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ON PSEUDO-UMBILICAL SURFACES
WITH NONZERO PARALLEL MEAN

CURVATURE VECTOR IN $\mathbb{C}P^{3}(\tilde{c})$

NORIAKI SATO

Absract. Any pseudo-umbilical surface with nonzero parallel
mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ is a totally real isotropic surface
in $\mathbb{C}P^{3}(\tilde{c})$ .

1. INTRODUCTION

Let $\mathbb{C}P^{m}(\tilde{c})be$ a complex m-dimensional complex projective space
with the Fubini-Study metric of constant holomorphic sectional cur-
vature $\tilde{c}$ .

Chen and Ogiue $[1]claesified$ totally umbilical submanifolds in
$\mathbb{C}P^{m}(\tilde{c})$ . However, it is well known that the class of pseudo-umbilical
submanifolds in $\mathbb{C}P^{m}(\tilde{c})$ is too wide to classify. Thus, it is reason-
able to study pseudo-umbilical submanifolds in $\mathbb{C}P^{n}(\tilde{c})$ under some
additional condition.

Recently,the author proved that any pseudo-umbilical submanifold
$M^{n}with$ nonzero parallel mean curvature vector in $\mathbb{C}P^{m}(\tilde{c})$ is a to-
taly real submanifold and satisfies $2m>n$ ([3]). Thus, we see that
$\mathbb{C}P^{2}(\tilde{c})$ admits no pseudo-umbilical surfaces with nonzero paralel
mean curvature vector.

In the previous paper [4], the author showed that any complete
pseudo-umbilical isotropic surface of $P(\mathbb{R})$-type (see Preliminaries)
with nonzero parallel mean curvature vector in $\mathbb{C}P^{4}(\tilde{c})$ is an extrin-
sic hypersphere in a 3-dimensional real projective space $\mathbb{R}P^{3}(\tilde{c}/4)$ of
$\mathbb{C}P^{3}(\tilde{c})$ .

The aim of this paper is to prove the following result.
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Theoreml.1. Let $M$ be a pseudo-umbilical surface with nonzero
paral lel mean $cun$)$ature$ vector in $\mathbb{C}P^{3}(\tilde{c})$ . Then $M$ is a total $ly$ red
isotrvpic surface in $\mathbb{C}P^{3}(\tilde{c})$ .
Corollaryl.1. Let $M$ be a pseudo-umbilical surface with nonzero
parallel mean curvatu$7t$ vector in $\mathbb{C}P^{3}(\tilde{c})$ . If the surface is of $P(R)-$

type, then $M$ is an ext$r\dot{v}nsic$ hypersphere in a S-dimensional real pro-
jective space $RP^{3}(\tilde{c}/4)$ of $\mathbb{C}P^{3}(\tilde{c})$ .

The author would like to express his hearty thanks to Professor
Yoshio Matsuyama for his valuable suggestions and encouragements.

2. PRELIMINARIES

Let $M$ be an n-dimensional submanifold of a complex m-dimen-
sional Kaehler manifold $\tilde{M}$ with complex structure $J$ an $d$ Kaehler
metric $g$ . A submanifold $M$ of a Kaehler manifold $\tilde{M}$ is said to be
totally real if each tangent space of $M$ is mapped into the normal
space by the complex structure of $\tilde{M}$ .

Let V(resp. $\tilde{\nabla}$ ) be the covariant differentiation on M(r\’ep. $\tilde{M}$). We
denote by $\sigma$ the second fundamental form of $M$ in $\tilde{M}$ . Then the
Gauss formula and the Weingarten formula are given respectively by

$\sigma(X, Y)=\tilde{\nabla}xY-\nabla xY,\tilde{\nabla}X\xi=-A\xi X+D_{X}\xi$

for vector fields $X,$ $Y$ tangent to $M$ and a normal vector field $\xi$ normal
to $M,$ $where-A_{\xi}X(raep.D_{X}\xi)$ denotes the tangential (resp.normal)
component of $\tilde{\nabla}_{X}\xi$ . A normal vector field $\xi$ is said to be paralle if
$D_{X}\xi=0$ for any vector field $X$ tangent to $M$ .

The covariant derivative Va of the second fundamental form $\sigma$ is
defined by

$(\overline{\nabla}x\sigma)(Y, Z)=Dx(\sigma(Y, Z))-\sigma(\nabla xY, Z)-\sigma(Y, \nabla_{X}Z)$

for al vector fields $X,$ $Y$ and $Z$ tangent to $M$ . The second funda-
mental fom $\sigma$ is said to be parallel if $\overline{\nabla}_{X}\sigma=0$ .

Let $\zeta=1/ntrace\sigma$ and $H=|\zeta|$ denote the mean curvature vec-
tor and the mean curvature of $M$ in $\tilde{M}$ ,respectively. If the second
fundamental form $\sigma$ satisfies $\sigma(X, Y)=g(X, Y)\zeta$ , then $M$ is said to
be totatly umbilical submanifold in $\tilde{M}$ . If the second fundamental
form $\sigma$ satisfies $g(\sigma(X, Y),$ $\zeta$ ) $=g(X, Y)g(\zeta, \zeta)$ , then $M$ is said to be
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pseudo-umbilical submanifold of $\tilde{M}$ . The submanifold $M$ in $\tilde{M}$ is said
to be a $\lambda$ -isotrvpic submanifold if $|\sigma(X, X)|=\lambda$ for all unit tangent
vectors $X$ at each point. In particular, if the function is constant,
then $M$ is called a constant isotmpic submanifold of $\tilde{M}$ .

The first normal space at $x,$ $N_{x}^{1}(M)$ is defined to be the vector space
spanned by all vectors $\sigma(X, Y)$ . The first osculating space $O_{x}^{1}(M)$ at
$x$ is defined by

$O_{x}^{1}(M)=T_{x}(M)+N_{x}^{1}(M)$

The submanifold $M$ of $\tilde{M}$ is called a submanifold of $P(R)$ -type (resp.
$P(\mathbb{C})$ -type) if $JT_{x}(M)\subset(N_{x}^{1}(M))^{\perp}(raep.JT_{x}(M)\subset N_{x}^{1}(M))$ for
every point $x\in M$ .

Let $R(raep.\tilde{R})$ be the Riemannian curvature for V(resp. $\tilde{\nabla}$ ). Then
the Gauss equation is given by

$g(\tilde{R}(X, Y)Z,$ $W$) $=g(R(X, Y)Z,$ $W$) $+g(\sigma(X, Z),$ $\sigma(Y, W))$

$-g(\sigma(Y, Z),$ $\sigma(X, W))$

for al vector fields $X,$ $Y,$ $Z$ and $W$ tangent to $M$ .

3. LEMMAS

Let $M^{2}$ be a pseudo-umbilical surface with nonzero parallel mean
curvature vector $\zeta$ in $\mathbb{C}P^{m}(\tilde{c})$ .

We recall the folowing results.

Theorem3.1 [3]. Let $M$ be an n-dimensional pseudo-umbilical sub-
manifold with nonzero $pa7U$llel mean cunature vector in $\mathbb{C}P^{m}(\tilde{c})$ .
Then $2m>n$ and $M^{n}$ is immersed in $\mathbb{C}P^{m}(\tilde{c})$ as a totally real sub-
manifold.

Since $M$ is a totally real surface in $\mathbb{C}P^{n}(\tilde{c})$ , the normal space
$T_{x}^{\perp}(M)$ is decomposed in the following way; $T_{x}^{\perp}(M)=JT_{x}(M)\oplus v_{x}$

at each point $x$ of $M$ , where $\nu_{x}$ denotes the orthogonal complement
of $JT_{x}(M)$ in $T_{x}^{\perp}(M)$ .

$Lemma3.1[4]$ . Let $M$ be a pseudo-umbilicd surface with nonzero
paral lel mean curvature vector $\zeta$ in $\mathbb{C}P^{m}(\tilde{c})$ . Then we have

(1) $\zeta\in v_{x}$

(2) $g(\sigma(X, Y),$ $ J\zeta$ ) $=0$

(3) $g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $\zeta$ ) $=0$
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for $dl$ vector fields $X,$ $Y$ and $Z$ tangent to $M$ .
We prepare the folowing fundamental fact without proof.

Lemma3.2. Let $M^{n}$ be a totatly real submanifold in $\mathbb{C}P^{m}(\tilde{c})$ . Then
we have

$g(\sigma(X, Y),$ $IZ$) $=g(\sigma(X, Z),$ $IY$ )

for atl vector fields $X,$ $Y$ and $Z$ tangent to $M$ .
Lemma3.3. Let $M$ be a pseudo-umbilical surface with nonzero parul-
lel mean curvature vector $\zeta$ in $\mathbb{C}P^{m}(\tilde{c})$ . If the surface $i8$ of $P(R)$ -type,
then we have

(1) $g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $ J\zeta$) $=0$

(2) $g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $JW$) $=g(J\sigma(Y, Z),$ $\sigma(X, W))$

for all vector fiel&X, $Y,$ $Z$ and $W$ tangent to $M$ .
Pmof By Lemma3.1(2), we get

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $ J\zeta$) $=g(D_{X}(\sigma(Y, Z)),$ $ J\zeta$)
$=g(\tilde{\nabla}_{X}(\sigma(Y, Z)),$ $ J\zeta$)
$=-g(\sigma(Y, Z),\tilde{\nabla}_{X}(J\zeta))$

$=g(J\sigma(Y, Z),\tilde{\nabla}_{X}\zeta)$

$=g(I\sigma(Y, Z),$ $ D_{X}\zeta$)
$=0$

And this Lemma3.3(2) has been proved in [4].

We recal the following results.

Theorem3.2[2]. If $M^{n}$ is an $n(\geq 2)$ -dimensional complete nonzero
isotrvpic totally reat submanifold of $P(R)$ -type with paratlel second
fimdamental form in $\mathbb{C}P^{m}(\tilde{c})$ , there exists a unique total $lygeode\dot{\Re}c$
submanifold $RP^{r}(c)$ such that $M^{n}$ is a submanifold in $RP^{r}(c)$ and
that $O_{x}^{1}(M)=T_{x}(RP^{r}(c))$ for every point $x\in M$ .
Theorem3.3[2]. If $M^{n}$ is an $n(\geq 2)$ -dimensionat complete nonzero
isot $r\mathfrak{v}piC$ totally real submanifold of $P(\mathbb{C})$ -type with paratlel second
fimdamental $fom$ in $\mathbb{C}P^{m}(\tilde{c})$ , the$re$ exists a unique totdly geodesic
Kaehler submanifold $\mathbb{C}P^{r}(\tilde{c})$ such that $M^{n}$ is a submanifold in
$\mathbb{C}P^{r}(\tilde{c})$ and that $O_{x}^{1}(M)=T_{x}(\mathbb{C}P^{r}(\tilde{c}))$ for every point $x\in M$ .
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4. PROOF OF THEOREMI. 1

Let $M^{2}$ be a $pseude\succ umbilical$ surface with nonzero parallel mean
curvature vector $\zeta$ in $\mathbb{C}P^{3}(\tilde{c})$ . We choose a local orthonormal frame
field

$e_{1},$ $e_{2},$ $e_{3},$ $e_{4}=Je_{1},$ $e_{5}=Je_{2},$ $e_{6}=Je_{3}$

of $\mathbb{C}P^{3}(\tilde{c})$ such that $e_{1},$ $e_{2}$ are tangent to $M$ . By Lemma3.1(1), we
choose $e_{3}$ in such a way that its direction coincides with that of the
mean curvature vector $\zeta$ . Since $M$ is a pseudo-umbilical surface, it is
umbilic with respect to the direction of the mean curvature vector $\zeta$ .
Thus, by Lemma3.1(2), the surface satisfies

(4.1) $\left\{\begin{array}{ll}\sigma(e_{1}, e_{1})=He_{3} & ae_{4}+be_{5}\\\sigma(e_{1}, e_{2})= & fe_{4}+ge_{5}\\\sigma(e_{2}, e_{2})=He_{3} & ae_{4}-k_{5}\end{array}\right.$

for some functions $a,$ $b,$ $f,g$ with raepect to the orthonormal local
frame field $\{e_{i}\}$ . By $Lemma3.2,we$ get

(4.2) $g(\sigma(e_{1}, e_{2}),$ $Je_{1}$ ) $=g(\sigma(e_{1}, e_{1}),$ $Je_{2}$ )

(4.3) $g(\sigma(e_{2}, e_{1}),$ $Je_{2}$ ) $=g(\sigma(e_{2}, e_{2}),$ $Je_{1}$ )

Thus by (4.1),(4.2) and (4.3) we obtain $f=b$ and $g=-a$ . Therefore
we have the following.

Proposition4.1. Let $M$ be a pseudo-umbilicd surface with nonzero
pardld mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . Then the surface $sati8fies$

(4.4) $\left\{\begin{array}{ll}\sigma(e_{1}, e_{1})=He_{3}+ & ae_{4}+be_{5}\\\sigma(e_{1}, e_{2})= & be_{4}-ae_{5}\\\sigma(e_{2}, e_{2})=He_{3}- & ae_{4}-be_{5}\end{array}\right.$

for some $fi4$nctions $a,$
$b$ urith $re\varphi ect$ to the orthonomal locd frame

field $\{e_{i}\}$ .
By $Proposition4.1,for$ any unit tangent vector $(ke_{1}+le_{2})/\sqrt{k^{2}+l^{2}}$,

where $k,$ $l$ are some real numbers, we get

$(4,5)$
$|\sigma((ke_{1}+le_{2})/\sqrt{k^{2}+l^{2}}, (ke_{1}+le_{2})/\sqrt{k^{2}+l^{2}})|^{2}=H^{2}+a^{2}+b^{2}-95-$



Thus we see that the surface is isotropic. This completes the proof
of Theoreml.1.

Remark4.1. By Proposition4.1 and (2.1), we get the Gauss curvature
$K=\tilde{c}/4+H^{2}-2(a^{2}+b^{2})$ . If the Gauss curvature is constant, then
$a^{2}+b^{2}$ is constant. By (4.5), we see that the surface in Theoreml.1
is constant isotropic.

Now we prove Corolaryl.1. If the surface $M$ is of $P(R)$-type, then
by (4.4) we see that the surface is immersed in $\mathbb{C}P^{3}(\tilde{c})$ as a totaly
umbilical submanifold. Immediately, by Lemma3.1 (3) and Lemma3.3
, we have ‘Va $\equiv 0$ . The assertion of Corollaryl.1 follows immediately
$hom$ Theorem3.2.

Finaly, we remark the folowing Proposition4.2. If a pseudo-umbi-
lical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$

is not totally umbilical, then we see that $ab\neq 0$ in (4.4). Thus, by
Proposition4.1 we get $r_{x}^{1}(M)=3$ and din$O_{x}^{1}(M)=5$ . By The-
orem3.3, if $\overline{\nabla}\sigma\equiv 0$ , then there exists a real 5-dimensional complex
projective space. This is a contradiction. Therefore we get

Proposition4.2. Let $M$ be a complete pseudo-umbilical surface with
nonzero parallel mean $cun$)$atun$ vector in $\mathbb{C}P^{3}(\tilde{c})$ . If $M$ is not totally
umbilicd, then the surface is a totdly red isotropic surface in $\mathbb{C}P^{3}(\tilde{c})$

whose second hndamental form is not pardlel.
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