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ORLICZ NORM ESTIMATES FOR
POISSON MAXIMAL OPERATORS

YooN JAE Yoo

ABSTRACT. A condition for Poisson maximal operator to be of weak type Ly are
| chracterized in terms of the Orlicz norm. This operator unifies various maximal
operators cited in the literatures.

I. Introduction

For a given function f on R", set

where the supremum is taken over the cubes @ in R™ centered at = with sides
parallel to the z-axis and has side length at least t. It is well known tha this
operator plays important role in studying the Poisson integral on the upper
half-space.

For a given positive measure v on R™ x [0,00), under what condition on v
can we assert that M is bounded from LP(R™) into LP(R™ x [0,00),v) ? Car-
leson[C] showed this is equivalent to the Carleson condition and later Feffermann-
Stein[FS] found a sufficient condition, and later Ruiz[R], and Ruiz-Torrea[RT]
unified all these results. Further, Gallardo[G] and Chen[Ch] obtained a charac-
terization in terms of the Orlicz norm.

On the other hand, Sueiro[Su] studied a maximal operator Mg to study
Poisson-Szegé integral. This operator generalizes the standard Hardy-Littlewood
maximal operator.

'Mf(w,t)=sgp|—él- /Q fl dz, (z€R™, t>0),
|
|
\
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In this paper we define a maximal operator Mq f(z,t) that generalizes the
Poisson integral operator M and chracterize a condition to be Mg of weak type
(¢, ¢) in terms of the Orlicz norm.

II. Terminologies

Definition 2.1. Let X be a topological space and d : X x X — [0,00) be a
map satisfying
i) d(z,y) >0 ;d(z,y) =0ifand only ifx =y ;
ii) d(z,y) = d(y,z) ;
iii) d(z,y) < K[d(z, z) + d(z,y)], where K is a fixed constant.
iv) the balls B(z,r) = {y € X : d(z,y) < r} form a basis of open neighborhoods
at £ € X and that u is a Borel measure on X such that
v) 0 < u(B(z,2r)) < Au(B(z,r)) < 0o, where A is some fixed constant.
Then the triple (X, d, ) is called a space of homogeneous type.

Definition 2.2. Assume for each z € X, we are given Q, C X x [0,00). Let
be the set {Q,}. For each t > 0 set

Q(z,t) =N (X x [t, 00))
and for each aa > 0
Ra(z,t) = {(y,7) € X x [0,00) : Q) (2t) N B(x, at) # ¢},

where
Q(xﬂ')(t) = {z €X: (27 t) € Q(z,r)}

is the cross section of Q(, ) at height t. We assume that R, (z,t) is measurable
for each = and t¢.
For f € L1(dp) and z € X, t > O set

Maf(z,t)= sup 1

- fl du.
(¥,8)EQ(2,¢) /J,(B(y,S)) B(y,.s)I ' H

We also assume that Mgq f(x,t) is measurable for each = and t¢.
Example 2.1. Let X = R" and B(z,r) ={y € R": |z —y| <7r}. If
Q= {4r) €R" x[0,00) : |o — y| <7},
then for any o > 0, the set R,(z,t) is given by
Ra(z,t) = B(z, (a + 2)t) x [0, 2t].
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Definition 2.3. Let ¢ : [0,00) — R be a continuous and convex function satis-
fying

i) ¢(s)>0foralls>0;

ii) lin%) #(s)/s = 0.

iii) lim ¢(s)/s = oo.

Then ¢ is called an N-function. Each N-function has the integral represention:
¢(s) = [, o(t) dt, where (s) > 0 for s > 0, ¢(0) = 0, and p(s) — oo as s — oo.
Further, ¢ is right-continuous and nondecreasing. ¢ is called the density function
of ¢.

Define p : [0,00) — R by p(t) = sup{s : ¢(s) < t}. Then p is called the
generalized inverse of ¢. Finally, define

t
w0 = [ o(s) ds
and v is called the complementary N-function of ¢. For further details, see
Musielak[Mu).
Definition 2.4. An N-function ¢ is said to satisfy the Az-condition in [0, co)
if sug #(2s)/d(s) < o0.
s>

Remark 1. If 1 is the complementary N—function ¢, then st < ¢(s) + ¥(t) for
all s,z > 0.

Futher the equality holds if and only if p(s—) <t < p(s) or else p(t—) < s <
p(t). |

Definition 2.5. Let (X, M, u) is a o-finite measure space and if ¢ is an N-
function, then the Orlicz spaces Ly(du) and Lj(du) are defined by

Lo(u) = {£ : [ 97D < 00}
and
Ly(du) ={f: fg € Li(dp) forall g€ Ly},
where 1 is the complementary N-function of ¢.

Keeping these definitions and notations, the following properties about the
Orlicz space will be used in the proof of theorem 3.1.
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Proposition 2.1. i) The Orlicz space L}(dp) is a Banach space with the Orlicz

norm

17l = supd [ 1foldu : g € Su3,

where Sy = {g € Ly : [ (|g])dn < 1}, or with the Luzemburg norm
I£ley = int{r > 0+ [ 60111/ < 13-

ii) (Hélder’s inequality) If f € Ly(dp) andg € Ly(dp), then ||fglle < 2| fll(g)llgllw)-

Definition 2.6. Fix a > 0. Let v be a Borel measure on X x [0,00) and w
a nonnegative measurable function on X. The pair (v,w) is said to satify the
Cs(2, a) condition if there is constant C(K, A, ¢, a) such that

/(Ra(z,7) . ___ C(K,A,¢,0)

(1) aBan) - e((p(/ew)) : Bz,

for any (z,7) € X x [0,00) and any € > 0, where [[f : B]] = RIES I fap.
Definition 2.7. Mg is of weak type (¢, ®) with respect to (v, w) if there is a
constant C = C(K, A, ¢) such that

C
Y({(z,7) € X x [0,00) : Maf(@r) > M) < 5755 /X 6(| fl)wdp

for every A > 0.

III. Results

The following lemma is given in [CW]. Also see [Su].

Lemma 3.1. (Vitali-Wiener type covering lemma) Let E be a bounded subset
of X and for each x € X, assign r(x) > 0. Then there is a sequence of pairwise
disjoint balls B(z;,r(x;)), z: € E, such that the balls B(z;,4Kr(z;)) cover E,
where K 1is the constant in the definition 2.1. Further, every x € E is contained
in some ball B(z;,AKr(x;)) satisfying r(x) < 2r(x;).

The following lemma is given in [Ch].
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Lemma 3.2. For any N-function ¢, t < p(p(t)) and ¢(t) < tp(t). If ¢ satisfies
the Az-condition, then there is a constant C(¢) such that p(p(t)) < C($)t and

to(t) < C(g)d(2).

Theorem 3.1. Assume that an N-function ¢ satisfies the Aq-condition and

assume further that Q satisfies that if z € X, (y,r) € Q, and s > r, then

(y,s) € Q.

i) If Mq is of weak type (¢,¢) with respect to (v,w), then (v,w) satifies the
condition Cy(Q2, a) for all a > 0.

i) If (v,w) satifies the condition Cy(f2, @) for some a > 4K, Mg is of weak type
(¢, @) with respect to (v,w).

Proof. Suppose that Mgq is of weak type (¢,¢) with respect to (v,w). Let
f be a nonnegative measurable function on X. If (zo,t) € Rq(z,r), then
Q(z0,t)(2r) N B(z,ar) # ¢ and so we can choose y € Q4,1 (2r) N B(z,ar).
From this observation and the triangle inequality, it follows that

(2) B(z,r) C B(y,K(a+1)r) C B(y,2K(a+1)r) C B(z, (2K%a+Ka+2K?)r).

Since (y, 2K (a + 1)r) € Q(4,,t) by the hypothesis on 2, we have

(3) [[f : B(y,2K(a + 1)7)]] < Ma(f - XBy,2K(a+1)r))(T0,t)
For all A with 0 < A < [[f : B(y,2K (e + 1)r)]], if we write
(4) Ex = {Ma(f - XB.2K(a+1)r)) > A},

then Rq(z,7) C E) and so

%) HN(Ra(z, ) < C /X (FXB (2K @ty Wi,

Since 0 < A < [[f : B(y,2K (a + 1)r)]], we have

©  ¢(If: B 2K @+ D) )uRa@ SO [ glpyuda
B(y,2K(a+1)r)
Invoking (2) there is a constant C; so that

uw(B(z,r))
©1 < B, 2K (a1 D)
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for y € B(xz,ar). Then by (2), note that C; depends only on K, A, and a. If
we replace f by &/—%ﬂ in (6), by lemma 3.2 we then obtain

)
; (uf . B(y,2K(a + 1>r>n) > ¢([[p<1/w) : B(x,rm)

1 .
> glle1/w) B(x,r)]]¢([[p(1/w) = B(x,rm)-

and by the Aj-condition of ¢ and lemma 3.2, we also have

/ ¢(flwdp = / ¢(p(1/w)/0'1)wd,u
B(y,2K(a+1)r) B(z,r)

<G [ o(p(1/w)ywdp
B(z,r) ‘
®) <O [ o/ttt /)y

< C2C(9) - )P(I/W)d#

< C:C(P)u(B(=,7))[[p(1/w)) : B(z,7)]]-

Combining (6), (7), and (8), we get

Y(Ra@r) . CCO(4)’
u(B(z,r) ~ elle(/w) : Bl )’

which gives (1). This completes the proof of i).

To prove ii), suppose there is a constant C so that (1) holds. We follow the
idea of Sueiro[Su]. For each A > 0, define

(9)

E) = {(z,t) € X x [0,00) : Mqf(x,t) > A}

and

E\,={z € X :sup

—_— dp > A}
r>0 “(B(xa 1')) B(=z,r) lfl # }
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Also for each x € E}, if we put

1

r(z) = sup{r > 0: w(B(=,7)) /o

| fldp > A},

then r(x) > 0 and

1
p(B(z,7(z))) JB(z,r(z))

|fl dp > A

Assume for a moment that EY is bounded and that r(z) is everywhere finite.
Then by lemma 3.1, there exists a sequence of pairwise disjoint balls { B(z;,7;)}
so that E} C U;B(z;,4Kr;). Now we want to verify

(10) Ex C UiRak (s, 73)
To do this, let (z,t) € Ex. Then

1

R du > A\
WBwG) Jagm |

for some (y,r) € Q). Soy € E and t < r < r(y). By the last part of
the lemma 3.1, y € B(x;,4Kr;) for some i such that r(y) < 2r;. Therefore
t < r < r(y) < 2r; and so by the hypothesis (y,2r;) € Q). Thus y €
Qz,4)(2r;) N B(z;,4K7;), and so (z,t) € Ryx(z:,7:), and so (10) holds.

Let € > 0. By Holder’s inequality, we obtain

XB iTi
(1) [ 1f1de<20f Xarol@ne 1F2E2 ) .
B(z;,r; Ew
. XB(:I.',T',') .
To estimate || =———=||(y),cw let § > 0. Since (v,w) € Cy(2),

eEw

. o Cu(B(zi,73))
elllp(1/6ew) : B(zim)ll) < 5 )y

and so we have
1
,“I'(B(x'i’ T‘i)) B(a:.-,r,-)

p(1/6ew) du < p( Cu(B(zi,7:)) )

Sev(Rak (xi,73))

— 149 —



and so we have

(12)
/ P(1/bew)ewdp < % p(1/bew)dp
B(z:,ri) B(xi,ri)
< Gu(B(zi, 1)) ( Cu(B(x;,7i)) )
- 6 bev(Rak (zi,7:)) )

The constant C} in (12) is due to the doubling property of u. If we take

6 = Cu(B(zi,r:))9~? ( : ) ’

eV(Rak(zi,Ti))
then from the fact s < ¢~1(s)y~1(s) for s > 0 and (12), we obtain
XB(G:.',T,')
/x P (_—6611) ) ewdp
1
< C2 p ( eu(R4K(z.-,r,~)) )
(13) ¢ (eV(RAX(SBi,Ts‘))) ¢ 1 (eu(‘R,g;(l(:c.',T.')))

1
< kCreV(Rak (xi, T:i)% ( 1”(7%"‘ (ml-‘:rs)) )
¢~ (e"’(R4K(3-‘ ,"'.')7)
S RC27

where k > 1 satisfies sp(s) < k¥(s),s > 0. Here we may assume that kCy < 1
so that

XB(:I:.-,‘I‘.') . . -1 1
(14) I ew Nwy,ew = Cu(B(zi,73))¢ (eu(R4K($i,7‘i))) '

Now take 1/e = |, B(zs,r) P(f1)w dp. Then by the direct computation we have
| fxB(z:,r)ll(¢),ew = 1 and so by (11), we get

AN fB(:z:.v,r,-) (| fDw dp

/B ore) |f| dp < 2Cu(B(zi, 7)) ‘( V(Rar@rd) )
V(Rak(xi,Ti)) [o(IfN)w : B(xs,73)]]
(15) wBanr) = Sl Banrl)
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Since ¢([[|f] : B(z:,73)]]) = ¢(N), it follows from (10), (15), and the disjointness
of {B(z;,r;)} that

v(Ey) < Z V(Rak(i,73))

<cy ﬂ’%%’i)nmmw . B(z:,3)]

C’
— d
< 50 Ei /B(%m) ¢(|f)wdp

CII
<55 /X &(| f ) wdp.

This completes the proof for the case E) is bounded and each 7; is finite.
If 7(z) = oo for some = € X, then there is a sequence {r,} such that

1
,U.(B(.’B, 'rn)) B(z,rn)

and r, T 0o as n — oo. For these r,,, if we apply the inequality (15) and n tends
to infinity, then

(16)

|f] dp = A

C
U(X x [0,00)) < g5 /X 6(f ) wdg,

as desired.

Next, assume that EY is unbounded. Let a € X and R > 0. Then the set
E! N B(a, R) is bounded. The above argument shows the same estimate since
we can apply the covering lemma to the balls B(z,r) : « € E\ N B(a, R). This
completes the proof. [

Example 3.1. Let ¢(t) = t?, p > 1. Then the the complementary N-function
9 is given by 9(t) = t9, where ¢ is the conjugate exponent of p. Also the
corresponding density functions are given by ¢(t) = ptP~! and p(t) = qt?~!. Let
Q: = {(y,t) : |r —y| < t}. Then the condition Cg(f2) says

v(Ra(z,7)) < / ~1/(p-1) )p_l
——— L w d S C7
1B, NP \Jb(er) H

which is equivalent to the condition Cjp given by Ruiz[R] since

Ri(z,r) = B(z,3r) x [0,2r].
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Example 3.2. Let X = R™. and dv = udxr®dé,, where dé, is the Dirac measure
concentrated on ¢t = 0. Since Ry(x,7) = B(z,4r) x [0, 2r), our condition implies

m </B(a:,r) Gde)¢(|—B(—iﬂ'W B(z,r) p(1/ew)dx> <G

which is the Ay condition obtained by Gallardo[G].
Definition 3.1. Set

ﬁ(zo.t) = {(z,r) € X x [t,00) : (z,s) € Q_for some s < r}

and
ﬁa(m,r) = {(z,,t) € X x [0,00) : ﬁ(%,t)(?r) N B(z,ar) # ¢}.

With this definition, we can define Q and the Cs(8, a)-condition in the same
fashion as Cy(Q2, a)-condition and we have the following

Theorem 3.2. Assume that an N-function satisfies the A,-condition.

i) If Mg is of weak type (¢,¢) with respect to (v,w), then (v,w) satifies the
condition Cy(Q, @) for all a > 0.

it) If (v, w) satifies the condition C¢,(§, a) for some o > 4K, then Mg is of weak
type (¢, ) with respect to (v,w).
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