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TRIPLE COVERINGS OF THE PROJECTIVE PLANE
BRANCHED ALONG QUINTIC CURVES

TADASUKE YASUMURA

ABSTRACT. In this article, we characterize triple coverings over the projective
plane P? branched along quintic curves with some conditions. The main result
is that such triple coverings are induced by projections P3 --» P2 from certain
points.

1. Introduction

In this article, all varieties are assumed to be defined over the field of complex
numbers C. Let X be a normal projective variety and Y a smooth projective variety.
We say that a morphism 7 : X — Y is a covering over Y if 7 is a finite surjective
morphism. We define the branch locus A, as the subset of Y:

A, :={y € Y | 7 is not locally isomorphic over y} .

Note that A is an algebraic subset of pure codimension 1 (see [12]). We denote the
function fields of X and Y by C(X) and C(Y'), respectively. A covering 7: X — Y
is called a Galois covering if the field extension C(X)/C(Y") induced by 7 is Galois,
while it is called a non-Galois covering if C(X)/C(Y) is non-Galois. Let G be a finite
group. If a covering 7 : X — Y is a Galois covering with Gal(C(X)/C(Y)) ~ G,
then 7 : X — Y is called a G-covering. A covering 7 : X — Y is called a triple
covering, if degm = 3. Let m : X — Y be a triple covering and y a point of
A,. We say that y is a total (resp. simple) branched point, if *7=1(y) = 1 (resp.
“7=1(y) = 2). Let D be an irreducible component of A,. We say that 7 is totally
branched along D, if all points of D are total branched points, while it is simply
branched along D, if there exists a non-empty Zariski open set Up of D such that
all points of Up are simple branched points. We decompose A into A, = Dy + Dg
such that 7 is totally (resp. simply) branched along each irreducible component of
Dy (resp. Dg).

Let 7 : X — P? be a non-Galois triple covering over the projective plane P? with
deg A, = 5. Take a general line [ on P? and consider the covering 7*[ — [. By using
Hurwitz’s theorem, we infer that A, satisfies either (i) deg Dg = 2 and deg Dr = 3
or (ii) deg Dg = 4 and deg Dy = 1. We say that 7 is of Type I (resp. Type II) if A,
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Table 1: Possible list of Dr + Dg (c.f. [10])

| A || Ds | DsnDr | Ax || Ds | Dg N Dy
Ay || Q1 Ay || Qs (ii)
Ao || Q2 A || Qe (iii), a3
Az || Q3 Q) Ao || Q12
Ay || Qu Az || Q7 (iii), a6
As || Qs Ay || Qg (v), a4
Ag || Qo A || Qo W), 2
A7 [ A || Qi3 (iv), 2as
Ag || Q2 (ii) A7 || Quu (v), ar
Ag || Q4 Aig || Qua (v), an ordinary quadruple point

A, - types of A
Dg - types of Dg (Q; (1 <i < 14) corresponds to those in Table 2 below);
Dg N Dr - the relative position between Dg and Dr and singular

points of Dg in Dg N Drp.

(i) Dr is a bitangent line of Dg at two distinct smooth points.

(ii) Dr is a tangent line of Dg at one smooth point with multiplicity 4.

(iii) Dr is tangent to Dg at one smooth point and passes through one
singular point of Dg.

(iv) Dr passes through two distinct singular points of Dg.

(v) Dy meets Dg at just one singular point of Dg.

Table 2: The list of Dg (c.f. [10])

’ Dg ‘ Irreducible components of Dg ‘ Singularities of Dg
Q1 an irreducible quartic 2a9
Q2 an irreducible quartic a1 + 2as
Q3 an irreducible quartic 3azg
Q4 an irreducible quartic as
Qs an irreducible quartic €6
Qs an irreducible quartic az + as
Q7 an irreducible quartic ag
Qs an irreducible quartic as + ay
Q9 two irreducible conics a1 + as
Q10 two irreducible conics 2a3
Q11 two irreducible conics ar
Q12 a cuspidal cubic and a line a1+ as + as
Q13 | an irreducible conic and two lines 2a3 + a1
Q14 four lines an ordinary quadruple point




is the case (i) (resp. (ii)). The purpose of this article is to give a characterization
for non-Galois triple coverings of Type Il. Note that there exists a normal surface
X' C X such that 7 : X — P? induces a covering 7’ : X’ — C? over C?, where a
covering over C? means a proper surjective morphism.

Let Dy, be the dihedral group of order 2p, where p is an odd prime number. In
[10], Tokunaga studied Dy,-covering branched along quintic curves and he obtain a
possible list of branch loci of the non-Galois triple coverings of Type II (see Table 1).
In this article, for the types of simple singular points of curves and surfaces, we use
those in [1]. Note that we use small letters for curve-singularities to distinguish
them from those of surfaces.

Our main result of this article is as follows:

Theorem 1.1. Let 7 : X — P? be a triple covering of Type W. Then (i) X is
isomorphic to a normal cubic surface in P* and (ii) © : X — P? is a morphism
induced by the projection from a point p € P?\ X.

We can present the covering 7 in more concrete way as follows:

Theorem 1.2. Let S be the cubic surface in P* defined by F =0 and f, : P3 --» P?
a projection from p € P>\ S. Put m, := f, |s: S — P?. Then F, A, and p satisfy
one of those in Table 3 below, up to projective equivalence.

In Section 2, we summarize the canonical resolution of triple coverings over
surfaces based on [8]. In Section 3, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.2.

2. Tan’s canonical resolution

In this section, we summarize Tan’s canonical resolution for triple covering. The
reference of this section is [§].

Let 7 : X — Y be a triple covering over a smooth surface Y. In [8], Tan proved
that, after a finite number of blowing-ups, the induced triple covering 7 : XY
has the smooth branch locus. Moreover X is a resolution of X (see [8, Theorem 4.1
and Section 6]). We denote the blowing-ups as follows:

— V1 J— vo J— V3 Vg—1 —_ Vi J— ~
X=Xy ~— Xy ~—— Xp ~——  ~— X1 ~— Xp=X
7= l T \ o Th—1 l Wk:%\
— M1 — H2 — M3 Hk—1 — Kk — ~
Y=Yy, ~— Y, ~——— Y, -~ A Y1 ~— Y.=Y.

Here p; : Y; — Y1 is the blowing-up of Y;_; at a singular point p;_; of Az, |,



Table 3: The list of ', A, and p

Sing S F H Aﬁp‘ P
Agy [1:a:b:0],ab# —1,0,3
As [l:a:b:0],ab= -1
Ar + 24, WYZ+WX?+ X3 Ag [l:a:b:0],ab=3
Aqg [l:a:0:0,ab=0,a+b#0
Aig [1:0:0:0]
A l:a:b:0],a+b*#0
Ay + As XY +WZ2 + X3 : ’
1+ 45 WXY + W27+ A l:a:b:0],a+b*=0
A, [1:a:b:0], ab# 0,

a*d* — 6a2b%k? — 8abk® — 108ab — 3k* # 0

W3 4 VX2 4 WY Z 4+ X3 A, [1:a:b:0], ab#0,

24 4pd 21272 3 _apd _
2 (4k3+277é0) a*b 6a°b°k 8abk 108ab — 3k 0
Aqq [l:a:b:0,k#0,ab=0,a+b#0
A1z [l:a:b:0],k=0,ab=0,a+b#0
Ais [1:0:0:0],k#£0
[1:0:a:b],ab#0
34, WY Z+ X3 Aj [1:a:0:b],ab#0
[1:a:b:0],ab#0
A [1:a:b:0],
7 3 272 4 6
As W27 - WXY + W72 + X° 27 +4a +1[21ab —glg]ab +4° #0
ca:b:
A ) ’
? 27 + 4a® + 12a2b? + 12ab* + 46° = 0
. A [l:a:b:0],a#0
E, 2y 72+ X3 14 ’
6 WY+ WZm Arr [1:0:6:0,b#0
EN kW3+lW2X+WY2+X3 A pGHl\HQ
6 (412 + 27k3 #£ 0) 18 Hy, Hy € H, H, # H,
a,b,k,l€C;

we denote homogeneous coordinates of P2 by [X : Y : Z : W];

H = {Hy, Hy,Hy, |2 +k=0,2u%+k = 0,3ks> =u?, s #0,(s,t,u € C)} if | = 0;

H = {H,, Hy, | 3lu* — 6us®> — 1 =0, 6lus® +9ks> —3u? +1=0,5# 0, (s,t,u € C)} if | # 0;

(Hy :=VW)\V(X), H :=V(Y +tW)\ V(X), Hg, := V(X —sY —uW)\ V(3s*Y + (1 + 3us®)W));

E¢ means the simple elliptic singularity of type Eg (for detail of the definition, see [7]);

Sing S - singularities of S;

F' - normal forms of defining polynomials of S, up to projective equivalence;
Ar, - types of Ay ;

p - loci of the center for the normal forms.




7 X; — Y, is the normalization of X,;_; x s Y, and v; : X; — X,_; is a morphism
induced by 7; : X; — Y,;. Let As, = Dr; + Dg; be the decomposition of Az,
such that 7; is totally branched along each irreducible component of Dy ;, while it
is simply branched along those of Dg;. We denote the multiplicity of a point p on
a curve C' by m,(C). Let m; and n; be integers defined as follows:

N — my,(Dr;) =1 if Eiq C Supp(Dri41)
' my, (Dr;) if otherwise,

where [a] denotes the greatest integer not exceeding « and F; the exceptional divisor
of p;. Then we have

k—1

Dgj =p*(Dg) — 2 Z mi&iy1,

i=0
k-1

DT,k :,U*(DT> - Z ni€iv1
i=0

and
E—1

Kz =p(Kx)+ Zgi+1>

i=0
where p 1= 1 o g 0 - - - 0 g, & means the total transform of F; and Ky means the

canonical divisor of a smooth projective surface V. Moreover we have the following
formulas:

Theorem 2.1 (c.f. Theorem 6.3 in [8]). Under the above notation, we obtain

Xtop(X) =3X10p(Y) + D% + Dg - Ky +2D% + 2Dy - Ky
k—1 k—1
= 2(m; = 1)(2mi +1) = > 2ni(n; — 1) + k,
1=0 =0

1 4
K% =3K} + §D§+2DS~KY+§D%+4DT~KY



N(p,7) :=A{pi | p1opzo---oppi) =p},
Sp,m) = D 2mi—1)E2mi+1)+ Y 2ni(n;— 1) —*N(p,7),

Pi€N(p,m) pzeN(p ™)
K(p, ) = Z 2(m; — 1) + Z nl n; —3) +*N(p, ).
pi€N(p,m) PiEN(p, 7r)

Let Ny be the minimal resolution of X. Then we obtain a birational morphism
¢ : X = X. We denote by €(p, 7) the number of exceptional curves in (uo 7)™ *(p)

contracted by ¢. Since Xto?a(y) = Xtop(X) = D_pesing(an) €(¢; ™) and K2 = K% +
Zpeslng( A € €(p, m), we obtain
Xiop(X) =3Xtop(Y) + D§ + Ds - Ky +2D7 + 2Dr - Ky

- Z (5(]9, 7T) +€(p7 7T)

peSing(Ax)

and
2 o 1 4 5
KY =3K5y + §Ds +2Dg - Ky + §DT +4Dr - Ky

- Z '%(paﬂ) —€(p,7r).

peSing(Ax)

In particular, for the case when Y = P?, deg Dy = 1 and deg Dg = 4, we obtain

{ Xiop(X) = 9-— Zpesmg( )5(p, ™) + €(p, ) (1)
K% = 1/3 - Zpesmg( =) k(p,m) —elpm).

We end this section by giving the following three facts needed in the next section:

Lemma 2.1 (c.f. Theorem 4.1 in [8]). Let # : X — Y be a triple covering. If
DrN Dg # 0, then the intersection multiplicity of Dy and Dg at p € Dy N Dg is an
even positive integer.

Lemma 2.2 (c.f. Lemma 6.1 in [8]). Let m : X — Y be a triple covering such
that the branch locus is smooth. If D is an irreducible component of Dr, then the
self-intersection number of D 1is 3-divisible.

Lemma 2.3 (c.f. Theorem 4.1 in [8]). Let m: X — Y be a triple covering. Assume
that Dt has a singular point p of type ay withp & Dg. Let pn: Y' — Y be the blowing-
up at p, E the exceptional curve, D the strict transform of Dy and 7" : X' — Y’
the induced triple covering. Then E satisfies one of the following.
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Figure 1: The case where m :

(i) E is not contained in A

(ii) 7" s totally branched along E. Moreover, let i/ : Y" — Y’ be the blowing-up
at ¢ € ENDL and n” @ X" — Y the induced triple covering. Then the
exceptional curve of u' is not contained in A,

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the notation in the previous sections.
First, we consider the following three facts needed later. See [5] for the proofs.

Lemma 3.1 (c.f. Lemma 3.1 (iii) in [5]). Let p € Dg\ Dr be a total branched point.
If Dg has only simple singularities as its singularities, then p is a singular point of
type asx—1 OT €g.

Lemma 3.2 (c.f. Proposition 3.1 in [5]). Let p € Sing(Dg) be a simple singular
and a simple branched point. Then §(p,7) = —*N(p.7), k(p,7) = *N(p,7) and
e(p,m) = *N(p,m).

Lemma 3.3 (c.f. Proposition 3.3 and Proposition 3.4 in [5]). Let p € Dg be a
simple singular and a total branched point. Suppose that p is a singular point of
type (i) agr—_a, (i) agx—1 or (iii) eg. Then, corresponding to (i), (ii) or (iii), we have
d(p,m) =2k —3, 2k or 1, k(p,m) =6k — 1, 6k or 7, e(p,m) = 4k, 4k or 5.

Now, we start to prove Theorem 1.1. Let 7; : S; — IP? be a triple covering such
that the branch locus is of type A; (1 < ¢ < 18). First, we prove the following
lemma:

Lemma 3.4. Let S; be the minimal resolution of S;. Then we obtain that Xtop(gi) =

9 and K2 =3 if 1 <i <17, while X1op(S1s) = K2, =0,

Proof. We prove Lemma 3.4 only in the cases where ¢ = 1 and 11, as the remaining
cases can be proved similarly. First, we consider the case where m; : S; — P2. Put
A;, = D+ Dg as in Introduction. We denote Dy N Dg = {q1,¢2} and Sing(Dg) =
{g3,q4}. Now, we compute d(q1,m), k(q1, ) and (g1, m). Let pyops : Yo — P2 be
two times blowing-ups at ¢; as in Figure 1. Here, Do, Dgs and E; mean the strict



Figure 2: The case where 7, : S1; — P?

transforms of Dy, Dg and the exceptional curve of p;. FEs is the exceptional curve
of ps. Since my, (Dg) = 1, the induced triple covering Ty over Y, is simply branched
along E;. By Lemma 2.1, Fy ¢ Az,. Hence, there exist no singular points of Az,
which are infinitely near points lying over ¢;. We denote 75(E;) = 2FE, + F12 and
73(Ey) = E5 (see Figure 1). The self-intersection numbers of E;, Ei, and E; are
—1, —2 and —3, respectively. Therefore, we obtain (g1, m1) = —4, k(q1,m) = —4/3
and €(q1,m) = 1. By the same way, we get §(q2,m1) = —4, k(g2, ™) = —4/3 and
e(qz,m) = 1. By Lemma 3.1, *n;'(¢;) = 1or2 (i = 3,4). From Lemmas 3.2
and 3.3, we have §(¢;,m1) = —1, k(q;, ™) = 5 and €(g;, m1) = 4 for the case where
br (@) = 1, while 6(g;, 7) = —1, k(g;,m) = 1 and e(g;, ;) = 1 for the case where
b77'(q;) = 2. For the case where fr'(¢3) = *r;'(qu) = 1, by equations (1) in
Section 2, we have X1,,(S1) = 9 and K%l = 3. Since we see (X1p(S1) + K%l)/12 7
for other cases, these cases do not occur. Hence, we obtain Lemma 3.4 for the case
where 7; 1 S; — P2

Next, we consider the case where 71 : Sy1 — P2. Again, put A;,, = D7 + Ds.
Let ¢ € Dg such that Dr is tangent to Dg at ¢;. We denote singular points of
type ay and as by ¢ and g3, respectively. By the same way as the above, we have
§(qu,m1) = —4, k(q,m1) = —4/3 and e(q,m11) = 1. Let pp oy : Yy — P? be
two times blowing-ups at ¢; as in Figure 2. Here, Do, Dgo and E; mean the strict
transforms of Dr, Dg and the exceptional curve of py. FEs is the exceptional curve
of p15. Now, we compute d(qs, m11), k(qs, m11) and e(gs,m11). Let pgo g : Yy — Yy
be two times blowing-ups at g3 as in Figure 2. We denote Dpy, Dgy and E} by
the strict transforms of Dps, Dgo and the exceptional curve of us, respectively.
E, is the exceptional curve of py. Since (us o p4)*(Dg2) = Dgy + 2E} + 4E,, the
induced triple covering 74 over Y, is not simply branched along Ej and E,. By
Lemma 2.1, we see Ey ¢ Az,. Suppose that Ef ¢ Az,. Then after a finite number



of blowing-ups i : P2 — Y, we obtain the triple covering 7y; : S 11 — P2 such that
Az, is smooth. Since the self-intersection number of EY is —2, the strict transform
of £ on Y has the self-intersection number —2. This contradicts to Lemma 2.2.
Hence, 7, is totally branched along Ej. Let us : Y5 — Y, be the blowing-up at
Dry N B} and Es the exceptional curve. We denote the strict transforms of Dry
and Ej by Dps and Es. Suppose that the induced covering 75 over Y5 is totally
branched along Fs. By Lemma 2.3, after two times blowing-ups p’ at Dps N E5 and
E3 N E5, there exist no singular points of the branch locus of the triple covering
induced by p'. Let D/, and EY be the strict transforms of D5 and Ejs, respectively.
Then the self-intersection numbers of D/. and Ef are —4. By the same way as
above EY, this contradicts to Lemma 2.2. We see that E5 ¢ Az,. We get the self-
intersection numbers of F3, F, and E5 are —3, —2 and —1, respectively. By putting
7i(Fs) = 3 E3, mi(Ey) = E4 and 75(Fs) = Es, the self-intersection numbers of Es,
E, and Ej5 are —1, —3 and —3, respectively. Since mg,(Drs) = 1 and m,(Dgs) = 2,
we obtain 0(gs, m11) = —1, k(g3, m1) = —1/3 and €(g3, m11) = 1. Finally, we compute
Xtop(S11) and K%H. As Lemma 3.1, *7;;*(¢2) = 1 or 2. By the same way as in the

case where 7 @ S} — P2, we get Xup(S11) = 9 and K%n = 3 for the case where
1t (g2) = 1, while (x40p(S11) + K%ﬂ)/l? = 4/3 for the case where *r'(¢2) = 2.
Hence,we obtain Lemma 3.4 for the case where 7, : S1; — P2. O

Remark 3.1. Let 7 : X — P? is a triple covering such that A is of type Az and
X — X the minimal resolution of X. By our proof of Lemma 3.4, X is a ruled
surface over an elliptic curve such that X has the section Cy with CZ = —3. By [7],
X is a cone over an elliptic curve. Hence, X is isomorphic to a cubic surface.

Definition 3.1. Let C and S be a smooth projective curve and surface, respectively.
If there exists a morphism f : .S — C such that, for any ¢ € C' except finitely many
points, f~!(c) is a smooth curve of genus 1, then we call S an elliptic surface. An
elliptic surface is relatively minimal, if there exist no exceptional curves of the first
kind in any fibers.

Lemma 3.5. Let 7 : X — P? be a triple covering and v : X — X the minimal
resolution of X. We assume that (i) K> = 3, (ii) xup(X) = 9 and (iii), for any
general lines L C P2, the degree of ramification divisor of the induced triple covering
of L by m is 6 (see [4, p.301. Ch. IV. Section 2] for the definition of the ramification
divisor). Then

—Kx ~ (mo9)'l,

where | is a line on P2.

Proof. Let x be a point in P2\ A,. Note that ‘7 !(z) = 3. Let 7, : X, — X be the
blowing-up at 7! (x) and E; (i = 1,2, 3) the exceptional curves. Put ¢ := moyo-~,.
Let A, be a pencil of lines passing through z. For a general L € A,, by Hurwitz’s
theorem, ¢*L is a curve of genus 1. Hence we obtain an elliptic fibration f : X, — P!



induced by A,. Note that K% =0, Xtop(yx) = 12 and X, has a section. X, is a
relatively minimal elliptic surface. By the canonical bundle formula, we obtain

K%, = —Fy,
where F is a fiber of f: X, — P! Let [ be a line [ in A,. Then

¢*l ~/ Ff+E1+E2+E3
~ —Kx + FEi1+ Ey+ Ej3
~ = Kx.

Hence, we obtain (7o 7)*l ~ —Kx. O

Proposition 3.1. Under the assumption of Lemma 3.5, | — K | induces a morphism
Ol -Kg| X — P3 such that X is birationally equivalent to its image Im Y| K| and
that Tm ¢| e is a normal cubic surface whose singular points are simple.

Proof. We use the same notation as in Lemma 3.5. By Lemma 3.5, — K+ is a nef and
big divisor. By Riemann-Roch theorem and Kawamata-Viehweg vanishing theorem
([6], [11]), R°(X, —K=) = 4. Since X is a rational surface, by [3, p.63 Theorem 1
and p.64 Theorem 2], we obtain Proposition 3.1. O]

Proposition 3.2. Under the assumption of Lemma 3.5, X is isomorphic to Im ¢ x|
and m : X — P? is induced by a projection P* -=» P? from a point in P*\ Im ¢ Ky |-

Proof. We keep the notation above. Let [y : & @ &] be homogeneous coordinates
of P? and I; (i = 0,1,2) lines defined by & = 0 (i = 0,1,2), respectively. Since
— K5 ~ (yom)*l, there exists a basis {¢, ©1, 02, 03} of H'(X, —Kx)V such that ¢;
(1 =0,1,2) correspond to & (1 = 0, 1, 2), respectively. By taking suitable coordinates
of P?, we have

Y-k y — P3
p = po(p) 1 1(p) + @2(p) : w3(p)].
By denoting the projection from [0 : 0 : 0 : 1] by Pr : P? --s P2 the composition

Pr 0P| K| is a morphism as lp N1y Nly = (. Let Sx be the image of Pl -Kx|- Now,
we obtain the following commutative diagram:

X
/ \
X P2



Put ¢, == v o Sol_—lel and gy = Pl -Kx| © v~1. Then ¢g; and g, are birational
maps. Suppose that g; is not a morphism. Then there exists a fundamental point
s € Sx of g1. By Zariski’s main theorem [4, Ch. V, Theorem 5.2, g;(s) is a curve
on X. We obtain g¢;(s) - 7*] # 0 for a line [ on P2. On the other hand, since
O -k (7 (91(5))) = s and —Kx ~ (Pr [s, op| _r|)*l, we get —Kx.7*(g1(s)) = 0.
This is a contradiction. Hence, g; is a morphism. By the same way, g5 is also a
morphism. Thus we obtain that X is isomorphic to Sx. m

Thus we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We keep the notation as before. Let S be a
normal cubic surface and 7, := f, |5, where f, : P* --» P? means a projection from
p € P3\ S. First, we consider the following lemma:

Lemma 4.1. (i) A, satisfies one of the following:

(i-1) Ay, is a sextic curve. m, is simply branched along each irreducible component

of Ar,.

(i-2) Ay, consists of a line L and a quartic curve () such that m, is totally branched
along L, while it is simply branched along each irreducible component of ().

(i-3) Ay, consists of two conics, Cy and Cy, such that m, is totally branched along
each irreducible component of Cy, while it is simply branched along those of

Cs.

(i-4) Ay, is a cubic curve. m, is a cyclic triple covering. Thus m, totally branched
along each irreducible component of Ay .

(ii) There exists a line Ly C Ar, such that 7p is totally branched along Ly, if
and only if there exists a plane Hy C P? such that p € Hp \ S and SN Hr is a line.

Proof. (i) We prove only the case of (i-1), as the remaining cases can be proved
similarly. Assume that there exists an irreducible component D of A, such that m,
is totally branched along D. Take a general line [ on P2, Let R be the ramification
divisor of the induced triple covering 7;l — [ over [ by m,. Then we obtain

deg R > 6.

On the other hand, let H C P? be the Zariski closure of f;'(I). By Bertini’s
theorem, SN H = f;l is a non-singular cubic curve on H. By Hurwitz’s theorem,
we obtain

deg R = 6.



This is a contradiction.

(ii) Suppose that , is totally branched along a line Ly. Then the Zariski closure
of fp_l(LT) is Hr.

Conversely suppose that there exists such a plane Hy. Then, by putting Ly :=
fp(Hr), we obtain (ii) of Lemma 4.1. O

By Lemma 4.1, if 7, : S — P? is totally branched along a line, then we obtain
3 < degA,, < 5. In particular, m, with degA, = 3 is a cyclic triple covering
branched along a reduced cubic with a line component, and as such, it must be one
of the following possibilities:

Table 4: deg A, =3

’ Ar, \ Irreducible components \ Singularities of Ar
Ac1 | an irreducible conic and a line 2a1
Aco | an irreducible conic and a line as
Acs three lines 3aq
Acy three lines an ordinary triple point

In [9], Tokunaga classified Dg-coverings such that the degrees of branch loci < 4.
By [9], we obtain Table 5 for A, with degree 4 such that 7, is totally branched
along a line.

Table 5: deg A, =4 (c.f. [9])

’ Ar, ‘ Dg ‘ Dr ‘ Singularities of Ay, ‘
Ag1 | an irreducible conic | two lines a1 + 2a3
Ago two lines two lines | an ordinary quadruple point

Dg - irreducible components of Dg;
D7 - irreducible components of Dyp.

Remark 4.1. By the same way as in Section 3 (resp. Remark 3.1), for each triple
covering 7 : X — P? such that A is of type Ag; (1 < j <3) or Ag; (resp. Agy or
Ags2), X is isomorphic to a cubic surface. So, by characterizing triple coverings such
that the branch loci are of type A; (1 <i < 18), Ag; (1 <j <4)or Agi (k=1,2),
we obtain Table 3.

Lemma 4.2. Let m, : S — P? be a triple covering such that the branch locus
is of either type A; (1 < i < 18), Ag; (1 < 5 < 4) or Agi, (kK = 1,2). The
Hry is the plane as in Lemma 4.1. Then A, Sing(S) and Sing(S) N Hyp fall into
one of them in Table 6 below. In particular, if Ay, is one of such types, then the



configuration of singularities of S is either Ay +2As, Ay + As, 24,5, 3A,, As, Eg or
Eg. Sing(S) N Hy # 0.

Table 6: Singularities of S
| Ax, [[ Sing(S) [ Sing(S)NHr | Ax, || Sing(S) | Sing(S)N Hy |

Aq 24, 2A, A1s 24, 24,
AQ Al + 2A2 2A2 A14 Es Es
Az 3As 2A5 Aqs 2A5 24,
A4 2A2 2A2 A16 A1 + 2A2 2A2
As || Ar + 24, 24, ANTS Es Eg
Ag || AL +2A4, 24, Aqg Eg Eg
Ay Asg Asg Act 2A5 245
Ag AL+ A5 As Aca Eg Eg
Ag As As Acs 3A, 2A,
A || A1+ A5 As Agy Es Es
All 2A2 2A2 AQI 3A2 2A2
Agp || Ar +2A; 24, Ag2 Eg FEg
Proof. By our proof of Lemma 3.4, we obtain Lemma 4.2. [

Lemma 4.3. Keep the notation in Lemma 4.2. Assume that Ay, is not of type
Aig, Acy or Age. Let g € Sing(S) N Hr and let I, C P?\ Az, be a line passing
through ¢' = m,(q). Here, Hy means a plane in P> as in Lemma 4.1. We denote
the minimal resolution of S by v :S — S. Let L, be the strict transform of myl, by
v, and E4 the exceptional divisor of vy. Put A, = Dr + Dg as in Introduction.

(i) If ¢ is a smooth point of Dg, then *L, N Z, = 2.
(ii) If ¢ € Sing(Ds) U Sing(Dr), then *L, N Z, # 2.

Proof. Our proof of Lemma 4.3 is case-by-case. We prove only a special case of (i),
as the remaining cases of (i) and each case of (ii) are proved similarly.

Suppose that A is of type A;. Consider a small neighborhood U of ¢’ with
Dsnl,NU ={¢'}. By our proof of Lemma 3.4, we obtain Lemma 4.3 for the case
of A; (see Figure 3, where we use the same notation as in Lemma 3.4). O]

Lemma 4.4. We keep the notation as in Lemmas 4.2 and 4.3. Assume that the
tangent cone of q consists of Hy and other plane H,. Then m,(q) is a smooth point
of Dg if p ¢ Hr N Hy, while it is a singular point of Dg or Dy if p € Hp N H,.

Proof. Let V be a plane with p,q € V and V # Hp. The curve SNV on V has a
singular point at ¢. First, we suppose p € Hr N H,. Then V # H,. Two distinct
lines VN Hy and VN H, on V meet SNV at ¢ with multiplicity 3, while other lines
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Figure 3: The case where m; : X; — P?

through ¢ not contained in S meet SNV at ¢ with multiplicity 2. So we obtain an
a; singularity at ¢. By Lemma 4.3, m,(¢) is a smooth point of Dg.

Next, we suppose p € Hr N H,. Put V = H,. For any lines on V' not contained
in S, if ¢ € L, then L meets SNV at ¢ with multiplicity 3. So SNV =3Iy, 2l; + [5
and l; + Iy + I3, where [; (i = 1,2, 3) meen lines through ¢ on H,. If SNV = 3[4,
then 7,(q) € Sing(Dr) as m, is totally branched along f,(V).

Consider the case where SNV = 2l;+[,. We see that 7, is simply blanched along
f»(V), and that f,(V') meets Ly = f,(H;) at my(q), transversely. By Lemma 2.1 and
our assumption, m,(q) € Sing(Dy).

Consider the case where SNV =1[; + 5 +I3. By Lemma 4.3, we obtain m,(q) €
Sing(Dg) U Sing(Dr).

Hence, we obtain Lemma 4.4. O

In [2], Bruce and Wall classified singular cubic surfaces in P? in terms of their
singularities. By threr results, we can obtain the normal forms of the cubic surfaces,
up to projective equivalence.

We now prove Theorem 1.2. We prove only for the cases where Sing(S) =
Ay + 2A,, 2A5 and EG, as the remaining cases can be proved similarly. Keep the
notaition as before. Let A be the set of lines in P? \ Hp passing through p and
meeting S at just one point. First, we consider the case where Sing(S) = A; + 2A4,.
In this case, by Table 6, A is of either type Ay, As, Ag, Az or Ag. We denote two
singular points of type As by ¢1 and ¢o. By [2], the tangent cone of ¢; consists of Hyp
and another plane H,,. Let g3 be the singular point of type A; and C' the tangent
cone at g3. On Hrp, the relative position of H,,, H,,, C' and S is given as in Figure 4
below. By Lemma 4.4, we obtain that A; is of type Ag if p = Hr N Hy, N Hy,,
while it is of type Ajq if p is contained in either Hr N H,, or HpN H,,. Consider the
point 7,(g3). By our proof of Lemma 3.4, 7,(q) is a total (resp. simple) branched
point for the case where A, is of type As (resp. Ay or Ag). If p € C, then A, is
of type As. Suppose that p € Hr \ (H, UH, UCUS). By our proof of Lemma 3.4,
we obtain that A, is of type Ay (resp. Ag) if A = 2 (resp. 1) as the number of
total branched point not contained in Dy is 2 (resp. 1) for the type Ay (resp. Ag).
Hence we obtain Theorem 1.2 for the case where Sing(S) = A; + 2A,.



Figure 4: The case where Sing(S) = A; + 24,

Next, we consider the case where Sing(S) = 2A,. In this case, A, is of either
type A1, Ay, Aqp, Agg, Ags or Agq. Put Sing(S) = {q1,¢2}. Again, the tangent
cone of ¢; consists of Hy and another plane H,,. By [2], put

F=W3+kWX?+WYZ+X® (4k* 427 #£0).

On Hyp, the relative position of H,,, H,, and S is given as in Figure 5. Suppose

Figure 5: The case where Sing(S) = 24,

that p = Hr N Hy, N H,,. By Lemma 4.4, A, is of type A5 or Ag;. We denote by
ny the number of total branched point not contained in Ly = f,(Hr). For the type
Ays (resp. Acy), we have ny = 0 (resp. oo). Since *A = 0 (resp. oo) if k # 0 (resp.
k =0), we obtain A5 (resp. A¢y). Suppose that p is contained in either Hy N H,,
or Hp N H,,. Then A is of either type Ay or Ayz. By the same way as in the
cases of A5 and Agq, we obtain Ay (resp. Agz) if k # 0 (resp. k= 0) as FA =1



(resp. 0). Assume that p ¢ H,, U Hg,. Then A, is of either type Ay or A4. For all
k, we have A; (resp. A4) if *A = 2 (resp. 1) as ny = 2 (resp. 1). Hence we obtain
Theorem 1.2 for the case where Sing(S) = 2A4,.

Finally, we consider the case where Sing(S) = Eg. In this case, Ar, is of either
type Aig, Acy or Agy. Put A, = Dy + Dg as in Introduction. Dy consists of one
(resp. two, three) line(s) if A, is of type Ag (resp. Aga, Acy). Let

H :={H C P* | H is a plane such that H NS is a line}.

For each H € H, by (ii) of Lemma 4.1, 7, is totally branched along f,(H) if p € H\S.
Take H € H and p € H \ S and put

ng,:="{H €¢H|pec H'}.

Considering irreducible components of Dy, we obtain that A is of type Az (resp.
Aga, Acy) it ng, =1 (resp. 2, 3). Hence we obtain Theorem 1.2 for the case where
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