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TRIPLE COVERINGS OF THE PROJECTIVE PLANE
BRANCHED ALONG QUINTIC CURVES

TADASUKE YASUMURA

Abstract. In this article, we characterize triple coverings over the projective
plane P2 branched along quintic curves with some conditions. The main result
is that such triple coverings are induced by projections P3 99K P2 from certain
points.

1. Introduction

In this article, all varieties are assumed to be defined over the field of complex
numbers C. Let X be a normal projective variety and Y a smooth projective variety.
We say that a morphism π : X → Y is a covering over Y if π is a finite surjective
morphism. We define the branch locus ∆π, as the subset of Y :

∆π := {y ∈ Y | π is not locally isomorphic over y} .

Note that ∆π is an algebraic subset of pure codimension 1 (see [12]). We denote the
function fields of X and Y by C(X) and C(Y ), respectively. A covering π : X → Y
is called a Galois covering if the field extension C(X)/C(Y ) induced by π is Galois,
while it is called a non-Galois covering if C(X)/C(Y ) is non-Galois. Let G be a finite
group. If a covering π : X → Y is a Galois covering with Gal(C(X)/C(Y )) ≃ G,
then π : X → Y is called a G-covering. A covering π : X → Y is called a triple
covering, if deg π = 3. Let π : X → Y be a triple covering and y a point of
∆π. We say that y is a total (resp. simple) branched point, if ♯π−1(y) = 1 (resp.
♯π−1(y) = 2). Let D be an irreducible component of ∆π. We say that π is totally
branched along D, if all points of D are total branched points, while it is simply
branched along D, if there exists a non-empty Zariski open set UD of D such that
all points of UD are simple branched points. We decompose ∆π into ∆π = DT +DS

such that π is totally (resp. simply) branched along each irreducible component of
DT (resp. DS).

Let π : X → P2 be a non-Galois triple covering over the projective plane P2 with
deg∆π = 5. Take a general line l on P2 and consider the covering π∗l → l. By using
Hurwitz’s theorem, we infer that ∆π satisfies either (i) degDS = 2 and degDT = 3
or (ii) degDS = 4 and degDT = 1. We say that π is of Type I (resp. Type II) if ∆π
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Table 1: Possible list of DT +DS (c.f. [10])

∆π DS DS ∩DT ∆π DS DS ∩DT

∆1 Q1 ∆10 Q5 (ii)
∆2 Q2 ∆11 Q6 (iii), a3
∆3 Q3 (i)

∆12 Q12

∆4 Q4 ∆13 Q7 (iii), a6
∆5 Q5 ∆14 Q8 (v), a4
∆6 Q9 ∆15 Q10 (iv), 2a3
∆7 Q1 ∆16 Q13

∆8 Q2 (ii) ∆17 Q11 (v), a7
∆9 Q4 ∆18 Q14 (v), an ordinary quadruple point

∆π - types of ∆π;
DS - types of DS (Qi (1 ≤ i ≤ 14) corresponds to those in Table 2 below);
DS ∩DT - the relative position between DS and DT and singular
DS ∩DT - points of DS in DS ∩DT .

(i) DT is a bitangent line of DS at two distinct smooth points.
(ii) DT is a tangent line of DS at one smooth point with multiplicity 4.
(iii) DT is tangent to DS at one smooth point and passes through one
(iii) singular point of DS .
(iv) DT passes through two distinct singular points of DS .
(v) DT meets DS at just one singular point of DS .

Table 2: The list of DS (c.f. [10])

DS Irreducible components of DS Singularities of DS

Q1 an irreducible quartic 2a2
Q2 an irreducible quartic a1 + 2a2
Q3 an irreducible quartic 3a2
Q4 an irreducible quartic a5
Q5 an irreducible quartic e6
Q6 an irreducible quartic a2 + a3
Q7 an irreducible quartic a6
Q8 an irreducible quartic a2 + a4
Q9 two irreducible conics a1 + a5
Q10 two irreducible conics 2a3
Q11 two irreducible conics a7
Q12 a cuspidal cubic and a line a1 + a2 + a3
Q13 an irreducible conic and two lines 2a3 + a1
Q14 four lines an ordinary quadruple point
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is the case (i) (resp. (ii)). The purpose of this article is to give a characterization
for non-Galois triple coverings of Type II. Note that there exists a normal surface
X ′ ⊂ X such that π : X → P2 induces a covering π′ : X ′ → C2 over C2, where a
covering over C2 means a proper surjective morphism.

Let D2p be the dihedral group of order 2p, where p is an odd prime number. In
[10], Tokunaga studied D2p-covering branched along quintic curves and he obtain a
possible list of branch loci of the non-Galois triple coverings of Type II (see Table 1).
In this article, for the types of simple singular points of curves and surfaces, we use
those in [1]. Note that we use small letters for curve-singularities to distinguish
them from those of surfaces.

Our main result of this article is as follows:

Theorem 1.1. Let π : X → P2 be a triple covering of Type II. Then (i) X is
isomorphic to a normal cubic surface in P3 and (ii) π : X → P2 is a morphism
induced by the projection from a point p ∈ P3 \X.

We can present the covering π in more concrete way as follows:

Theorem 1.2. Let S be the cubic surface in P3 defined by F = 0 and fp : P3 99K P2

a projection from p ∈ P3 \ S. Put πp := fp |S: S → P2. Then F , ∆πp and p satisfy
one of those in Table 3 below, up to projective equivalence.

In Section 2, we summarize the canonical resolution of triple coverings over
surfaces based on [8]. In Section 3, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.2.

2. Tan’s canonical resolution

In this section, we summarize Tan’s canonical resolution for triple covering. The
reference of this section is [8].

Let π : X → Y be a triple covering over a smooth surface Y . In [8], Tan proved

that, after a finite number of blowing-ups, the induced triple covering π̃ : X̃ → Ỹ
has the smooth branch locus. Moreover X̃ is a resolution of X (see [8, Theorem 4.1
and Section 6]). We denote the blowing-ups as follows:

X = X0 X1 X2 · · · Xk−1 Xk = X̃

Y = Y 0 Y 1 Y 2 · · · Y k−1 Y k = Ỹ .

?

π=π0

�ν1

?

π1

� ν2

?

π2

� ν3 �νk−1

?

πk−1

�νk

?
πk=π̃

�µ1 � µ2 � µ3 �µk−1 �µk

Here µi : Y i → Y i−1 is the blowing-up of Y i−1 at a singular point pi−1 of ∆πi−1
,
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Table 3: The list of F , ∆πp and p

SingS F ∆πp p

A1 + 2A2 WY Z +WX2 +X3

∆2 [1 : a : b : 0], ab ̸= −1, 0, 3

∆5 [1 : a : b : 0], ab = −1

∆6 [1 : a : b : 0], ab = 3

∆12 [1 : a : b : 0], ab = 0, a+ b ̸= 0

∆16 [1 : 0 : 0 : 0]

A1 +A5 WXY +WZ2 +X3 ∆8 [1 : a : b : 0], a+ b2 ̸= 0

∆10 [1 : a : b : 0], a+ b2 = 0

2A2

∆1
[1 : a : b : 0], ab ̸= 0,

a4b4 − 6a2b2k2 − 8abk3 − 108ab− 3k4 ̸= 0

W 3 + kWX2 +WY Z +X3 ∆4
[1 : a : b : 0], ab ̸= 0,

(4k3 + 27 ̸= 0)
a4b4 − 6a2b2k2 − 8abk3 − 108ab− 3k4 = 0

∆11 [1 : a : b : 0],k ̸= 0, ab = 0, a+ b ̸= 0

∆13 [1 : a : b : 0], k = 0, ab = 0, a+ b ̸= 0

∆15 [1 : 0 : 0 : 0], k ̸= 0

3A2 WY Z +X3 ∆3

[1 : 0 : a : b], ab ̸= 0

[1 : a : 0 : b], ab ̸= 0

[1 : a : b : 0], ab ̸= 0

A5 W 2Z +WXY +WZ2 +X3

∆7
[1 : a : b : 0],

27 + 4a3 + 12a2b2 + 12ab4 + 4b6 ̸= 0

∆9
[1 : a : b : 0],

27 + 4a3 + 12a2b2 + 12ab4 + 4b6 = 0

E6 W 2Y +WZ2 +X3 ∆14 [1 : a : b : 0], a ̸= 0

∆17 [1 : 0 : b : 0], b ̸= 0

Ẽ6
kW 3 + lW 2X +WY 2 +X3

∆18
p ∈ H1 \H2

(4l2 + 27k3 ̸= 0) H1, H2 ∈ H, H1 ̸= H2

a, b, k, l ∈ C;
we denote homogeneous coordinates of P2 by [X : Y : Z : W ];

H := {Hw,Ht,Hsu | t2 + k = 0, 2u3 + k = 0, 3ks2 = u2, s ̸= 0, (s, t, u ∈ C)} if l = 0;

H := {Hw,Hsu | 3lu4 − 6us2 − 1 = 0, 6lus2 + 9ks2 − 3u2 + l = 0, s ̸= 0, (s, t, u ∈ C)} if l ̸= 0;

(Hw := V (W ) \ V (X), Ht := V (Y + tW ) \ V (X), Hsu := V (X − sY − uW ) \ V (3s3Y + (1 + 3us2)W ));

Ẽ6 means the simple elliptic singularity of type Ẽ6 (for detail of the definition, see [7]);

SingS - singularities of S;

F - normal forms of defining polynomials of S, up to projective equivalence;

∆πp - types of ∆πp ;

p - loci of the center for the normal forms.
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πi : X i → Y i is the normalization of X i−1 ×µi
Y i and νi : X i → X i−1 is a morphism

induced by πi : X i → Y i. Let ∆πi
= DT,i + DS,i be the decomposition of ∆πi

such that πi is totally branched along each irreducible component of DT,i, while it
is simply branched along those of DS,i. We denote the multiplicity of a point p on
a curve C by mp(C). Let mi and ni be integers defined as follows:

mi :=

[
mpi (DS,i)

2

]
,

ni :=

{
mpi(DT,i)− 1 if Ei+1 ⊂ Supp(DT,i+1)

mpi(DT,i) if otherwise,

where [α] denotes the greatest integer not exceeding α and Ei the exceptional divisor
of µi. Then we have

DS,k =µ∗(DS)− 2
k−1∑
i=0

miEi+1,

DT,k =µ∗(DT )−
k−1∑
i=0

niEi+1

and

KX̃ = µ∗(KX) +
k−1∑
i=0

Ei+1,

where µ := µ1 ◦ µ2 ◦ · · · ◦ µk, Ei means the total transform of Ei and KV means the
canonical divisor of a smooth projective surface V . Moreover we have the following
formulas:

Theorem 2.1 (c.f. Theorem 6.3 in [8]). Under the above notation, we obtain

χtop(X̃) =3χtop(Y ) +D2
S +DS ·KY + 2D2

T + 2DT ·KY

−
k−1∑
i=0

2(mi − 1)(2mi + 1)−
k−1∑
i=0

2ni(ni − 1) + k,

K2
X̃
=3K2

Y +
1

2
D2

S + 2DS ·KY +
4

3
D2

T + 4DT ·KY

−
k−1∑
i=0

2(mi − 1)2 −
k−1∑
i=0

4

3
ni(ni − 3)− k,

where χtop(V ) means the topological Euler number of V .
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Put

N(p, π) := {pi | µ1 ◦ µ2 ◦ · · · ◦ µi(pi) = p},

δ(p, π) :=
∑

pi∈N(p,π)

2(mi − 1)(2mi + 1) +
∑

pi∈N(p,π)

2ni(ni − 1)− ♯N(p, π),

κ(p, π) :=
∑

pi∈N(p,π)

2(mi − 1)2 +
∑

pi∈N(p,π)

4

3
ni(ni − 3) + ♯N(p, π).

Let X be the minimal resolution of X. Then we obtain a birational morphism
φ : X̃ → X. We denote by ϵ(p, π) the number of exceptional curves in (µ ◦ π̃)−1(p)

contracted by φ. Since χtop(X) = χtop(X̃) −
∑

p∈Sing(∆π)
ϵ(q, π) and K2

X
= K2

X̃
+∑

p∈Sing(∆π)
ϵ(p, π), we obtain

χtop(X) =3χtop(Y ) +D2
S +DS ·KY + 2D2

T + 2DT ·KY

−
∑

p∈Sing(∆π)

δ(p, π) + ϵ(p, π)

and

K2
X
=3K2

Y +
1

2
D2

S + 2DS ·KY +
4

3
D2

T + 4DT ·KY

−
∑

p∈Sing(∆π)

κ(p, π)− ϵ(p, π).

In particular, for the case when Y = P2, degDT = 1 and degDS = 4, we obtain{
χtop(X) = 9−

∑
p∈Sing(∆π)

δ(p, π) + ϵ(p, π)

K2
X

= 1/3−
∑

p∈Sing(∆π)
κ(p, π)− ϵ(p, π).

(1)

We end this section by giving the following three facts needed in the next section:

Lemma 2.1 (c.f. Theorem 4.1 in [8]). Let π : X → Y be a triple covering. If
DT ∩DS ̸= ∅, then the intersection multiplicity of DT and DS at p ∈ DT ∩DS is an
even positive integer.

Lemma 2.2 (c.f. Lemma 6.1 in [8]). Let π : X → Y be a triple covering such
that the branch locus is smooth. If D is an irreducible component of DT , then the
self-intersection number of D is 3-divisible.

Lemma 2.3 (c.f. Theorem 4.1 in [8]). Let π : X → Y be a triple covering. Assume
that DT has a singular point p of type a1 with p ̸∈ DS. Let µ : Y ′ → Y be the blowing-
up at p, E the exceptional curve, D′

T the strict transform of DT and π′ : X ′ → Y ′

the induced triple covering. Then E satisfies one of the following.
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DT2

E2

E1

DS2

q1

DS

DT

µ 1 µ 2°
−E12

−E11

−E2

−π 2

Figure 1: The case where π1 : S1 → P2

(i) E is not contained in ∆π′

(ii) π′ is totally branched along E. Moreover, let µ′ : Y ′′ → Y ′ be the blowing-up
at q ∈ E ∩ D′

T and π′′ : X ′′ → Y ′′ the induced triple covering. Then the
exceptional curve of µ′ is not contained in ∆π′′ .

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the notation in the previous sections.
First, we consider the following three facts needed later. See [5] for the proofs.

Lemma 3.1 (c.f. Lemma 3.1 (iii) in [5]). Let p ∈ DS \DT be a total branched point.
If DS has only simple singularities as its singularities, then p is a singular point of
type a3k−1 or e6.

Lemma 3.2 (c.f. Proposition 3.1 in [5]). Let p ∈ Sing(DS) be a simple singular
and a simple branched point. Then δ(p, π) = −♯N(p.π), κ(p, π) = ♯N(p, π) and
ϵ(p, π) = ♯N(p, π).

Lemma 3.3 (c.f. Proposition 3.3 and Proposition 3.4 in [5]). Let p ∈ DS be a
simple singular and a total branched point. Suppose that p is a singular point of
type (i) a6k−4, (ii) a6k−1 or (iii) e6. Then, corresponding to (i), (ii) or (iii), we have
δ(p, π) = 2k − 3, 2k or 1, κ(p, π) = 6k − 1, 6k or 7, ϵ(p, π) = 4k, 4k or 5.

Now, we start to prove Theorem 1.1. Let πi : Si → P2 be a triple covering such
that the branch locus is of type ∆i (1 ≤ i ≤ 18). First, we prove the following
lemma:

Lemma 3.4. Let Si be the minimal resolution of Si. Then we obtain that χtop(Si) =
9 and K2

Si
= 3 if 1 ≤ i ≤ 17, while χtop(S18) = K2

S18
= 0.

Proof. We prove Lemma 3.4 only in the cases where i = 1 and 11, as the remaining
cases can be proved similarly. First, we consider the case where π1 : S1 → P2. Put
∆π1 = DT +DS as in Introduction. We denote DT ∩DS = {q1, q2} and Sing(DS) =
{q3, q4}. Now, we compute δ(q1, π1), κ(q1, π1) and ϵ(q1, π1). Let µ1 ◦µ2 : Y 2 → P2 be
two times blowing-ups at q1 as in Figure 1. Here, DT2, DS2 and E1 mean the strict
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E1
DS2

DT2

DS

DS4

DS5

DT5

E2

E3

E5

q3

q1

q3

DT

µ 1 µ 3

DT4

µ 5

µ 2 µ 4° °

−E5

−π 5

−E3

E4

−E4

E4

′E3

Figure 2: The case where π11 : S11 → P2

transforms of DT , DS and the exceptional curve of µ1. E2 is the exceptional curve
of µ2. Since mq1(DS) = 1, the induced triple covering π2 over Y 2 is simply branched
along E1. By Lemma 2.1, E2 ̸⊂ ∆π2 . Hence, there exist no singular points of ∆π2

which are infinitely near points lying over q1. We denote π∗
2(E1) = 2E11 +E12 and

π∗
2(E2) = E2 (see Figure 1). The self-intersection numbers of E11, E12 and E2 are

−1, −2 and −3, respectively. Therefore, we obtain δ(q1, π1) = −4, κ(q1, π1) = −4/3
and ϵ(q1, π1) = 1. By the same way, we get δ(q2, π1) = −4, κ(q2, π1) = −4/3 and
ϵ(q2, π1) = 1. By Lemma 3.1, ♯π−1

1 (qi) = 1 or 2 (i = 3, 4). From Lemmas 3.2
and 3.3, we have δ(qi, π1) = −1, κ(qi, π1) = 5 and ϵ(qi, π1) = 4 for the case where
♯π−1

1 (qi) = 1, while δ(qi, π) = −1, κ(qi, π1) = 1 and ϵ(qi, π1) = 1 for the case where
♯π−1

1 (qi) = 2. For the case where ♯π−1
1 (q3) = ♯π−1

1 (q4) = 1, by equations (1) in
Section 2, we have χtop(S1) = 9 and K2

S1
= 3. Since we see (χtop(S1)+K2

S1
)/12 ̸∈ Z

for other cases, these cases do not occur. Hence, we obtain Lemma 3.4 for the case
where π1 : S1 → P2.

Next, we consider the case where π11 : S11 → P2. Again, put ∆π11 = DT +DS.
Let q1 ∈ DS such that DT is tangent to DS at q1. We denote singular points of
type a2 and a3 by q2 and q3, respectively. By the same way as the above, we have
δ(q1, π11) = −4, κ(q1, π11) = −4/3 and ϵ(q1, π11) = 1. Let µ1 ◦ µ2 : Y 2 → P2 be
two times blowing-ups at q1 as in Figure 2. Here, DT2, DS2 and E1 mean the strict
transforms of DT , DS and the exceptional curve of µ1. E2 is the exceptional curve
of µ2. Now, we compute δ(q3, π11), κ(q3, π11) and ϵ(q3, π11). Let µ3 ◦ µ4 : Y 4 → Y 2

be two times blowing-ups at q3 as in Figure 2. We denote DT4, DS4 and E ′
3 by

the strict transforms of DT2, DS2 and the exceptional curve of µ3, respectively.
E4 is the exceptional curve of µ4. Since (µ3 ◦ µ4)

∗(DS2) = DS4 + 2E ′
3 + 4E4, the

induced triple covering π4 over Y 4 is not simply branched along E ′
3 and E4. By

Lemma 2.1, we see E4 ̸⊂ ∆π4 . Suppose that E ′
3 ̸⊂ ∆π4 . Then after a finite number
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of blowing-ups µ̂ : P̃2 → Y 4, we obtain the triple covering π̃11 : S̃11 → P̃2 such that
∆π̃11 is smooth. Since the self-intersection number of E ′

3 is −2, the strict transform

of E ′
3 on Ỹ has the self-intersection number −2. This contradicts to Lemma 2.2.

Hence, π4 is totally branched along E ′
3. Let µ5 : Y 5 → Y 4 be the blowing-up at

DT2 ∩ E ′
3 and E5 the exceptional curve. We denote the strict transforms of DT4

and E ′
3 by DT5 and E3. Suppose that the induced covering π5 over Y 5 is totally

branched along E5. By Lemma 2.3, after two times blowing-ups µ′ at DT5 ∩E5 and
E3 ∩ E5, there exist no singular points of the branch locus of the triple covering
induced by µ′. Let D′

T and E ′′
3 be the strict transforms of DT5 and E3, respectively.

Then the self-intersection numbers of D′
T and E ′′

3 are −4. By the same way as
above E ′

3, this contradicts to Lemma 2.2. We see that E5 ̸⊂ ∆π5 . We get the self-
intersection numbers of E3, E4 and E5 are −3, −2 and −1, respectively. By putting
π∗
5(E3) = 3E3, π

∗
5(E4) = E4 and π∗

5(E5) = E5, the self-intersection numbers of E3,
E4 and E5 are −1, −3 and −3, respectively. Since mq3(DT2) = 1 and mq3(DS2) = 2,
we obtain δ(q3, π11) = −1, κ(q3, π11) = −1/3 and ϵ(q3, π11) = 1. Finally, we compute
χtop(S11) and K2

S11
. As Lemma 3.1, ♯π−1

11 (q2) = 1 or 2. By the same way as in the

case where π1 : S1 → P2, we get χtop(S11) = 9 and K2
S11

= 3 for the case where
♯π−1

11 (q2) = 1, while (χtop(S11) + K2
S11

)/12 = 4/3 for the case where ♯π−1
11 (q2) = 2.

Hence,we obtain Lemma 3.4 for the case where π11 : S11 → P2.

Remark 3.1. Let π : X → P2 is a triple covering such that ∆π is of type ∆18 and
X → X the minimal resolution of X. By our proof of Lemma 3.4, X is a ruled
surface over an elliptic curve such that X has the section C0 with C2

0 = −3. By [7],
X is a cone over an elliptic curve. Hence, X is isomorphic to a cubic surface.

Definition 3.1. Let C and S be a smooth projective curve and surface, respectively.
If there exists a morphism f : S → C such that, for any c ∈ C except finitely many
points, f−1(c) is a smooth curve of genus 1, then we call S an elliptic surface. An
elliptic surface is relatively minimal, if there exist no exceptional curves of the first
kind in any fibers.

Lemma 3.5. Let π : X → P2 be a triple covering and γ : X → X the minimal
resolution of X. We assume that (i) KX

2 = 3, (ii) χtop(X) = 9 and (iii), for any
general lines L ⊂ P2, the degree of ramification divisor of the induced triple covering
of L by π is 6 (see [4, p.301. Ch. IV. Section 2] for the definition of the ramification
divisor). Then

−KX ∼ (π ◦ γ)∗l,

where l is a line on P2.

Proof. Let x be a point in P2 \∆π. Note that
♯π−1(x) = 3. Let γx : Xx → X be the

blowing-up at π−1(x) and Ei (i = 1, 2, 3) the exceptional curves. Put ϕ := π ◦γ ◦γx.
Let Λx be a pencil of lines passing through x. For a general L ∈ Λx, by Hurwitz’s
theorem, ϕ∗L is a curve of genus 1. Hence we obtain an elliptic fibration f : Xx → P1
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induced by Λx. Note that K2
Xx

= 0, χtop(Xx) = 12 and Xx has a section. Xx is a
relatively minimal elliptic surface. By the canonical bundle formula, we obtain

KXx
= −Ff ,

where Ff is a fiber of f : Xx → P1. Let l be a line l in Λx. Then

ϕ∗l ∼ Ff + E1 + E2 + E3

∼ −KXx
+ E1 + E2 + E3

∼ −γ∗
xKX .

Hence, we obtain (π ◦ γ)∗l ∼ −KX .

Proposition 3.1. Under the assumption of Lemma 3.5, | −KX | induces a morphism
φ| −KX | : X → P3 such that X is birationally equivalent to its image Imφ| −KX | and
that Imφ| −KX | is a normal cubic surface whose singular points are simple.

Proof. We use the same notation as in Lemma 3.5. By Lemma 3.5, −KX is a nef and
big divisor. By Riemann-Roch theorem and Kawamata-Viehweg vanishing theorem
([6], [11]), h0(X,−KX) = 4. Since X is a rational surface, by [3, p.63 Theorem 1
and p.64 Theorem 2], we obtain Proposition 3.1.

Proposition 3.2. Under the assumption of Lemma 3.5, X is isomorphic to Imφ| −KX |
and π : X → P2 is induced by a projection P3 99K P2 from a point in P3 \ Imφ| −KX |.

Proof. We keep the notation above. Let [ξ0 : ξ1 : ξ2] be homogeneous coordinates
of P2 and li (i = 0, 1, 2) lines defined by ξi = 0 (i = 0, 1, 2), respectively. Since
−KX ∼ (γ ◦ π)∗l, there exists a basis {φ0, φ1, φ2, φ3} of H0(X,−KX)

∨ such that φi

(i = 0, 1, 2) correspond to ξi (i = 0, 1, 2), respectively. By taking suitable coordinates
of P3, we have

φ| −KX | : X → P3

p 7→ [φ0(p) : φ1(p) : φ2(p) : φ3(p)].

By denoting the projection from [0 : 0 : 0 : 1] by Pr : P3 99K P2, the composition
Pr ◦φ| −KX | is a morphism as l0 ∩ l1 ∩ l2 = ∅. Let SX be the image of φ| −KX |. Now,
we obtain the following commutative diagram:

X

X P2.

SX

XXXXXXXXz
π

��������:γ

XXXXXXXXzφ| −K
X

| ��������:

Pr|SX
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Put g1 := γ ◦ φ−1
| −KX | and g2 := φ| −KX | ◦ γ−1. Then g1 and g2 are birational

maps. Suppose that g1 is not a morphism. Then there exists a fundamental point
s ∈ SX of g1. By Zariski’s main theorem [4, Ch. V, Theorem 5.2], g1(s) is a curve
on X. We obtain g1(s) · π∗l ̸= 0 for a line l on P2. On the other hand, since
φ| −KX |(γ

∗(g1(s))) = s and −KX ∼ (Pr |SX
◦φ| −KX |)

∗l, we get −KX .γ
∗(g1(s)) = 0.

This is a contradiction. Hence, g1 is a morphism. By the same way, g2 is also a
morphism. Thus we obtain that X is isomorphic to SX .

Thus we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We keep the notation as before. Let S be a
normal cubic surface and πp := fp |S, where fp : P3 99K P2 means a projection from
p ∈ P3 \ S. First, we consider the following lemma:

Lemma 4.1. (i) ∆πp satisfies one of the following:

(i-1) ∆πp is a sextic curve. πp is simply branched along each irreducible component
of ∆πp.

(i-2) ∆πp consists of a line L and a quartic curve Q such that πp is totally branched
along L, while it is simply branched along each irreducible component of Q.

(i-3) ∆πp consists of two conics, C1 and C2, such that πp is totally branched along
each irreducible component of C1, while it is simply branched along those of
C2.

(i-4) ∆πp is a cubic curve. πp is a cyclic triple covering. Thus πp totally branched
along each irreducible component of ∆πp.

(ii) There exists a line LT ⊂ ∆πp such that πP is totally branched along LT , if
and only if there exists a plane HT ⊂ P3 such that p ∈ HT \ S and S ∩HT is a line.

Proof. (i) We prove only the case of (i-1), as the remaining cases can be proved
similarly. Assume that there exists an irreducible component D of ∆πp such that πp

is totally branched along D. Take a general line l on P2. Let R be the ramification
divisor of the induced triple covering π∗

pl → l over l by πp. Then we obtain

degR > 6.

On the other hand, let H ⊂ P3 be the Zariski closure of f−1
p (l). By Bertini’s

theorem, S ∩ H = f ∗
p l is a non-singular cubic curve on H. By Hurwitz’s theorem,

we obtain
degR = 6.
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This is a contradiction.
(ii) Suppose that πp is totally branched along a line LT . Then the Zariski closure

of f−1
p (LT ) is HT .
Conversely suppose that there exists such a plane HT . Then, by putting LT :=

fp(HT ), we obtain (ii) of Lemma 4.1.

By Lemma 4.1, if πp : S → P2 is totally branched along a line, then we obtain
3 ≤ deg∆πp ≤ 5. In particular, πp with deg∆πp = 3 is a cyclic triple covering
branched along a reduced cubic with a line component, and as such, it must be one
of the following possibilities:

Table 4: deg∆πp = 3

∆πp Irreducible components Singularities of ∆πp

∆C1 an irreducible conic and a line 2a1
∆C2 an irreducible conic and a line a3
∆C3 three lines 3a1
∆C4 three lines an ordinary triple point

In [9], Tokunaga classified D6-coverings such that the degrees of branch loci ≤ 4.
By [9], we obtain Table 5 for ∆πp with degree 4 such that πp is totally branched
along a line.

Table 5: deg∆πp = 4 (c.f. [9])

∆πp DS DT Singularities of ∆πp

∆Q1 an irreducible conic two lines a1 + 2a3
∆Q2 two lines two lines an ordinary quadruple point

DS - irreducible components of DS ;
DT - irreducible components of DT .

Remark 4.1. By the same way as in Section 3 (resp. Remark 3.1), for each triple
covering π : X → P2 such that ∆π is of type ∆Cj (1 ≤ j ≤ 3) or ∆Q1 (resp. ∆C4 or
∆Q2), X is isomorphic to a cubic surface. So, by characterizing triple coverings such
that the branch loci are of type ∆i (1 ≤ i ≤ 18), ∆Cj (1 ≤ j ≤ 4) or ∆Qk (k = 1, 2),
we obtain Table 3.

Lemma 4.2. Let πp : S → P2 be a triple covering such that the branch locus
is of either type ∆i (1 ≤ i ≤ 18), ∆Cj (1 ≤ j ≤ 4) or ∆Qk (k = 1, 2). The
HT is the plane as in Lemma 4.1. Then ∆πp, Sing(S) and Sing(S) ∩ HT fall into
one of them in Table 6 below. In particular, if ∆πp is one of such types, then the
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configuration of singularities of S is either A1 +2A2, A1 +A5, 2A2, 3A2, A5, E6 or
Ẽ6. Sing(S) ∩HT ̸= ∅.

Table 6: Singularities of S

∆πp Sing(S) Sing(S) ∩HT ∆πp Sing(S) Sing(S) ∩HT

∆1 2A2 2A2 ∆13 2A2 2A2

∆2 A1 + 2A2 2A2 ∆14 E6 E6

∆3 3A2 2A2 ∆15 2A2 2A2

∆4 2A2 2A2 ∆16 A1 + 2A2 2A2

∆5 A1 + 2A2 2A2 ∆17 E6 E6

∆6 A1 + 2A2 2A2 ∆18 Ẽ6 Ẽ6

∆7 A5 A5 ∆C1 2A2 2A2

∆8 A1 +A5 A5 ∆C2 E6 E6

∆9 A5 A5 ∆C3 3A2 2A2

∆10 A1 +A5 A5 ∆C4 Ẽ6 Ẽ6

∆11 2A2 2A2 ∆Q1 3A2 2A2

∆12 A1 + 2A2 2A2 ∆Q2 Ẽ6 Ẽ6

Proof. By our proof of Lemma 3.4, we obtain Lemma 4.2.

Lemma 4.3. Keep the notation in Lemma 4.2. Assume that ∆πp is not of type
∆18, ∆C4 or ∆Q2. Let q ∈ Sing(S) ∩ HT and let lq ⊂ P2 \ ∆πp be a line passing
through q′ := πp(q). Here, HT means a plane in P3 as in Lemma 4.1. We denote
the minimal resolution of S by γ : S → S. Let Lq be the strict transform of π∗

plq by
γ, and Eq the exceptional divisor of γ. Put ∆πp = DT +DS as in Introduction.

(i) If q′ is a smooth point of DS, then
♯Lq ∩ Zq = 2.

(ii) If q′ ∈ Sing(DS) ∪ Sing(DT ), then
♯Lq ∩ Zq ̸= 2.

Proof. Our proof of Lemma 4.3 is case-by-case. We prove only a special case of (i),
as the remaining cases of (i) and each case of (ii) are proved similarly.

Suppose that ∆πp is of type ∆1. Consider a small neighborhood U of q′ with
DS ∩ lq ∩ U = {q′}. By our proof of Lemma 3.4, we obtain Lemma 4.3 for the case
of ∆1 (see Figure 3, where we use the same notation as in Lemma 3.4).

Lemma 4.4. We keep the notation as in Lemmas 4.2 and 4.3. Assume that the
tangent cone of q consists of HT and other plane Hq. Then πp(q) is a smooth point
of DS if p ̸∈ HT ∩Hq, while it is a singular point of DS or DT if p ∈ HT ∩Hq.

Proof. Let V be a plane with p, q ∈ V and V ̸= HT . The curve S ∩ V on V has a
singular point at q. First, we suppose p ̸∈ HT ∩ Hq. Then V ̸= Hq. Two distinct
lines V ∩HT and V ∩Hq on V meet S ∩V at q with multiplicity 3, while other lines
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DT2

E2

DS2

DT

µ 1 µ 2°

−E2

−π 2

lq

E1 lq

−E12

lq : the strict transform of lq
′

′

DS

q1

blowing-down

−E11

Figure 3: The case where π1 : X1 → P2

through q not contained in S meet S ∩ V at q with multiplicity 2. So we obtain an
a1 singularity at q. By Lemma 4.3, πp(q) is a smooth point of DS.

Next, we suppose p ∈ HT ∩Hq. Put V = Hq. For any lines on V not contained
in S, if q ∈ L, then L meets S ∩ V at q with multiplicity 3. So S ∩ V = 3l1, 2l1 + l2
and l1 + l2 + l3, where li (i = 1, 2, 3) meen lines through q on Hq. If S ∩ V = 3l1,
then πp(q) ∈ Sing(DT ) as πp is totally branched along fp(V ).

Consider the case where S∩V = 2l1+l2. We see that πp is simply blanched along
fp(V ), and that fp(V ) meets LT = fp(Ht) at πp(q), transversely. By Lemma 2.1 and
our assumption, πp(q) ∈ Sing(DS).

Consider the case where S ∩ V = l1 + l2 + l3. By Lemma 4.3, we obtain πp(q) ∈
Sing(DS) ∪ Sing(DT ).

Hence, we obtain Lemma 4.4.

In [2], Bruce and Wall classified singular cubic surfaces in P3 in terms of their
singularities. By threr results, we can obtain the normal forms of the cubic surfaces,
up to projective equivalence.

We now prove Theorem 1.2. We prove only for the cases where Sing(S) =

A1 + 2A2, 2A2 and Ẽ6, as the remaining cases can be proved similarly. Keep the
notaition as before. Let Λ be the set of lines in P3 \ HT passing through p and
meeting S at just one point. First, we consider the case where Sing(S) = A1 +2A2.
In this case, by Table 6, ∆πp is of either type ∆2, ∆5, ∆6, ∆12 or ∆16. We denote two
singular points of type A2 by q1 and q2. By [2], the tangent cone of qi consists of HT

and another plane Hqi . Let q3 be the singular point of type A2 and C the tangent
cone at q3. On HT , the relative position of Hq1 , Hq2 , C and S is given as in Figure 4
below. By Lemma 4.4, we obtain that ∆πp is of type ∆16 if p = HT ∩ Hq1 ∩ Hq2 ,
while it is of type ∆12 if p is contained in either HT ∩Hq1 or HT ∩Hq2 . Consider the
point πp(q3). By our proof of Lemma 3.4, πp(q) is a total (resp. simple) branched
point for the case where ∆πp is of type ∆5 (resp. ∆2 or ∆6). If p ∈ C, then ∆πp is
of type ∆5. Suppose that p ∈ HT \ (Hq1 ∪Hq2 ∪C ∪S). By our proof of Lemma 3.4,
we obtain that ∆πp is of type ∆2 (resp. ∆6) if ♯Λ = 2 (resp. 1) as the number of
total branched point not contained in DT is 2 (resp. 1) for the type ∆2 (resp. ∆6).
Hence we obtain Theorem 1.2 for the case where Sing(S) = A1 + 2A2.
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q1 q2

q1H Hq2

S

HT

C

Figure 4: The case where Sing(S) = A1 + 2A2

Next, we consider the case where Sing(S) = 2A2. In this case, ∆πp is of either
type ∆1, ∆4, ∆11, ∆13, ∆15 or ∆C1. Put Sing(S) = {q1, q2}. Again, the tangent
cone of qi consists of HT and another plane Hqi . By [2], put

F := W 3 + kWX2 +WY Z +X3 (4k3 + 27 ̸= 0).

On HT , the relative position of Hq1 , Hq2 and S is given as in Figure 5. Suppose

q1 q2

q1H Hq2

S

HT

Figure 5: The case where Sing(S) = 2A2

that p = HT ∩Hq1 ∩Hq2 . By Lemma 4.4, ∆πp is of type ∆15 or ∆C1. We denote by
nT the number of total branched point not contained in LT = fp(HT ). For the type
∆15 (resp. ∆C1), we have nT = 0 (resp. ∞). Since ♯Λ = 0 (resp. ∞) if k ̸= 0 (resp.
k = 0), we obtain ∆15 (resp. ∆C1). Suppose that p is contained in either HT ∩Hq1

or HT ∩ Hq2 . Then ∆πp is of either type ∆11 or ∆13. By the same way as in the
cases of ∆15 and ∆C1, we obtain ∆11 (resp. ∆13) if k ̸= 0 (resp. k = 0) as ♯Λ = 1
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(resp. 0). Assume that p ̸∈ Hq1 ∪Hq2 . Then ∆πp is of either type ∆1 or ∆4. For all
k, we have ∆1 (resp. ∆4) if

♯Λ = 2 (resp. 1) as nT = 2 (resp. 1). Hence we obtain
Theorem 1.2 for the case where Sing(S) = 2A2.

Finally, we consider the case where Sing(S) = Ẽ6. In this case, ∆πp is of either
type ∆18, ∆C4 or ∆Q2. Put ∆πp = DT +DS as in Introduction. DT consists of one
(resp. two, three) line(s) if ∆πp is of type ∆18 (resp. ∆Q2, ∆C4). Let

H := {H ⊂ P3 | H is a plane such that H ∩ S is a line}.

For eachH ∈ H, by (ii) of Lemma 4.1, πp is totally branched along fp(H) if p ∈ H\S.
Take H ∈ H and p ∈ H \ S and put

nH,p :=
♯{H ′ ∈ H | p ∈ H ′}.

Considering irreducible components of DT , we obtain that ∆πp is of type ∆18 (resp.
∆Q2, ∆C4) if nH,p = 1 (resp. 2, 3). Hence we obtain Theorem 1.2 for the case where

Sing(S) = Ẽ6.
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