ORLICZ NORM ESTIMATES FOR POISSON MAXIMAL OPERATORS

YOON JAE YOO

ABSTRACT. A condition for Poisson maximal operator to be of weak type L_ϕ are chracterized in terms of the Orlicz norm. This operator unifies various maximal operators cited in the literatures.

I. Introduction

For a given function f on \mathbb{R}^n , set

$$\mathcal{M}f(x,t) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f| \ dx, \quad (x \in \mathbb{R}^{n}, \ t \ge 0),$$

where the supremum is taken over the cubes Q in \mathbb{R}^n centered at x with sides parallel to the x-axis and has side length at least t. It is well known that his operator plays important role in studying the Poisson integral on the upper half-space.

For a given positive measure ν on $\mathbb{R}^n \times [0,\infty)$, under what condition on ν can we assert that \mathcal{M} is bounded from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n \times [0,\infty),\nu)$? Carleson[C] showed this is equivalent to the Carleson condition and later Feffermann-Stein[FS] found a sufficient condition, and later Ruiz[R], and Ruiz-Torrea[RT] unified all these results. Further, Gallardo[G] and Chen[Ch] obtained a characterization in terms of the Orlicz norm.

On the other hand, Sueiro[Su] studied a maximal operator \mathcal{M}_{Ω} to study Poisson-Szegö integral. This operator generalizes the standard Hardy-Littlewood maximal operator.

¹⁹⁹¹ Mathematics Subject Classification. 42B25.

Key words and phrases. maximal function, weights, spaces of homogeneous type, Orlicz norm.

In this paper we define a maximal operator $\mathcal{M}_{\Omega}f(x,t)$ that generalizes the Poisson integral operator \mathcal{M} and chracterize a condition to be \mathcal{M}_{Ω} of weak type (ϕ, ϕ) in terms of the Orlicz norm.

II. Terminologies

Definition 2.1. Let X be a topological space and $d: X \times X \to [0, \infty)$ be a map satisfying

- i) $d(x,y) \ge 0$; d(x,y) = 0 if and only if x = y;
- ii) d(x,y) = d(y,x);
- iii) $d(x,y) \leq K[d(x,z) + d(z,y)]$, where K is a fixed constant.
- iv) the balls $B(x,r) = \{y \in X : d(x,y) < r\}$ form a basis of open neighborhoods at $x \in X$ and that μ is a Borel measure on X such that
- v) $0 < \mu(B(x, 2r)) \le A\mu(B(x, r)) < \infty$, where A is some fixed constant. Then the triple (X, d, μ) is called a space of homogeneous type.

Definition 2.2. Assume for each $x \in X$, we are given $\Omega_x \subset X \times [0, \infty)$. Let Ω be the set $\{\Omega_x\}$. For each $t \geq 0$ set

$$\Omega_{(x,t)} = \Omega_x \cap (X \times [t,\infty))$$

and for each $\alpha > 0$

$$\mathcal{R}_{lpha}(x,t) = \{(y,r) \in X \times [0,\infty) : \Omega_{(y,r)}(2t) \cap B(x,\alpha t) \neq \phi\},$$

where

$$\Omega_{(x,r)}(t)=\{z\in X:(z,t)\in\Omega_{(x,r)}\}$$

is the cross section of $\Omega_{(x,r)}$ at height t. We assume that $\mathcal{R}_{\alpha}(x,t)$ is measurable for each x and t.

For $f \in L^1(d\mu)$ and $x \in X$, $t \geqslant 0$ set

$$\mathcal{M}_{\Omega}f(x,t) = \sup_{(y,s)\in\Omega_{(x,t)}} \frac{1}{\mu(B(y,s))} \int_{B(y,s)} |f| \ d\mu.$$

We also assume that $\mathcal{M}_{\Omega}f(x,t)$ is measurable for each x and t.

Example 2.1. Let $X = \mathbb{R}^n$ and $B(x,r) = \{y \in \mathbb{R}^n : |x-y| < r\}$. If

$$\Omega_x = \{ (y,r) \in \mathbb{R}^n \times [0,\infty) : |x-y| < r \},$$

then for any $\alpha > 0$, the set $\mathcal{R}_{\alpha}(x,t)$ is given by

$$\mathcal{R}_{\alpha}(x,t) = B(x,(\alpha+2)t) \times [0,2t].$$

Definition 2.3. Let $\phi:[0,\infty)\to\mathbb{R}$ be a continuous and convex function satisfying

- i) $\phi(s) > 0$ for all $s \geqslant 0$;
- ii) $\lim_{s\to 0}\phi(s)/s=0.$
- iii) $\lim_{s \to \infty} \phi(s)/s = \infty$.

Then ϕ is called an N-function. Each N-function has the integral represention: $\phi(s) = \int_0^s \varphi(t) \ dt$, where $\varphi(s) > 0$ for s > 0, $\varphi(0) = 0$, and $\varphi(s) \to \infty$ as $s \to \infty$. Further, φ is right-continuous and nondecreasing. φ is called the density function of ϕ .

Define $\rho:[0,\infty)\to\mathbb{R}$ by $\rho(t)=\sup\{s:\varphi(s)\leq t\}$. Then ρ is called the generalized inverse of φ . Finally, define

$$\psi(t) = \int_0^t \rho(s) \ ds$$

and ψ is called the complementary N-function of ϕ . For further details, see Musielak[Mu].

Definition 2.4. An N-function ϕ is said to satisfy the Δ_2 -condition in $[0,\infty)$ if $\sup_{s>0} \phi(2s)/\phi(s) < \infty$.

Remark 1. If ψ is the complementary N-function ϕ , then $st \leq \phi(s) + \psi(t)$ for all $s, t \geq 0$.

Futher the equality holds if and only if $\varphi(s-) \le t \le \varphi(s)$ or else $\rho(t-) \le s \le \rho(t)$.

Definition 2.5. Let (X, \mathcal{M}, μ) is a σ -finite measure space and if ϕ is an N-function, then the Orlicz spaces $L_{\phi}(d\mu)$ and $L_{\phi}^{*}(d\mu)$ are defined by

$$L_{\phi}(d\mu) = \{f : \int_{X} \phi(|f|) d\mu < \infty\}$$

and

$$L_{\phi}^*(d\mu) = \{f : fg \in L_1(d\mu) \text{ for all } g \in L_{\psi}\},$$

where ψ is the complementary N-function of ϕ .

Keeping these definitions and notations, the following properties about the Orlicz space will be used in the proof of theorem 3.1.

Proposition 2.1. i) The Orlicz space $L_{\phi}^{*}(d\mu)$ is a Banach space with the Orlicz norm

$$||f||_{\phi}=\sup\{\int |fg|d\mu:g\in S_{\psi}\},$$

where $S_{\psi} = \{g \in L_{\psi} : \int \psi(|g|) d\mu \leq 1\}$, or with the Luxemburg norm

$$||f||_{(\phi)}=\inf\{\lambda>0:\int\phi(|f|/\lambda)d\mu\leq 1\}.$$

ii) (Hölder's inequality) If $f \in L_{\phi}^*(d\mu)$ and $g \in L_{\psi}^*(d\mu)$, then $||fg||_{\phi} \leq 2||f||_{(\phi)}||g||_{(\psi)}$.

Definition 2.6. Fix $\alpha > 0$. Let ν be a Borel measure on $X \times [0, \infty)$ and w a nonnegative measurable function on X. The pair (ν, w) is said to satisfy the $C_{\phi}(\Omega, \alpha)$ condition if there is constant $C(K, A, \phi, \alpha)$ such that

(1)
$$\frac{\epsilon\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))} \leq \frac{C(K,A,\phi,\alpha)}{\varphi([[(\rho(1/\epsilon w)):B(x,r)]])}$$

for any $(x,r) \in X \times [0,\infty)$ and any $\epsilon > 0$, where $[[f:B]] = \frac{1}{\mu(B)} \int_B f d\mu$.

Definition 2.7. \mathcal{M}_{Ω} is of weak type (ϕ, ϕ) with respect to (ν, w) if there is a constant $C = C(K, A, \phi)$ such that

$$u(\{(x,r)\in X imes [0,\infty): \mathcal{M}_\Omega f(x,r)>\lambda\})\leq \frac{C}{\phi(\lambda)}\int_X\phi(|f|)wd\mu$$

for every $\lambda > 0$.

III. Results

The following lemma is given in [CW]. Also see [Su].

Lemma 3.1. (Vitali-Wiener type covering lemma) Let E be a bounded subset of X and for each $x \in X$, assign r(x) > 0. Then there is a sequence of pairwise disjoint balls $B(x_i, r(x_i))$, $x_i \in E$, such that the balls $B(x_i, 4Kr(x_i))$ cover E, where K is the constant in the definition 2.1. Further, every $x \in E$ is contained in some ball $B(x_i, 4Kr(x_i))$ satisfying $r(x) \leq 2r(x_i)$.

The following lemma is given in [Ch].

Lemma 3.2. For any N-function ϕ , $t \leq \varphi(\rho(t))$ and $\phi(t) \leq t\varphi(t)$. If ϕ satisfies the Δ_2 -condition, then there is a constant $C(\phi)$ such that $\varphi(\rho(t)) \leq C(\phi)t$ and $t\varphi(t) \leq C(\phi)\phi(t)$.

Theorem 3.1. Assume that an N-function ϕ satisfies the Δ_2 -condition and assume further that Ω satisfies that if $x \in X$, $(y,r) \in \Omega_x$ and $s \geq r$, then $(y,s) \in \Omega_x$.

- i) If \mathcal{M}_{Ω} is of weak type (ϕ, ϕ) with respect to (ν, w) , then (ν, w) satisfies the condition $C_{\phi}(\Omega, \alpha)$ for all $\alpha > 0$.
- ii) If (ν, w) satisfies the condition $C_{\phi}(\Omega, \alpha)$ for some $\alpha \geq 4K$, \mathcal{M}_{Ω} is of weak type (ϕ, ϕ) with respect to (ν, w) .

Proof. Suppose that \mathcal{M}_{Ω} is of weak type (ϕ, ϕ) with respect to (ν, w) . Let f be a nonnegative measurable function on X. If $(x_0, t) \in \mathcal{R}_{\alpha}(x, r)$, then $\Omega_{(x_0,t)}(2r) \cap B(x,\alpha r) \neq \phi$ and so we can choose $y \in \Omega_{(x_0,t)}(2r) \cap B(x,\alpha r)$. From this observation and the triangle inequality, it follows that

$$(2) \ B(x,r) \subset B(y,K(\alpha+1)r) \subset B(y,2K(\alpha+1)r) \subset B(x,(2K^2\alpha+K\alpha+2K^2)r).$$

Since $(y, 2K(\alpha+1)r) \in \Omega_{(x_0,t)}$ by the hypothesis on Ω , we have

(3)
$$[[f:B(y,2K(\alpha+1)r)]] \leq \mathcal{M}_{\Omega}(f\cdot\chi_{B(y,2K(\alpha+1)r)})(x_0,t)$$

For all λ with $0 < \lambda < [[f: B(y, 2K(\alpha+1)r)]]$, if we write

(4)
$$E_{\lambda} = \{ \mathcal{M}_{\Omega}(f \cdot \chi_{B(y,2K(\alpha+1)r)}) > \lambda \},$$

then $\mathcal{R}_{\alpha}(x,r) \subset E_{\lambda}$ and so

(5)
$$\phi(\lambda)\nu(\mathcal{R}_{\alpha}(x,r)) \leq C \int_{X} \phi(f\chi_{B(y,2K(\alpha+1)r})wd\mu.$$

Since $0 < \lambda < [[f: B(y, 2K(\alpha + 1)r)]]$, we have

(6)
$$\phi\bigg([[f:B(y,2K(\alpha+1)r)]]\bigg)\nu(\mathcal{R}_{\alpha}(x,r)) \leq C\int_{B(y,2K(\alpha+1)r)}\phi(f)wd\mu.$$

Invoking (2) there is a constant C_1 so that

$$C_1 \le \frac{\mu(B(x,r))}{\mu(B(y,2K(\alpha+1)r))}$$

for $y \in B(x, \alpha r)$. Then by (2), note that C_1 depends only on K, A, and α . If we replace f by $\frac{\rho(1/w)\chi_{B(x,r)}}{C_1}$ in (6), by lemma 3.2 we then obtain

$$\begin{split} \phi\bigg([[f:B(y,2K(\alpha+1)r)]]\bigg) &\geq \phi\bigg([[\rho(1/w):B(x,r)]]\bigg) \\ &\geq \frac{1}{C(\phi)}[[\rho(1/w):B(x,r)]]\varphi\bigg([[\rho(1/w):B(x,r)]]\bigg). \end{split}$$

and by the Δ_2 -condition of ϕ and lemma 3.2, we also have

$$\int_{B(y,2K(\alpha+1)r)} \phi(f)wd\mu = \int_{B(x,r)} \phi\left(\rho(1/w)/C_1\right)wd\mu$$

$$\leq C_2 \int_{B(x,r)} \phi(\rho(1/w))wd\mu$$

$$\leq C_2 \int_{B(x,r)} \rho(1/w)\varphi(\rho(1/w))wd\mu$$

$$\leq C_2 C(\phi) \int_{B(x,r)} \rho(1/w)d\mu$$

$$\leq C_2 C(\phi)\mu(B(x,r))[[\rho(1/w)):B(x,r)]].$$

Combining (6), (7), and (8), we get

(9)
$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))} \leq \frac{CC_2C(\phi)^2}{\varphi([[(\rho(1/w)):B(x,r)]])},$$

which gives (1). This completes the proof of i).

To prove ii), suppose there is a constant C so that (1) holds. We follow the idea of Sueiro[Su]. For each $\lambda > 0$, define

$$E_{\lambda} = \{(x,t) \in X \times [0,\infty) : \mathcal{M}_{\Omega}f(x,t) > \lambda\}$$

and

$$E'_{\lambda} = \{x \in X : \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f| d\mu > \lambda \}.$$

Also for each $x \in E'_{\lambda}$, if we put

$$r(x) = \sup\{r > 0 : \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f| d\mu > \lambda\},$$

then r(x) > 0 and

$$\frac{1}{\mu(B(x,r(x)))}\int_{B(x,r(x))}|f|\ d\mu\geq\lambda.$$

Assume for a moment that E'_{λ} is bounded and that r(x) is everywhere finite. Then by lemma 3.1, there exists a sequence of pairwise disjoint balls $\{B(x_i, r_i)\}$ so that $E'_{\lambda} \subset \bigcup_i B(x_i, 4Kr_i)$. Now we want to verify

$$(10) E_{\lambda} \subset \cup_{i} \mathcal{R}_{4K}(x_{i}, r_{i})$$

To do this, let $(x,t) \in E_{\lambda}$. Then

$$\frac{1}{\mu(B(y,r))} \int_{B(y,r)} |f| \ d\mu > \lambda$$

for some $(y,r) \in \Omega_{(x,t)}$. So $y \in E'_{\lambda}$ and $t \leq r \leq r(y)$. By the last part of the lemma 3.1, $y \in B(x_i, 4Kr_i)$ for some i such that $r(y) \leq 2r_i$. Therefore $t \leq r \leq r(y) \leq 2r_i$ and so by the hypothesis $(y, 2r_i) \in \Omega_{(x,t)}$. Thus $y \in \Omega_{(x,t)}(2r_i) \cap B(x_i, 4Kr_i)$, and so $(x,t) \in \mathcal{R}_{4K}(x_i, r_i)$, and so (10) holds. Let $\varepsilon > 0$. By Hölder's inequality, we obtain

(11)
$$\int_{B(x_i,r_i)} |f| \ d\mu \leq 2 \|f \cdot \chi_{B(x_i,r_i)}\|_{(\phi),\varepsilon w} \ \|\frac{\chi_{B(x_i,r_i)}}{\varepsilon w}\|_{(\psi),\varepsilon w}.$$

To estimate $\|\frac{\chi_{B(x_i,r_i)}}{\varepsilon w}\|_{(\psi),\varepsilon w}$, let $\delta > 0$. Since $(\nu,w) \in C_{\phi}(\Omega)$,

$$\varphi([[\rho(1/\delta\varepsilon w):B(x_i,r_i)]]) \leq \frac{C\mu(B(x_i,r_i))}{\delta\varepsilon\nu(\mathcal{R}_{4K}(x_i,r_i))},$$

and so we have

$$\frac{1}{\mu(B(x_i,r_i))} \int_{B(x_i,r_i)} \rho(1/\delta \varepsilon w) \ d\mu \leq \rho \left(\frac{C\mu(B(x_i,r_i))}{\delta \varepsilon \nu(\mathcal{R}_{4K}(x_i,r_i))} \right)$$

and so we have

(12)
$$\int_{B(x_{i},r_{i})} \psi(1/\delta \varepsilon w) \varepsilon w d\mu \leq \frac{1}{\delta} \int_{B(x_{i},r_{i})} \rho(1/\delta \varepsilon w) d\mu$$

$$\leq \frac{C_{1} \mu(B(x_{i},r_{i}))}{\delta} \rho\left(\frac{C \mu(B(x_{i},r_{i}))}{\delta \varepsilon \nu(\mathcal{R}_{4K}(x_{i},r_{i}))}\right).$$

The constant C_1 in (12) is due to the doubling property of μ . If we take

$$\delta = C\mu(B(x_i, r_i))\phi^{-1}\left(\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_i, r_i))}\right),$$

then from the fact $s \leq \phi^{-1}(s)\psi^{-1}(s)$ for $s \geq 0$ and (12), we obtain

$$\int_{X} \psi\left(\frac{\chi_{B(x_{i},r_{i})}}{\delta\varepsilon w}\right) \varepsilon w d\mu$$

$$\leq \frac{C_{2}}{\phi^{-1}\left(\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i}))}\right)} \rho\left(\frac{\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i}))}}{\phi^{-1}\left(\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i}))}\right)}\right)$$

$$\leq \kappa C_{2}\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i})\psi\left(\frac{\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i}))}}{\phi^{-1}\left(\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_{i},r_{i}))}\right)}\right)$$

$$\leq \kappa C_{2},$$

where $\kappa > 1$ satisfies $s\rho(s) \le \kappa \psi(s), s \ge 0$. Here we may assume that $\kappa C_2 \le 1$ so that

(14)
$$\|\frac{\chi_{B(x_i,r_i)}}{\varepsilon w}\|_{(\psi),\varepsilon w} \leq C\mu(B(x_i,r_i))\phi^{-1}\left(\frac{1}{\varepsilon\nu(\mathcal{R}_{4K}(x_i,r_i))}\right).$$

Now take $1/\varepsilon = \int_{B(x_i,r_i)} \phi(|f|) w \ d\mu$. Then by the direct computation we have $||f\chi_{B(x_i,r_i)}||_{(\phi),\varepsilon w} = 1$ and so by (11), we get

$$\int_{B(x_i,r_i)} |f| \ d\mu \le 2C\mu(B(x_i,r_i))\phi^{-1}\left(\frac{\int_{B(x_i,r_i)} \phi(|f|)w \ d\mu}{\nu(\mathcal{R}_{4K}(x_i,r_i))}\right)$$

or

(15)
$$\frac{\nu(\mathcal{R}_{4K}(x_i, r_i))}{\mu(B(x_i, r_i))} \le C \frac{[[\phi(|f|)w : B(x_i, r_i)]]}{\phi([[|f|, B(x_i, r_i)]])}.$$

Since $\phi([[|f|:B(x_i,r_i)]]) \geq \phi(\lambda)$, it follows from (10), (15), and the disjointness of $\{B(x_i,r_i)\}$ that

$$\nu(E_{\lambda}) \leq \sum_{i} \nu(\mathcal{R}_{4K}(x_{i}, r_{i}))$$

$$\leq C \sum_{i} \frac{\mu(B(x_{i}, r_{i}))}{\phi(\lambda)} [[\phi(|f|)w : B(x_{i}, r_{i})]]$$

$$\leq \frac{C'}{\phi(\lambda)} \sum_{i} \int_{B(x_{i}, r_{i})} \phi(|f|)w d\mu$$

$$\leq \frac{C''}{\phi(\lambda)} \int_{X} \phi(|f|)w d\mu.$$

This completes the proof for the case E'_{λ} is bounded and each r_i is finite. If $r(x) = \infty$ for some $x \in X$, then there is a sequence $\{r_n\}$ such that

$$\frac{1}{\mu(B(x,r_n))} \int_{B(x,r_n)} |f| \ d\mu \ge \lambda.$$

and $r_n \uparrow \infty$ as $n \to \infty$. For these r_n , if we apply the inequality (15) and n tends to infinity, then

$$u(X \times [0,\infty)) \le \frac{C}{\phi(\lambda)} \int_X \phi(|f|) w d\mu,$$

as desired.

Next, assume that E'_{λ} is unbounded. Let $a \in X$ and R > 0. Then the set $E'_{\lambda} \cap B(a,R)$ is bounded. The above argument shows the same estimate since we can apply the covering lemma to the balls $B(x,r): x \in E'_{\lambda} \cap B(a,R)$. This completes the proof. \square

Example 3.1. Let $\phi(t) = t^p$, p > 1. Then the the complementary N-function ψ is given by $\psi(t) = t^q$, where q is the conjugate exponent of p. Also the corresponding density functions are given by $\varphi(t) = pt^{p-1}$ and $\rho(t) = qt^{q-1}$. Let $\Omega_x = \{(y,t) : |x-y| < t\}$. Then the condition $C_{\phi}(\Omega)$ says

$$\frac{\nu(\mathcal{R}_1(x,r))}{|B(x,r)|^p} \left(\int_{B(x,r)} w^{-1/(p-1)} d\mu \right)^{p-1} \le C,$$

which is equivalent to the condition C_p given by Ruiz[R] since

$$\mathcal{R}_1(x,r) = B(x,3r) \times [0,2r].$$

Example 3.2. Let $X = \mathbb{R}^n$ and $d\nu = udx \otimes d\delta_o$, where $d\delta_o$ is the Dirac measure concentrated on t = 0. Since $\mathcal{R}_1(x,r) = B(x,4r) \times [0,2r)$, our condition implies

$$\frac{1}{|B(x,r)|} \bigg(\int_{B(x,r)} \epsilon u dx \bigg) \phi \bigg(\frac{1}{|B(x,r)|} \int_{B(x,r)} \rho(1/\epsilon w) dx \bigg) \leq C,$$

which is the A_{ϕ} condition obtained by Gallardo[G].

Definition 3.1. Set

$$\widehat{\Omega}_{(x_o,t)} = \{(x,r) \in X \times [t,\infty) : (x,s) \in \Omega_{x_o} \text{for some } s \leq r\}$$

and

$$\widehat{\mathcal{R}}_{\alpha}(x,r) = \{(x_o,t) \in X \times [0,\infty) : \widehat{\Omega}_{(x_o,t)}(2r) \cap B(x,\alpha r) \neq \emptyset\}.$$

With this definition, we can define $\widehat{\Omega}$ and the $C_{\phi}(\widehat{\Omega}, \alpha)$ -condition in the same fashion as $C_{\phi}(\Omega, \alpha)$ -condition and we have the following

Theorem 3.2. Assume that an N-function satisfies the Δ_2 -condition.

- i) If $\mathcal{M}_{\widehat{\Omega}}$ is of weak type (ϕ, ϕ) with respect to (ν, w) , then (ν, w) satisfies the condition $C_{\phi}(\widehat{\Omega}, \alpha)$ for all $\alpha > 0$.
- ii) If (ν, w) satisfies the condition $C_{\phi}(\widehat{\Omega}, \alpha)$ for some $\alpha \geq 4K$, then $\mathcal{M}_{\widehat{\Omega}}$ is of weak type (ϕ, ϕ) with respect to (ν, w) .

REFERENCES

- [C] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547-559.
- [Ch] Jie-Cheng Cheng, Weights and L_{Φ} -boundedness of the Poisson integral operator, Israel J. Math. 81 (1993), 193-202.
- [CW] R.R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. 242 (1971), Springer-Verlag, Berlin.
- [FS] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer.J. Math. 93 (1971), 107-115.
- [G] D. Gallardo, Weighted weak type integral inequality for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1989), 95-108.
- [GcRf] J. Garcia-Cuerva and J.L. Rubio De Francia, Weighted Norm Inequalities and Related Topic, Elsevier Science, North-Holland, 1985.
- [M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 115-121.
- [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (1983), Springer Verlag, Berlin.
- [R] F.J. Ruiz, A Unified approach to Carleson measures and A_p weights, Pacific J.Math. 117 (1985), 397-404.

- [RT] F. J. Ruiz and J.L. Torrea, A Unified approach to Carleson measures and A_p weights II, Pacific J.Math. 120 (1985), 189-197.
- [S] E.M.Stein, Harmonic Analysis: Real variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
- [Su] J. Sueiro, On maximal functions and Poisson-Szegö integrals, Trans. Amer.Math.Soc. 298 (1986), 653-669.
- [W] P. Wenjie, Weighted Norm Inequaities for Certain Maximal Operator with Approach Region, Lecture Notes in Math. 1494 (1988), Springer Verlag, Berlin, 169-175.

Department of Mathematical Education, Kyungpook National University, Taegu, Republic of Korea,702-201

E-mail address: yjyoo@kyungpook.ac.kr

Received November 13, 1997

Revised April 1, 1998