The adjacency operators of the infinite directed graphs and the von Neumann algebras generated by partial isometries

Hideo Takemoto* and Masaki Takamura**

1. Introduction.

A directed graph $G=(V, E)$ is a pair of countable sets V and E. An element $v \in V$ is called a vertex and an element $(v, u) \in E$ is called an arc with an initial vertex v and a terminal vertex u. For each vertex $v \in V$, the outdegree $d^{+}(v)$, the indegree $d^{-}(v)$ and the valency $d(v)$ are defined as follows ;

$$
d^{+}(v)=|\{(v, u) ;(v, u) \in E\}|, d^{-}(v)=|\{(u, v) ;(u, v) \in E\}|
$$

and

$$
d(v)=d^{+}(v)+d^{-}(v)
$$

respectively where $|\{\cdot\}|$ means the cardinal number of a set $\{\cdot\}$. A graph has bounded valency if there is a constant $\alpha>0$ such that $d(v) \leqq \alpha$ for every vertex $v \in V$. Throughout this paper, we assume that a graph is a directed graph without multiple arcs and has bounded valency.

Mohar defined an adjacency operator for infinite undirected graphs in [2], and Fujii, Sasaoka and Watatani defined one for infinite graphs in [1]. An adjacency operator is in general unbounded, but we treat only bounded adjacency operator under the our assumption that a graph has bounded valency.

Let H be the Hilbert space $\ell^{2}(V)$ with the canonical basis $\left\{e_{v} ; v \in V\right\}$ defined by $e_{v}(u)=\delta_{v, u}$ for $u, v \in V$.

Let us define a closed operator $A=A(G)$ with the domain $D(A)$ by

$$
\begin{gathered}
D(A)=\left\{x=\sum_{v \in V} x_{v} e_{v} \in H ; \sum_{u \in V}\left|\sum_{(v, u) \in E} x_{v}\right|^{2}<\infty\right\} \\
A x=\sum_{u \in V} \sum_{(v, u) \in E} x_{v} e_{u} \quad \text { for } x \in D(A)
\end{gathered}
$$

Mathematics Subject Classification. 47B20, 05C20 and 47B05

Now, we call $A=A(G)$ the adjacency operator of G. Then we have the following lemma [$1 ;$ Theorem 2].

Lemma 1. Let A be the adjacency operator of a graph G. Then, A is bounded if and only if G has bounded valency.

We firstly show some properties of an adjacency operator which is a partial isometry.

An operator T on a Hilbert space K is a partial isometry if $A^{*} A$ and $A A^{*}$ are projections. In [1], a characterization that an adjacency operator is a partial isometry was given as follows :

Lemma 2. Let A be the adjacency operator of a graph G. Then, A is a partial isometry if and only if the connected components of G are one of the following ;

2. Results.

An operator T on K is called a power partial isometry if T^{m} is a partial isometry for $m=1,2, \cdots$.

If we treat the adjacency operator $A=A(G)$ of an infinite directed graph G and A is a partial isometry, then we can show by considering Lemma 2 that A is a power partial isometry.

Proposition 3. Let A be the adjacency operator of a graph G. If A is a partial isometry, then A is a power partial isometry.

Proof. By Lemma 2, the operator A is represented by the direct sum in the following ;

$$
A=\sum_{n=1}^{\infty} \oplus U_{n} \quad \text { on } \quad H=\sum_{n=1}^{\infty} \oplus H_{n}
$$

where U_{n} is an operator satisfying one of the following conditions ;
(1) $U_{n}=0$ on H_{n},
(2) $U_{n}=$ the identity on H_{n},
(3) $\operatorname{dim} H_{n}=s<\infty$ and $\left\{e_{n(k)}\right\}_{k=1}^{s}$ is a basis for H_{n}, and then

$$
U_{n} e_{n(k)}=e_{n(k+1)} \quad(1 \leqq k \leqq s-1) \quad \text { and } \quad U_{n} e_{n(s)}=0
$$

(4) $\operatorname{dim} H_{n}=s<\infty$ and $\left\{e_{n(k)}\right\}_{k=1}^{s}$ is a basis for H_{n}, and then

$$
U_{n} e_{n(k)}=e_{n(k+1)} \quad(1 \leqq k \leqq s-1) \quad \text { and } \quad U_{n} e_{n(s)}=e_{n(1)},
$$

(5) $\operatorname{dim} H_{n}=\infty$ and $\left\{e_{n(k)}\right\}_{k=1}^{\infty}$ is a completely orthonormal basis for H_{n}, and then

$$
U_{n} e_{n(k)}=e_{n(k+1)} \quad(k=1,2, \cdots),
$$

(6) $\operatorname{dim} H_{n}=\infty$ and $\left\{e_{n(k)}\right\}_{k=1}^{\infty}$ is a completely orthonormal basis for H_{n}, and then

$$
U_{n} e_{n(\mathbf{1})}=0 \quad \text { and } \quad U_{n} e_{n(k)}=e_{n(k-1)} \quad(k=2,3, \cdots),
$$

(7) $\operatorname{dim} H_{n}=\infty$ and $\left\{e_{n(k)}\right\}_{k=-\infty}^{\infty}$ is a completely orthonormal basis for H_{n}, and then

$$
U_{n} e_{n(k)}=e_{n(k+1)} \quad(k \in Z)
$$

Then, each subspace H_{n} reduces A.
In the case of (1) (resp. (2)), $U_{n}^{m}=0$ (resp. $U_{n}^{m}=$ the identity) on H_{n} ($m=1,2, \cdots$). And so, U_{n} is a power partial isometry on H_{n}.

In the case of (3), $U_{n}^{m} e_{n(k)}=e_{n(k+m)}(1 \leqq k \leqq s-m)$ and $U_{n}^{m} e_{n(k)}=0$ $(s-m \leqq k \leqq s)$. And so U_{n} is a power partial isometry on H_{n}.

In the case of (4) and (7), since U_{n} is a unitary operator on H_{n}, U_{n} is a power partial isometry on H_{n}.

Furthermore, in the cases of (5) and (6), since U_{n} is a unilateral shift on H_{n}, U_{n} is a power partial isometry on H_{n}.

Since each subspace H_{n} reduces A, A is a power partial isometry on H by the above mentioned arguments. This gives the proof of Proposition 3.

As a property for the power partial isometries, Saito [5] showed the following result :

Let T be a power partial isometry on a Hilbert space K which is quasinilpotent. Then the von Neumann algebra $M(T)$ generated by T is of type I where $M(T)$ means the von Neumann algebra generated by T and the identity I.

Furthermore, Saito denoted as a remark in [5] that the type of von Neumann algebra generated by a general power partial isometry may be unknown.

For this remark, we can give an answer for a power partial isometry which is not necessarily quasi-nilpotent.

In particular, the following theorem is an extension of result obtained by Saito [5; Theorem 3].

Let U be an operator on a Hilbert space K. Then U is called a truncated shift of index $n(n=1,2, \cdots)$ if U is the operator such that K is the n -fold direct sum $K=K_{0} \oplus K_{0} \oplus \cdots \oplus K_{0}$, and $U=0$ if $n=1$ and

$$
U\left\langle f_{1}, f_{2}, \cdots, f_{n}\right\rangle=\left\langle 0, f_{1}, f_{2}, \cdots, f_{n-1}\right\rangle
$$

if $n>1$. Then, Saito showed the following result [5 ; Theorem 3].
Let T be the operator represented by the finite direct sum of truncated shifts

$$
T=\sum_{k=1}^{r} \oplus U_{n(k)} \quad(1 \leqq n(1)<n(2)<\cdots<n(r))
$$

where $U_{n(k)}$ is a truncated shift of index $n(k)$. Then the von Neumann algebra $M(T)$ generated by T is of type I .

Even if T is the operator represented by the infinite direct sum of truncated shifts, we show in the following theorem that the von Neumann algebra $M(T)$ is of type I .

Theorem 4. Let T be the operator acting on a Hilbert space K represented by the infinite direct sum of truncated shifts

$$
T=\sum_{k=1}^{\infty} \oplus U_{n(k)} \quad(1 \leqq n(1)<n(2)<\cdots<n(k)<\cdots)
$$

where $U_{n(k)}$ is a truncated shift of index $n(k)$. Then the von Neumann algebra $M(T)$ generated by T is of type I.

Proof. Let T be the infinite direct sum of truncated shifts

$$
T=\sum_{k=1}^{\infty} \oplus U_{n(k)} \quad \text { acting on } \quad K=\sum_{k=1}^{\infty} \oplus K_{n(k)}
$$

where each $K_{n(k)}$ is the $n(k)$-fold direct sum $K_{n(k)}=K_{0}^{(k)} \oplus K_{0}^{(k)} \oplus \cdots \oplus K_{0}^{(k)}$. Then, every $K_{n(k)}$ reduce $T(k=1,2, \cdots)$. Let $E^{(k)}$ be the projection of K onto $K_{n(k)}$, then $E^{(k)}$ is an element of the commutant $M(T)^{\prime}$ of $M(T)$. Since

$$
T^{*^{n(1)-1}} T^{n(1)-1}=\left(E^{(1)}-E_{1}^{(1)}\right) \oplus\left(E_{12}^{(2)} \oplus O_{11}^{(2)}\right) \oplus \cdots \oplus\left(E_{12}^{(k)} \oplus O_{11}^{(k)}\right) \oplus \cdots
$$

where $E_{1}^{(1)}$ is the projection on $K_{0}^{(1)} \oplus O_{0}^{(1)} \oplus O_{0}^{(1)} \oplus \cdots \oplus O_{0}^{(1)}$ and each $O_{11}^{(k)}$ is the zero operator on the $(n(1)-1)$-fold direct sum

$$
\left(O_{0}^{(k)} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)} \oplus\right) \overbrace{K_{0}^{(k)} \oplus \cdots \oplus K_{0}^{(k)}}^{n(1)-1}
$$

and $E_{12}^{(k)}$ is the projection on the $(n(k)-n(1)+1)$-fold direct sum

$$
\begin{gathered}
\overbrace{K_{0}^{(k)} \oplus \cdots \oplus K_{0}^{(k)}}^{n(k)-n(1)+1}\left(\oplus O_{0}^{(k)} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)}\right) \quad(k=2,3, \cdots), \\
I-T^{*^{n(1)-1}} T^{n(1)-1}=E_{1}^{(1)} \oplus\left(O_{12}^{(2)} \oplus E_{11}^{(2)}\right) \oplus \cdots \oplus\left(O_{12}^{(k)} \oplus E_{11}^{(k)}\right) \oplus \cdots
\end{gathered}
$$

is an element of $M(T)$ where $O_{12}^{(k)}$ is the zero operator on the $(n(k)-n(1)+1)$ fold direct sum

$$
\overbrace{K_{0}^{(k)} \oplus \cdots \oplus K_{0}^{(k)}}^{n(k)-n(1)+1}\left(\oplus O_{0}^{(k)} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)}\right)
$$

and $E_{11}^{(k)}$ is the projection of K onto the $(n(1)-1)$-fold direct sum

$$
\left(O_{0}^{(k)} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)} \oplus\right) \overbrace{K_{0}^{(k)} \oplus \cdots \oplus K_{0}^{(k)}}^{n(1)-1}
$$

Furthermore, since

$$
T T^{*}=\left(E^{(1)}-E_{1}^{(1)}\right) \oplus\left(E^{(2)}-E_{1}^{(2)}\right) \oplus \cdots \oplus\left(E^{(k)}-E_{1}^{(k)}\right) \oplus \cdots
$$

where $E_{1}^{(k)}$ is the projection on

$$
\begin{aligned}
& K_{0}^{(k)} \oplus \overbrace{O_{0}^{(k)} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)}}^{n(k)-1} \quad(k=1,2,3, \cdots), \\
& I-T T^{*}=E_{1}^{(1)} \oplus E_{1}^{(2)} \oplus E_{1}^{(3)} \oplus \cdots \oplus E_{1}^{(k)} \oplus \cdots
\end{aligned}
$$

is an element of $M(T)$. Thus,

$$
\begin{aligned}
& \left(I-T^{*^{n(1)-1}} T^{n(1)-1}\right)\left(I-T T^{*}\right) \\
= & \left\{E_{1}^{(1)} \oplus\left(O_{12}^{(2)} \oplus E_{11}^{(2)}\right) \oplus \cdots \oplus\left(O_{12}^{(k)} \oplus E_{11}^{(k)}\right) \oplus \cdots\right\} \\
& \cdot\left\{E_{1}^{(1)} \oplus E_{1}^{(2)} \oplus E_{1}^{(3)} \oplus \cdots \oplus E_{1}^{(k)} \oplus \cdots\right\}
\end{aligned}
$$

$=E_{1}^{(1)}$
is an element of $M(T)$. By applying a similar argument for

$$
I-T^{*^{n(1)-2}} T^{n(1)-2} \text { and } I-T^{2} T^{*^{2}}
$$

we can show that $E_{1}^{(1)}+E_{2}^{(1)}$ is an element of $M(T)$ and so $E_{2}^{(1)}$ is also an element of $M(T)$ where $E_{s}^{(k)}$ is the projection on

$$
O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)} \oplus \underbrace{s}_{K_{0}^{(k)}} \oplus O_{0}^{(k)} \oplus \cdots \oplus O_{0}^{(k)} \quad(k=1,2,3, \cdots) .
$$

Continuing this process, we can show that $E_{1}^{(1)}, E_{2}^{(1)}, \cdots, E_{n(1)}^{(1)}$ are elements of $M(T)$ and so $E^{(1)}$ is an element of $M(T)$. Hence, $E^{(1)}$ is a central element of $M(T)$. Next, applying the above process for

$$
\begin{gathered}
I-T^{*^{n(2)-1}} T^{n(2)-1} \quad \text { and } \quad I-T T^{*}, \\
I-T^{*^{n(2)-2}} T^{n(2)-2} \text { and } I-T^{2} T^{*^{2}}, \quad \cdots
\end{gathered}
$$

since $E_{1}^{(1)}, E_{2}^{(1)}, \cdots, E_{n(1)}^{(1)}$ are elements of $M(T)$ and $E^{(1)}$ is a central element of $M(T)$, we can show that $E_{1}^{(2)}, E_{2}^{(2)}, \cdots, E_{n(2)}^{(2)}$ are elements of $M(T)$ and so
$E^{(2)}$ is a central element of $M(T)$. Continuing this process, we can show that $E_{1}^{(k)}, E_{2}^{(k)}, \cdots, E_{n(k)}^{(k)}$ are elements of $M(T)$ and so $E^{(k)}$ is an element of $M(T)$ $(k=1,2, \cdots)$. Therefore, since every $U_{n(k)}$ is a truncated shift, $M\left(U_{n(k)}\right)$ is a von Neumann algebra of type $\mathrm{I}_{n(k)}$ and so $M(T)$ is a von Neumann algebra of typeI. Thus, we have the complete proof of Theorem 4.

Theorem 5. Let A be the adjacency operator of a graph G. If A is a partial isometry, then the von Neumann algebra $M(A)$ generated by A is of type I.

Proof. By Lemma 2 and the proof of Proposition 3, we can assume that A has a representation of the direct sum in the following;

$$
A=\sum_{n=1}^{6} \oplus U_{n} \quad \text { on } \quad H=\sum_{n=1}^{6} \oplus H_{n}
$$

such that
(1) $U_{1}=0$ on H_{1},
(2) $U_{2}=$ the identity on H_{2},
(3) U_{3} is the finite or infinite direct sum of truncated shifts with the different indices on H_{3},
(4) H_{4} and H_{5} are the infinite dimensional subspaces and U_{4} (resp. U_{5}) is a unilateral shift (resp. a backward shift) on $H_{4}\left(\right.$ resp. $\left.H_{5}\right)$,
(5) U_{6} is a unitary operator on H_{6}.

Let E_{n} be the projection of H onto H_{n}. Then, since each H_{n} reduces A, E_{n} is an element of the commutant $M(A)^{\prime}$ of $M(A)$. Furthermore, we show that each E_{n} is an element of $M(A)$ and so E_{n} is a central element of $M(A)$.

Since

$$
E_{1}=I-\sum_{n=2}^{6} \oplus U_{n}^{*} U_{n} \quad \text { and } \quad E_{2}=\left(I-\sum_{n=3}^{6} \oplus U_{n}^{*} U_{n}\right)-E_{1}
$$

E_{1} and E_{2} are elements of $M(A)$.

Now, since $U_{3}^{* m} U_{3}^{m}$ and $U_{5}^{*^{m}} U_{5}^{m}$ (resp. $U_{4}^{*^{m}} U_{4}^{m}$ and $U_{6}^{*^{m}} U_{6}^{m}$) converge to 0 as $m \rightarrow \infty$ in the weak topology (resp. equal to the identity for every $m=1,2, \cdots$ on H_{4} and H_{6} respectively), $E_{4}+E_{6}$ is an element of $M(A)$ and so $E_{3}+E_{5}$ is also an element of $M(A)$.

Furthermore, $U_{5}^{m} U_{5}^{*^{m}}=E_{5}$ for every $m=1,2, \cdots$ and $U_{3}^{m} U_{3}^{*^{m}} \rightarrow 0$ as $m \rightarrow \infty$ in the weak topology. Thus, E_{5} and so E_{3} are elements of $M(A)$. By a similar argument, since $U_{6}^{m} U_{6}^{*^{m}}=E_{6}$ for every $m=1,2, \cdots$ and $U_{4}^{m} U_{4}^{* m} \rightarrow 0$ as $m \rightarrow \infty$ in the weak topology. Thus, E_{6} and so E_{4} are elements of $M(A)$.

Since $M\left(A E_{1}\right)=\mathbb{C} E_{1}, M\left(A E_{2}\right)=\mathbb{C} E_{2}$ and $M\left(A E_{6}\right)$ acting on H_{1}, H_{2} and H_{6} respectively are abelian, these von Neumann algebras are of type I where \mathbb{C} is the complex number field. Furthermore, since U_{4} and U_{5} are unilateral shift, $M\left(A E_{4}\right)$ and $M\left(A E_{5}\right)$ are von Neumann algebras of type I on H_{4} and H_{5} respectively. And furthermore, the von Neumann algebra $M\left(A E_{3}\right)$ acting on H_{3} is of type I by Theorem 4. Therefore,

$$
M(A)=\sum_{n=1}^{6} \oplus M\left(A E_{n}\right)
$$

is a von Neumann algebra of type I. We get the complete proof of Theorem 5.

3. Remarks and Example.

We showed in the previous section the following ; if the adjacency operator A of a graph is a partial isometry, then the von Neumann algebra generated by A is of type I . Thus, we have a following remark.

Remark 1. Saito showed in [4] that for a certain von Neumann algebra M the following properties are equivalent ;
(a) M has a single generator.
(b) M is generated by one partial isometry.

Precisely certain von Neumann algebra mentioned above means an AF-von Neumann algebra, of type II_{1}, of type II_{∞} or type III. But, if we consider a generator by the restriction in the adjacency operators of a graph, then we can't get a similar result to Saito's result by our Theorem 5 .

Next, we shall give an example in which we consider a generator of von Neumann algebra of type I except the partial isometries.

Example. We consider an example of graph $G=(V, E)$ as below ;

Put e_{n} the element $e_{v_{n}}$ of the Hilbert space $H=\ell^{2}(V)$, then the adjacency operator $A=A(G)$ with respect to G is determined by the following ;

$$
e_{1} \rightarrow e_{2}+e_{3}, \quad e_{2 n} \rightarrow e_{2(n+1)}, \quad e_{2 n+1} \rightarrow e_{2(n+1)+1} \quad(n \geqq 1) .
$$

Thus, the operators $A^{*} A$ and $A A^{*}$ are of the following form ;

$$
A^{*} A: e_{1} \rightarrow 2 e_{1}, \quad e_{n} \rightarrow e_{n} \quad(n \geqq 2)
$$

and

$$
A A^{*}: e_{1} \rightarrow 0, \quad e_{2} \rightarrow e_{2}+e_{3}, \quad e_{3} \rightarrow e_{2}+e_{3}, \quad e_{n} \rightarrow e_{n} \quad(n \geqq 4) .
$$

And so A is not a partial isometry.
Now, define the projections $P_{\left[e_{n}\right]}, P_{\left[e_{n}+e_{n+1}\right]}, P_{\left[e_{n}, e_{n+1}\right]}, P_{\left[e_{n}, e_{n+1}, e_{n+2}, \cdots\right]}$ (resp.) on the one dimensional subspace $\left[e_{n}\right]$ and $\left[e_{n}+e_{n+1}\right]$, the two dimensional subspace $\left[e_{n}, e_{n+1}\right]$ and the infinite dimensional subspace $\left[e_{n}, e_{n+1}, e_{n+2}, \cdots\right]$ (resp.). Then $A^{*} A=2 P_{\left[e_{1}\right]}+P_{\left[e_{2}, e_{3}, e_{4}, \ldots\right]}$ and $A A^{*}=P_{\left[e_{2}, e_{3}\right]}+P_{\left[e_{4}, e_{5}, e_{6}, \cdots\right]}$. Furthermore, since $\left(A^{*} A\right)^{2}=4 P_{\left[e_{1}\right]}+P_{\left[e_{2}, e_{3}, e_{4}, \cdots\right]}, P_{\left[e_{1}\right]}$ and $P_{\left[e_{2}, e_{3}, e_{4}, \cdots\right]}$ are elements of $M(A)$. By a similar way, we can show that $P_{\left[e_{2}, e_{3}\right]}$ and $P_{\left[e_{4}, e_{5}, e_{6}, \cdots\right]}$ are elements of $M(A)$.

On the other hand, since

$$
\left(\frac{1}{\sqrt{2}} A P_{\left[e_{1}\right]}\right)^{*}\left(\frac{1}{\sqrt{2}} A P_{\left[e_{1}\right]}\right)=\frac{1}{2} A P_{\left[e_{1}\right]} A^{*}=P_{\left[e_{2}+e_{3}\right]},
$$

$P_{\left[e_{2}+e_{3}\right]}$ is an element of $M(A)$ and $\frac{1}{\sqrt{2}} A P_{\left[e_{1}\right]}$ is a partial isometry with the initial projection $P_{\left[e_{1}\right]}$ and the final projection $P_{\left[e_{2}+e_{3}\right]}$. Thus, the projection $P_{\left[e_{2}-e_{3}\right]}$ is also an element of $M(A)$ because $P_{\left[e_{2}, e_{3}\right]}$ and $P_{\left[e_{2}+e_{3}\right]}$ are elements of $M(A)$. Now, since we can show by an elementary computation that $P_{\left[e_{2}+e_{3}\right]}$ is
not a central element of the von Neumann algebra $P_{\left[e_{2}, e_{3}\right]} M(A) P_{\left[e_{2}, e_{3}\right]}, M(A)$ contains the matrix units with respect to $\left\{P_{\left[e_{2}+e_{3}\right]}, P_{\left[e_{2}-e_{3}\right]}\right\}$ and so with respect to $\left\{P_{\left[e_{2}\right]}, P_{\left[e_{3}\right]}\right\}$. Hence, $M(A)$ contains the matrix units with respect to $\left\{P_{\left[e_{1}\right]}, P_{\left[e_{2}\right]}, P_{\left[e_{3}\right]}\right\}$. By repeating a similar argument, we can show that $M(A)$ contains the matrix units with respect to $\left\{P_{\left[e_{1}\right]}, P_{\left[e_{2}\right]}, P_{\left[e_{3}\right]}, P_{\left[e_{4}\right]}, P_{\left[e_{5}\right]}\right\}$, $\cdots \cdots,\left\{P_{\left[e_{1}\right]}, \cdots, P_{\left[e_{2 n}\right]}, P_{\left[e_{2 n+1}\right]}\right\}$. Thus, we can get the property $M(A)=$ $B(H)$ and so the conclusion of this example.

Remark 2. We showed the generator of von Neumann algebra of type I in the previous part. But we don't know whether an adjacency operator generates a von Neumann algebra of type II or type III. This is a problem that we must consider after this. In general case, Pearcy [3] firstly showed that there exists a partial isometry $V($ resp. $W)$ generating a von Neumann algebra of type II_{1} (resp. II_{∞}). But, if we consider this Pearcy's result in the adjacency operators, we can't expect a similar result by considering our previous result (i.e. Theorem 5).

References

[1] M. Fujii, H. Sasaoka and Y. Watatani, Adjacency operators of infinite directed graphs, Math. Japonica, 34 (1989), 727-735.
[2] B. Mohar, The spectrum of an infinite graph, Linear Algebra Appl. 48 (1982), 245-256.
[3] C. Pearcy, On certain von Neumann algebras which are generated by partial isometries, Proc. Amer. Math. Soc., 15 (1964), 393-395.
[4] T. Saito, On generators of von Neumann algebras, Michigan Math. Journ., 15 (1968), 373-376.
[5] T. Saito, Generation of von Neumann algebras by special partial isometries, A Report of Sendai Seminar for Functional Analysis, December in 1971.
*Department of Mathematics, Miyagi University of Education, Aramaki Aoba, Aoba-ku, Sendai, 980, JAPAN
**Mathematics Laboratories, Graduate School of Information Science, Tohoku University, Katahira, Sendai, 980-77, JAPAN

Received October 10, 1995, Revised March 11, 1996

