ζ)− ζ

ϵ
dζ

)
dξ ≥

∫ ξ0+ϵ

ξ0

exp
(∫ ξ

ξ0

v+ − ζ

ϵ
dζ

)
dξ

=

∫ ξ0+ϵ

ξ0

exp
(v+

ϵ
(ξ − ξ0)−

1

2ϵ
(ξ2 − ξ20)

)
dξ

≥ ϵ

∫ 1

0

exp
(
v+ζ − ξ0ζ −

1

2
ζ2
)
dζ = Aϵ,

where A =
∫ 1

0
exp

(
v+ζ − ξ0ζ − 1

2
ζ2
)
dζ, equation (3.26) gives

0 > v
′

ϵ(ξ0) ≥
v+ − v−

Aϵ
. (3.27)

Therefore, by (3.25) and (3.27), we obtain

|v′

ϵ(ξ)| ≤
v− − v+

Aϵ
exp

(∫ ξ

ξ0

vϵ(ζ)− ζ

ϵ
dζ

)
. (3.28)

From the definition of ξϵ, it is clear that

vϵ(ζ)− ζ = vϵ(ζ)− vϵ(ξϵ) + ξϵ − ζ = (ζ − ξϵ)(v
′

ϵ(θϵ)− 1) ≤ −δ

4
.

Thus we have for ξ > ξ0,

|v′

ϵ(ξ)| ≤
v− − v+

Aϵ
exp

(
− δ

4ϵ
(ξ − ξ0)

)
. (3.29)

Here we take ξ > ξv + δ. Noting that

|v+ − vϵ(ξ)| ≤
∫ ∞

ξ

|v′

ϵ(ζ)|dζ ≤ v− − v+
Aϵ

∫ ∞

ξ

exp
(
− δ

4ϵ
(ζ − ξ0)

)
dζ

≤ 4(v− − v+)

Aδ
exp

(
− δ2

8ϵ

)
,

we see that limϵ→0+ vϵ(ξ) = v+ uniformly for ξ > ξv + δ. Similarly, we can prove

that limϵ→0+ vϵ(ξ) = v− uniformly for ξ < ξv − δ.

Finally, we take ϕ(ξ) ∈ C∞
0 (ξ−, ξ+) with ξ− < ξv < ξ+. Integrating the second

equation in (1.8) over (ξ−, ξ+), we have

ϵ

∫ ξ+

ξ−

vϵ(ξ)ϕ
′′
(ξ)dξ =

∫ ξ+

ξ−

vϵ(ξ)(ϕ(ξ) + ξϕ
′
(ξ))− v2ϵ (ξ)

2
ϕ

′
(ξ) dξ.
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Letting ϵ → 0+, we have

0 =

∫ ξv

ξ−

v−(ϕ(ξ) + ξϕ
′
(ξ))− (v−)

2

2
ϕ

′
(ξ) dξ

+

∫ ξ+

ξv

v+(ϕ(ξ) + ξϕ
′
(ξ))− (v+)

2

2
ϕ

′
(ξ) dξ,

so that {
(v− − v+)ξv −

(v−)
2 − (v+)

2

2

}
ϕ(ξv) = 0, (3.30)

which means that ξv = σ = v−+v+
2

since v− > v+ and ϕ is arbitrary. Thus the proof

of Lemma 3.7 is complete. □

The following lemma specifically describes the value of τ0 in the case of u− = u+,

v− + v+ = 0 with v− > v+:

Lemma 3.8. Let u− = u+, v−+v+ = 0 with v− > v+. Then, we have the following:

lim
ϵ→0+

τϵ = τ0 = 0. (3.31)

Proof. By Lemma 3.7, we then have

v(ξ) =

{
v−, ξ < 0,

v+, ξ > 0.

If τ0 ̸= 0, then by the Rankine-Hugoniot condition (3.10) for ξ0 = 0, we have

f(v−) = f(v+). But this contradicts to condition (1.3). Thus the proof of Lemma

3.8 is complete. □

We now proceed to the proof of Theorem 3.1.

We first show the form of u(ξ). Let δ > 0. For each ϕ(ξ) ∈ C∞
0 (δ, ξ+) with ξ+ > δ,

integrating the first equation in (1.8) which is multiplied by ϕ(ξ), over (δ, ξ+), we

get

ϵ

∫ ξ+

δ

uϵ(ξ)ϕ
′′
(ξ)dξ =

∫ ξ+

δ

uϵ(ξ)(ϕ(ξ) + ξϕ
′
(ξ))− f(vϵ(ξ))ϕ

′
(ξ) dξ. (3.32)

Letting ϵ → 0+, we have∫ ξ+

δ

u(ξ)
( d

dξ
(ξϕ(ξ))

)
dξ =

∫ ξ+

δ

f(v+)ϕ
′
(ξ)dξ = 0. (3.33)

Thus we see that u(ξ) = u+ for ξ > 0 since δ and ϕ are arbitrary. Similarly, we can

prove that u(ξ) = u− for ξ < 0.

Since the Rankine-Hugoniot condition (3.14) for ξ0 = 0 is not satisfied, the limit

function (u(ξ), v(ξ)) is not a solution of the Riemann problem (1.1), (1.2). To this

end, we must consider the weak limit of (uϵ(ξ), vϵ(ξ)). For ξ− < 0 < ξ+, we take
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ϕ(ξ) ∈ C∞
0 (ξ−, ξ+) with ϕ(ξ) = ϕ(0) on N(λ) = [−λ, λ] for sufficiently small λ > 0.

Then, by (3.32), we have

lim
ϵ→0+

∫ ξ+

ξ−

uϵ(ξ)(ϕ(ξ) + ξϕ
′
(ξ))− f(vϵ(ξ))ϕ

′
(ξ) dξ = 0. (3.34)

Since ϕ(ξ) = ϕ(0) for ξ ∈ N(λ), we get

lim
ϵ→0+

∫ ξ+

ξ−

(ξuϵ(ξ)− f(vϵ(ξ)))ϕ
′
(ξ)dξ

=

∫ −λ

ξ−

(ξu− − f(v−))ϕ
′
(ξ)dξ +

∫ ξ+

λ

(ξu+ − f(v+))ϕ
′
(ξ)dξ

=
(
f(v+)− f(v−)− λ(u− + u+)

)
ϕ(0)−

∫ −λ

ξ−

u−ϕ(ξ)dξ −
∫ ξ+

λ

u+ϕ(ξ)dξ. (3.35)

Therefore, letting λ → 0+, (3.34) and (3.35) yield that

lim
ϵ→0+

∫ ξ+

ξ−

uϵ(ξ)ϕ(ξ)dξ =
(
f(v−)− f(v+)

)
ϕ(0) +

∫ ξ+

ξ−

Hu(ξ)ϕ(ξ)dξ. (3.36)

By the approximation process, equation (3.36) holds for all ϕ(ξ) ∈ C∞
0 (ξ−, ξ+).

Thus, we see that uϵ(ξ) converges weakly to Hu(ξ) + sδ(ξ). Similarly, we can prove

that vϵ(ξ) converges weakly to Hv(ξ).

Finally, we show that the limit function (Hu(ξ)+ sδ(ξ), Hv(ξ)) is a solution of the

Riemann problem (1.1), (1.2). For ξ− < 0 < ξ+, we take ϕ(ξ) ∈ C∞
0 (ξ−, ξ+). Then

we see that

∫ ξ+

ξ−

(Hu(ξ) + sδ(ξ))(ϕ(ξ) + ξϕ
′
(ξ))− f(Hv(ξ))ϕ

′
(ξ)dξ

=

∫ 0

ξ−

u−(ϕ(ξ) + ξϕ
′
(ξ))− f(v−)ϕ

′
(ξ)dξ

+

∫ ξ+

0

u+(ϕ(ξ) + ξϕ
′
(ξ))− f(v+)ϕ

′
(ξ)dξ + sϕ(0)

=
(
f(v+)− f(v−) + s

)
ϕ(0) = 0, (3.37)
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and ∫ ξ+

ξ−

Hv(ξ)(ϕ(ξ) + ξϕ
′
(ξ))− 1

2
(Hv(ξ))

2ϕ
′
(ξ)dξ

=

∫ 0

ξ−

v−(ϕ(ξ) + ξϕ
′
(ξ))− 1

2
(v−)

2ϕ
′
(ξ)dξ

+

∫ ξ+

0

v+(ϕ(ξ) + ξϕ
′
(ξ))− 1

2
(v+)

2ϕ
′
(ξ)dξ

=
1

2
(v− + v+)(v+ − v−)ϕ(0) = 0. (3.38)

Thus the limit function (Hu(ξ)+ sδ(ξ), Hv(ξ)) is a solution of the Riemann problem

(1.1), (1.2) and the proof of Theorem 3.1 is complete.
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