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Abstract

Saito raised a problem whether any properly infinite von Neumann algebra acting
$O11$ a separable Hilbert space is generated by a power partial isometry. We give the
complete answer for this problem in this paper.

In this paper, we discuss the generation of von Neumann algebras by the power par-
t,ial isometries. These were discussed by many authors, for example, Behncke, Wogen and
Saito. In particular, Saito showed the following result in [4].

Let $M$ be a properly infinite von Neumann algebra. Then, for any positive integer $n$ ,
there exists a generator $V$ of $M$ satisfying the following properties;

(1) $V,$ $V^{2},$
$\ldots$ , $V^{\mathfrak{n}}$ are non-zero partial isometries and $V^{k}(k\geq n+1)$ are not.

(2) $V$ is a nilpotent operator of index $n+3$ .

Furthermore, when Saito showed the above result, he raised the following problem in
[$4;Question$ in page 489]:

Let $M$ be a properly infinite von Neumann algebra. Then, can we choose a generator $T$

of $M$ such that $T,$ $T^{2},$
$\ldots$ , $T^{n},$

$\ldots$ are all non-zero partial isometries ?

For the above mentioned problem by Saito, in this paper we sha.1] give the complete
answer that the von Neumann algebra generated by the power pa.rtial isometry is the von
Neumann algebra of type I and is not the von Neumann algebra of type $II_{\infty}$ and type III.
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We thank to the refree for pointng the error in our proof.

Definition 1 We have the following notations used in this paper.

(1) An operator $T$ on a Hilbert space $H$ is called a power partial isometry if $T^{\mathfrak{n}}$ is a partial
isometry for $n=1,2,$ $\ldots$ .

(2) An opemtor $T$ on $H$ is called a truncated shift of index $n(n=1,2, \ldots)$ if $T$ is the
operator such taht $H$ is the n-fold direct sum

$H=\frac{\mathfrak{n}}{H_{0}\oplus H_{0}\oplus\cdots\oplus H_{0}}$

and $ T=\theta$ if $n=1$ and

$T<f_{1},f_{2},$ $\ldots,f_{\mathfrak{n}}>=<0,f_{1},f_{2},$ $\ldots f_{n-1}>$

if $n>1$ .

(3) An operator $T$ on $H$ is called quasinormal if $T(T^{*}T)=(T^{*}T)T$ .

For an operator $T$ acting on a separable Hilbert space $H$ , let $M(T)$ be the von Neumann
algebra generated by $T$ and the identity operator $I$ and $M(T)is$ called the von Neumann
algebra generated by (simply) $T$ . In this note, we shall show that the von Neumann algebra
$M(U)$ generated by a power partial isometry $U$ is a von Neumann algebra of type I and so
not a von Neumann algebra of type II and type III.

For the power partial isometries, we have the following decomposition by Saito [5;The-
orem 7.5] (and also Halmos and Wallen [2]).

Theorem 2 (Saito[5]) Let $U$ be a power partial isometry, then $U$ can be decomposed into
the central direct sum of the following form

$U=U_{1}\oplus U_{2}\oplus U_{3}\oplus U_{4}$

mhere { $f_{1}$ is the unita. $ry$ opemtor, $U_{2}$ is the unilateml shift opemtor, $U_{3}$ is the adjoint of the
unilateral shift opemtor and $U_{4}$ is the direct sum of truncated shif opera.tors.
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We denoted the definition of quasi-normal operator. The unitary operators and the
unilateral shift operators are the quasi-normal operators. Thus, if $U$ is a unitary operator
or a unilateral shift operator, then the von Neumann algebra $M(U)$ generated by $U$ is
of type I by the following theorem (see Saito $[5;Theorem7.4]$ ). Furthermore, if $U$ is the
adjoint of a unilateral shift operator, then $M(U)$ is also a von Neumann algebra of type I.

Theorem 3 ( $Saito[5$ ; Theorem7.4]) If $U$ is a quasi-normal opemtor on a Hilbert space $H$,
then the von Neumann algebm $M(U)$ is of type $I$.

Considering Theorem 2 and Theorem 3, then we want to show the following result:

If $T$ is an operator acting on a Hilbert space $H$ represented by the finite or infinite
direct sum of the truncated shifts

$T=\sum_{k=1}^{K}\oplus U_{n(k)}$ $(1 \leq n(1)<n(2)<\cdots<n(k)<\cdots)$

where $U_{\mathfrak{n}(k)}$ is a truncated shifts of index $n(k)$ and $K$ is a positive integer or $\infty$ , then the
von Neumann algera M $(T)$ generated byTisoftype I.

The above result gave the complete answer for another Saito’s problem raised in [3].
Then, we gave the proof of the above consideration in $[6;Theorem4]$ , but we did not know
the Saito’s problem when we gave the proof of the above mentioned consideration. Thus,
we give the reproof of $[6;Theorem4]$ for this consideration here and have the main theorem
in which we shall give the complete answer for the Saito’s problem.

Theorem 4 If $T$ is an opemtor acting on a Hilbert space $H$ represented by the finite or
infinite direct sum of the truncated shifts

$T=\sum_{k=1}^{K}\oplus U_{n(k)}$ $(1 \leq n(1)<n(2)<\cdots<n(k)<\cdots)$

where $U_{n(k)}$ is a truncated shift of index $n(k)$ and $K$ is a positive integer or $\infty$ , then the
von Neumann algebm $M(T)$ genemted by $T$ is of type $I$.

Proof. We shall $sllow$ the theorem in the case of $ K=\infty$ . Even if $ K<\infty$ , we can show the
theorem by using a similar argument. Thus, let $T$ be the infinite direct sum of truncated
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shifts

$T=\sum_{k=1}^{\infty}\oplus U_{n(k)}$ acting on $H=\sum_{k=1}^{\infty}\oplus H_{\mathfrak{n}(k)}$

where each $H_{\mathfrak{n}(k)}$ is the $n(k)$-fold direct sum

$H_{\mathfrak{n}(k)}=H_{O}^{(k)}\oplus H_{O}^{(k)}\oplus\cdots\oplus H_{0}^{(k)}$ .

Then, every $H_{\mathfrak{n}(k)}$ reduces $T(k=1,2,\ldots)$ . Thus the projection $E^{(k)}$ of $H$ onto $H_{\mathfrak{n}(k)}$

is an element of the commutant $M(T)$ of $M(T)$ . Since

$ T^{\mathfrak{n}(1)}T^{\mathfrak{n}(1)}=O^{(1)}\oplus(E_{11}^{(2)}\oplus O_{11}^{(2)})\oplus\cdots\oplus(E_{11}^{(k)}\oplus O_{11}^{(k)})\oplus\cdots$ ,

where $O^{(k)}$ is the zero operator on $H_{\mathfrak{n}(k)}$ and each $O_{11}^{(k)}$ is the zero operator on the $n(1)$-fold
direct sum

$(O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}\oplus)\frac{\mathfrak{n}(1.)}{H_{0}^{(k)}\oplus\cdot\cdot\oplus H_{0}^{(k)}}$

and $E_{11}^{(k)}$ is the projection on the $(n(k)-n(1))$-fold direct sum

$\frac{n(k.)-\mathfrak{n}(1)}{H_{0}^{(k)}\oplus\cdot\cdot\oplus H_{O}^{(k)}}(\oplus O_{0}^{(k)}\oplus O_{O}^{(k)}\oplus\cdots\oplus O_{0}^{(k)})$

$(k=2,3, \cdots)$ ,

$ T^{\mathfrak{n}(1)}T^{\mathfrak{n}(1)}=O^{(1)}\oplus(E_{11}^{(2)}\oplus O_{11}^{(2)})\oplus\cdots\oplus(E_{11}^{(k)}\oplus O_{11}^{(k)})\oplus\cdots$

is an element of $M(T)$ . Furthermore, since

$ TT^{*}=(E^{(1)}-E_{1}^{(1)})\oplus(E^{(2)}-E_{1}^{(2)})\oplus\cdots\oplus(E^{(k)}-E_{1}^{(k)})\oplus\cdots$

where $E_{1}^{(k)}$ is the projection on

$H_{0}^{(k)}\oplus\frac{n(k)-1}{O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}}$

$(k=1,2,3, \cdots)$ ,

I–TT’ $=E_{1}^{(1)}\oplus E_{1}^{(2)}\oplus\cdots\oplus E_{1}^{(k)}\oplus\cdots$
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is an element of $M(T)$ . Then, by considering the relation $n(k)-n(1)\geq 1$ we have the
relation

$(T^{\mathfrak{n}\langle 1)}T^{\mathfrak{n}(1)})(I-TT^{*})$

$=O^{(1)}\oplus E_{1}^{(2)}\oplus\cdots\oplus E_{1}^{(k)}\oplus\cdots$

Therefore, the element

$(I-TT^{*})(I-(T^{n(1)}T^{n(1)})(I-TT^{\cdot}))$

$=(E_{1}^{(1)}\oplus E_{1}^{(2)}\oplus\cdots\oplus E_{1}^{(k)}\oplus\cdots)$

. $(E^{(1)}\oplus(E^{(2)}-E_{1}^{(2)})\oplus\cdots(E^{(k)}-E_{1}^{(k)})\oplus\cdots)$

$=E_{1}^{(1)}$

is an element of $M(T)$ . Apply a similar argument for

$T^{*n(1)-1}T^{n(1)-1}$ and $I-T^{2}T^{*2}$ ,

$T^{*\mathfrak{n}(1)-1}T^{\mathfrak{n}(1)-1}$

$=E_{1}^{(1)}\oplus(E_{12}^{\langle 2)}\oplus O_{12}^{\langle 2)})\oplus\cdots\oplus(E_{12}^{(k)}\oplus O_{12}^{(k)})\oplus\cdots$

and

$T^{2}T^{*2}$
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$=(E^{(1)}-(E_{1}^{(1)}+E_{2}^{(1)}))\oplus(E^{(2)}-(E_{1}^{(2)}+E_{2}^{(2)}))\oplus\cdots\oplus(E^{(k)}-(E_{1}^{(k)}+E_{2}^{(k)}))\oplus\cdots$

where for each $k,$ $E^{(k)}$ is the projection on

$O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}\oplus H_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\wedge\ldots\oplus O_{0}^{(k)}$

$(k=1,2,3, \cdots)$ ,

$E_{12}^{(k)}$ is the projection on the $(n(k)-n(1)+1)$-fold direct sum

$\frac{\mathfrak{n}(k)-n(1)+1}{H_{0}^{(k)}\oplus\cdots\oplus H_{0}^{(k)}}(\oplus O_{0}(k)\oplus O_{O}(k)\oplus\cdots\oplus O_{0}^{(k)})$

and $O_{12}^{(k)}$ is the zero operator on the $(n(1)-1)$-fold direct sum

$\mathfrak{n}(1)-1$

$(O_{0}^{(k)}\oplus O_{0}(k)\oplus\cdots\oplus O_{0}^{(k)}\oplus)\overline{H_{O}^{(k)}\oplus\cdots\oplus H_{0}^{(k)}}$ .

Thus, the operator

$(I-T^{2}T^{2})(T^{n(1)-1}T^{\mathfrak{n}(1)-1})$

$=E_{1}^{(1)}\oplus(E_{1}^{(2)}+E_{2}^{(2)})\oplus\cdots\oplus(E_{1}^{(k)}+E_{2}^{(k)})\oplus\cdots$

is an element of $M(T)$ . Furthermore, since the operator

$ E_{1}^{(1)}\oplus O^{(2)}\oplus\cdots\oplus O^{(k)}\oplus\cdots$

is an element of $M(T)$ , the operator

$ O^{(1)}\oplus(E_{1}^{(2)}+E_{2}^{(2)})\oplus\cdots\oplus(E_{1}^{(k)}+E_{2}^{(k)})\oplus\cdots$

is an element of $M(T)$ . Therefore, the operator

$(I-T^{2}T^{2})-(O^{(1)}\oplus(E_{1}^{(2)}+E_{2}^{(2)})\oplus\cdots\oplus(E_{1}^{(k)}+E_{2}^{(k)})\oplus\cdots)$
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$=E_{1}^{(1)}+E_{2}^{\langle 1)}$

is an element of $M(T)$ . Thus, since $E_{1}^{(1)}$ is an element of $M(T),$ $E_{2}^{(1)}$ is an element of $M(T)$
too.

Continuiting this process, we can show that $E_{1}^{(1)},$ $E_{2}^{(1)}$ ,
$M(T)$ and so $E^{(1)}$ is an element of $M(T)$ . Thus, the $projectionE^{/}1$)

$isaoentralprojectionE_{\mathfrak{n}(1}^{(1)}arealsotheelementsof$

$ofM(T)$ .
Next, apply the above process for $T(I-E^{(1)})$ , we can show that $E^{(2)}$ is a central pro-

jection of $M(T)$ .

By considering this process, we can show that all $E^{(k)}(k=1,2, \cdots)$ are central projec-
tions of $M(T)$ . Therefore, since every $U_{\mathfrak{n}(k)}$ is a truncated shift of index $n(k),$ $M(U_{\mathfrak{n}(k)})$ is a
von Neumann algebra of type $I_{\mathfrak{n}(k)}$ and so $M(T)$ is a von Neumann algebra of type I. Thus,
we have the complete proof of Theorem 4.

By Theorem 2, Theorem 3 and $Th\infty rem4$ , we have the following main result.

Theorem 5 Let $T$ be a power partial isometry acting on a Hilbert space $H$ , then the von
Neumann algebm $M(T)$ genemted by $T$ is of type $I$.

Proof. Since $T$ is a power partial isometry, by Theorem 2, $T$ can be docomposed into the
central direct sum

$T=T_{1}\oplus T_{2}\oplus T_{3}\oplus T_{4}$

where $T_{1}$ is the unitary operator, $T_{2}$ is the unilateral shift operator, $T_{3}$ is the adjoint of the
unilateral shift operator and $T_{4}$ is the direct sum of truncated shift operators. Then, by
Theorem 3, the von Neumann algebras $M(T_{1}),$ $M(T_{2})$ and $M(T_{3})$ are of type I. Furthermore,
by Theorem 4, the von Neumann algebra $M(T_{4})$ is also of type I. So, since the direct sum

$T=T_{1}\oplus T_{2}\oplus T_{3}\oplus T_{4}$

is the central direct sum, the von Neumann algebra $M(T)$ generated by $T$ can be decom-
posed into the central direct sum

$Af(T)=M(T_{1})\oplus M(T_{2})\oplus M(T_{3})\oplus M(T_{4})$ .
Therefore, the von Neumann algebra $M(T)$ generated by the power partial isometry $T$ is
of type I. This completes the proof of Theorem 5.
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