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AN OPERATOR VERSION OF
THE WILF-DIAZ-METCALF INEQUALITY

JUN ICHI FUJII* AND TAKAYUKI FURUTA**

ABSTRACT. Diaz and Metcalf generalized the Wilf inequality, which is also a gen-
eralization of the arithmetic-geometric mean inequality, to the case of vectors in a
Hilbert space. In this note, we shall consider Wilf-Diaz-Metcalf type inequalities for
operators on a Hilbert space.

1. Introduction. In 1963, Wilf [11] generalized the arithmetic-geometric mean
inequality for complex numbers and Diaz and Metcalf [5] advanced it to the case
for vectors in Hilbert space by the similar proof to Wilf’s one:

Theorem A. Let $a$ be a unit vector in a Hilbert space H. If nonzero vectors $x_{k}$

in $H$ satisfy

$0\leq r\leq\frac{{\rm Re}(x_{k},a)}{\Vert x_{k}||}$

for some $r$ , then

$r(||x_{1}||\cdots||x_{n}||)^{1/n}\leq\frac{\Vert x_{1}+\cdots+x_{n}\Vert}{n}$

More presicely, they showed the following inequality,

$r(||x_{1}||+\cdots+||x_{n}||)\leq||x_{1}+\cdots+x_{n}||$ ,

which implies Theorem A by the arithmetic-geometric mean inequality.
In this note, we try to generalize the above inequalities to the case for operators

on a Hilbert space on a line with their proof.

2. The Wilf-Diaz-Metcalf inequality. An operator version of Theorem A
would be the following one:
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Theorem 1. If operators $A_{k}$ on a Hilbert space satisfy

(1) $0\leq R\leq\frac{{\rm Re} A_{k}}{||A_{k}||}$

for some positive operator $R$ , then

(2) $(||A_{1}||\cdots||A_{\mathfrak{n}}||)^{1/n}R\leq\frac{1}{n}||A_{1}+\cdots+A_{\mathfrak{n}}||$ .

This theorem folows from the folowing Diaz-Metcalf type inequality:

Theorem 2. If every $A_{k}$ satisfies (1) for $k=1,$ $\ldots,$
$n$ , then

(3) $(||A_{1}||+\cdots+||A_{\mathfrak{n}}||)R\leq||A_{1}+\cdots+A_{n}||$ .

Proof. By $\sum||A_{i}||R\leq\sum{\rm Re} A_{i}$ , we have

$\sum_{1=1}^{\mathfrak{n}}||A_{i}||R\leq||\sum_{i=1}^{\mathfrak{n}}{\rm Re} A_{i}||=\Vert{\rm Re}\sum_{i=1}^{n}A_{i}||\leq||\sum_{i=1}^{n}A_{i}||$ .

Remark 1. We can exchange all the norms in the above theorem to an order-
preserving function $\varphi$ satisfying $\varphi(X)\geq\varphi({\rm Re} X)$ and $\varphi(\alpha 1)=\alpha$ , for example,
the numerical radius $w(X)$ : If every $A_{k}$ satisfies

$0\leq R\leq\frac{{\rm Re} A_{k}}{w(A_{k})}$

then
$(w(A_{1})+\cdots+w(A_{n}))R\leq w(A_{1}+\cdots+A_{n})$ .

Remark 2. The denominator $||A_{k}||$ in the assumption (1) cannot be omitted even
for the scalar case. Moreover, (1) cannot be exchanged to

$0\leq 1\leq{\rm Re} A_{k}$ .

In fact, put $A_{1}=\left(\begin{array}{ll}l & 0\\0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}2 & 0\\0 & 1\end{array}\right)$ . Then $\sqrt{||A_{1}||||A_{2}||}=(||A_{1}||+||A_{2}||)/2=2$

and.we can choose $R=1$ , while $||A_{1}+A_{2}||/2=3/2$

In addition, note that Theorem 1 or 2 is not an exact generalization of Theorem
$A$ , but a formal generalization. In a seminar talk, M.lfujii pointed out that we
would rather generalize the Diaz-Metcalf inequality to the following style:
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Theorem B(M.Fujii). If there exist an operator $R$ and a projection $P$ such that

(4) $0\leq R\leq\frac{{\rm Re} PA_{k}P}{\Vert A_{k}||}$

for $k=1,$ $\ldots,$
$n$ , then

$(\Vert A_{1}||+\cdots+\Vert A_{\mathfrak{n}}||)R\leq||A_{1}+\cdots+A_{n}||$ .

Proof. By $\sum||Ai||R\leq P(\sum{\rm Re} A_{i})P$ , we have

$\sum_{1=1}^{n}\Vert A_{i}||R\leq\Vert P(\sum_{i=1}^{\mathfrak{n}}{\rm Re} A_{i})P||\leq||\sum_{1=1}^{\mathfrak{n}}{\rm Re} A_{i}||=||{\rm Re}\sum_{i=1}^{n}A_{i}\Vert\leq||\sum_{:=1}^{n}A_{i}||$ .

Putting $A_{k}=x_{k}\otimes a,$ $P=a\otimes a,$ $R=rP$ in the above theorem, we have

$(PA_{k}Pa, a)=(x_{k}, a)$ , $||A_{k}||=\Vert x_{k}||$ , $||\sum A_{k}||=||\sum xk\Vert$ ,

so that we have Theorem A as a corolary.
Next, applying the Furuta inequality to the above theorems, we have variations

of them. Furuta established the following result as an extension of L\"owner-Heinz
inequality.

Furuta Inequality [7; Theorem 1].

If $A\geq B\geq 0$, then for each $r\geq 0$ ,
(i) $(B^{r}A^{p}B^{r})^{1/q}\geq(B^{r}B^{p}B^{r})^{1/q}$

and
(ii) $(A^{r}A^{p}A^{r})^{1/q}\geq(A^{r}B^{p}A^{r})^{1/q}$

hold for $p\geq 0$ and $q\geq 1$ with $(1+2r)q\geq p+2r$ .

The domain drawn for $p,$ $q$ and $r$ in the figure is the best possible one for Furuta
inequality in [10]. Moreover, a function

$f(p)=(B^{r}A^{p}B^{r})^{\frac{1+2r}{p+2r}}$

is monotone increasing for $p\geq 1$ as we see in [8]. Under the condition (4), put
$A=\sum{\rm Re} PA_{i}P={\rm Re} P\sum A_{i}P$ and $B=\sum||A_{i}||R$ . By $A\geq B\geq 0$ , the above
monotone function shows

$B^{1+2r}\leq B^{r}AB^{r}\leq(B^{r}A^{p}B^{r})^{\frac{1\neq 2r}{p+2r}}\leq p\lrcorner A_{2r}^{2}+$ .

Thereby we have
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Theorem 3. If operators $A_{k}$ on a Hilbert space satisfy (4), then, for each $p\geq 1$

and $r\geq 0$ ,

$(\sum_{i=1}^{n}\Vert A_{i}\Vert R)^{1+2r}\leq(\sum_{1=1}^{n}\Vert A_{i}||)^{2r}R^{r}(\sum_{*=1}^{n}{\rm Re} PA_{i}P)R^{r}$

$\leq(\sum_{i=1}^{n}\Vert A_{i}||)\frac{2r(1+2r)}{p+2r}(R^{r}(\sum_{i=1}^{n}{\rm Re} PA_{i}P)^{p}R^{r})^{pr}1*2r$

$\leq(\sum\Vert A_{i}||R)n\frac{2r(1+2r)}{p+2r}||\sum^{n}{\rm Re} PA_{i}P||^{\epsilon_{\sqrt{pr}}}1+2r$ .
$i=1$ $i=1$

$\leq(\sum||A_{i}||R)n\frac{2r(1+2r)}{p+2r}\Vert\sum^{n}{\rm Re} A_{i}||^{z_{\nu^{12\lrcorner}}}+2rr$ .
$i=1$ $i=1$

$\leq(\sum_{1=1}^{n}||A_{i}||R)\frac{2r(1+2r)}{p+2r}\Vert\sum_{1=1}^{\mathfrak{n}}A_{i}\Vert^{\Delta^{1}}p\#^{2r\lrcorner},$ .

3. N-ary mean inequality. Considering that the above theorems are derived

from the arithmetic-geometric mean inequality, we will have such theorems from

other mean inequalities. Means of positive operators have been discussed in some

ways, see [2,3,4]. Based on the Kubo-Ando theory [9], Arazy [3] defined the n-
ary operator mean $M(X_{1}, \ldots,X_{\mathfrak{n}})$ of positive operators $X_{k}$ on a Hilbert space as a

positive operator satisfying the following axioms:
(monotonicity) $0\leq A_{k}\leq B_{k}$ implies $M(A_{1}, \ldots, A_{n})\leq M(B_{1}, \ldots,B_{n})$

(continuity) $A_{k,m}\downarrow A_{k}$ implies $M(A_{1,m}, \ldots, A_{\mathfrak{n},m})\downarrow M(A_{1}, \ldots, A_{n})$

(transformer inequality) $T^{*}M(A_{1}, \ldots,A_{n})T\leq M(T^{*}A_{1}T, \ldots, T^{*}A_{n}T)$

(normality) $M(1, \ldots, 1)=1$ .
Note that the transformer inequality becomes an equality if $T$ is invertible. In

particular, n-ary operator means are homegeneous:

(5) $M(\alpha A_{1}, \ldots, \alpha A_{n})=\alpha M(A_{1}, \ldots, A_{n})$

for $\alpha>0$ . By the transformer inequality, we also have

(6) $M(\alpha_{1}A, \ldots, \alpha_{\mathfrak{n}}A)=M(\alpha_{1}, \ldots, \alpha_{n})A$

For n-ary operator means $M$ and $L$ , we can define a natural order $M\leq L$ by

(7) $M(A_{1}, \ldots, A_{\mathfrak{n}})\leq L(A_{1}, \ldots, A_{\mathfrak{n}})$
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for all $A_{k}\geq 0$ .
Recal that the parallel sum $A$ : $B$ for positive operators $A$ and $B$ , which was

introduced by Anderson and Duffin [1], is defined by:

$\langle A:Bx, x\rangle=\inf\{\langle Ay, y\rangle+\langle Bz, z\rangle|y+z=x\}$ .

One of the noteworthy properties of the paralel sum is associativity: $A$ : $(B : C)=$

$(A : B)$ : $C$ . Since the harmonic (operator) mean $h$ as a binary operation is defined
by $AhB=2A:B$ (cf. [9].), the harmonic mean $M_{h}$ is defined by (see [2]):

$M_{h}(A_{1}, \ldots, A_{n})=n(A_{1}$ :. .. : $A_{n})$

and Kosaki defined the geometric mean $M_{g}$ (see also [6]):

$M_{g}(A_{1}, \ldots, A_{n})=\int(t_{1}A_{1}$ :.. . : $t_{n-1}A_{n-1}$ : $A_{n})d\mu(t_{1}, \ldots,t_{n})$

where $d\mu(t_{1}, \ldots,t_{n})=\Gamma(1/n)^{-n}\prod_{j=1}^{n-1}t_{j}^{-(n+1)/n}dt_{j}$ . Then the folowing harmonic-
geometric-arithmetic mean inequality holds.

$M_{h}(A_{1}, \ldots, A_{n})\leq M_{g}(A_{1}, \ldots, A_{n})\leq M_{a}(A_{1}, \ldots, A_{n})\equiv\frac{A_{1}+\cdots+A_{n}}{n}$ .

Now we have a variation of Theorems 1 and 2:

Theorem 4. Let $M$ and $L$ be n-ary operator means with $M\leq L.$ If every $A_{k}$

satisfies (1) for $k=1,$ $\ldots,$
$n$ , then

$M(||A_{1}\Vert, \ldots, ||A_{n}\Vert)R\leq L({\rm Re} A_{1}, \ldots, {\rm Re} A_{\mathfrak{n}})$ .

Proof. By (6),(7) and monotonity, we have

$M(\Vert A_{1}\Vert,\ldots,||A_{n}||)R\leq L(\Vert A_{1}||,\ldots, \Vert A_{n}\Vert)R$

$=L(||A_{1}||R, \ldots, ||A_{n}||R)\leq L({\rm Re} A_{1}, \ldots, {\rm Re} A_{n})$ .

On the other hand, Bhagwat and Subramanian [4] introduced the power mean

$P_{\ell}(A_{1}, \ldots, A_{n})=(\frac{A_{1}^{t}+\cdots+A_{n}^{t}}{n})^{1/\ell}$

Then, $P_{1}$ (resp. $P_{-1}$ ) is the arithmetic (resp. harmonic) (n-ary) operator mean $M_{a}$

(resp. $M_{h}$ ). However, $P_{\ell}$ is not an n-ary operator mean in general. As a matter
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of fact, we see the monotonity does not hold for $P_{1/2}$ : Putting $A=\left(\begin{array}{ll}8 & 8\\8 & 8\end{array}\right)$ and

$P=\left(\begin{array}{ll}l & 0\\0 & 0\end{array}\right)\leq 1$ , we have

$P_{1/2}(A, 1)=\{\frac{1}{2}(\left(\begin{array}{ll}2 & 2\\2 & 2\end{array}\right)+1)\}^{2}=\frac{1}{4}\left(\begin{array}{ll}13 & 12\\12 & 13\end{array}\right)$ ,

$P_{1/2}(A, P)=\{\frac{1}{2}(\left(\begin{array}{ll}2 & 2\\2 & 2\end{array}\right)+P)\}^{2}=\frac{1}{4}\left(\begin{array}{ll}13 & 10\\10 & 8\end{array}\right)$ ,

so that $1\geq P$ does not ensure $P_{1/2}(A, 1)\not\geq P_{1/2}(A,P)$ by $\left(\begin{array}{ll}13 & 12\\12 & 13\end{array}\right)\not\geq\left(\begin{array}{ll}13 & 10\\10 & 8\end{array}\right)$ .
Nevertheless, $P_{\ell}\leq P_{s}$ holds for $t\leq s$ and $t,$ $s\not\in(-1,1)$ , so that monotonity for

scalars shows:

Theorem 5. Let $P_{\ell}$ be the power mean. If every $A_{k}$ satisfies

$0\leq r\leq\frac{{\rm Re} A_{k}}{||A_{k}||}$

for $k=1,$ $\ldots,$
$n$ , then, for $t\leq s$ and $t,$ $s\not\in(-1,1)$ ,

$rP_{\ell}(||A_{1}||, \ldots, ||A_{\mathfrak{n}}||)\leq P.({\rm Re} A_{1}, \ldots,{\rm Re} A_{n})$ .
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