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COMPOSITION OPERATORS ON SOME
F-ALGEBRAS OF HOLOMORPHIC FUNCTIONS

JUN So0 CHoA AND HONG OH KM

ABSTRACT. We let NP, p > 1, be the F—algebra of holomorphic functions f on the
unit disc D which satisfy

27 .
ll/rpl/o (log(1 + | £(re*®)]|?))Pdb < oo.

In this paper we prove that the composition operator induced by a holomorphic self-
map of the unit disc is compact on NP, p > 1, if and only if it is compact on the
Hardy space H2.

1. INTRODUCTION

For p > 1, we let NP denote the class of all functions f holomorphic in the unit
disc D which satisfy the growth condition

2n
lim (log™ | £ (re*)|)Pdo < oo.
1‘/1 0

If p > 1, the inequalities

(1) (log™ z)? < (log(1 + z%))® < 2P~ (1 + (log* 2)*) forallz >0
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imply that

27 Pﬁd_e

f € NP ifand only if | f||R, := lim (log(1 + | f(re®)[?)) < oo
r 1 Jo 2T

for f holomorphic in D. Note that N! is the classical Nevanlinna class N. It was
known that
HPC NPCN forp>1

and these containments are proper([5], [20]). Under the metric d,, defined for
f,9 € NP by dp(f,9) = ||f — gllne, NP becomes an algebra if p > 1 and moreover
NP is an F-algebra(i.e., a topological vector space which is an algebra) if p > 1.
See [10] and [20] for this and more information on NP.

If ¢ is a holomorphic self-map of the unit disc D, then such map ¢ induces a linear

operator C, on the space of holomorphic functions on ID by means of the equation
Cyo(f) = f o . This C, is called the composition operator induced by ¢. The
study of composition operators began in 1968 with the work of E. Nordgren [12].
From then on, most work was on the properties of composition operators on the
Hardy space HP(see for example [2], [4], [16], [17], [18] and [19]) although there were
various results obtained in other function spaces (see [1], [8], [9], [10], [13], [14] and
[21]). In 1987, J. Shapiro [17] has obtained a prevailing result on the compactness
of C, on the Hardy space HP. In fact he gave a complete characterization of ¢, in
terms of Nevanlinna counting function, for which C,, is compact on HP. However,
as far as we know, the operator C, as an operator on the class NP, p > 1, was first
studied by Masri in his thesis [10], where he obtained several necessary conditions
and sufficient conditions on ¢ for the operator C, to be compact on the class NP,
but he could not find necessary and sufficient conditions for the compactness of
C, on NP except the sequential one(see, Lemma 1 of Section 2), and indeed the

conditions are in the same spirit as conditions developed in [19] for studying the
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compactness of 'Ctp on HP. In this paper we find, however, a necessary and sufficient
condition(which is not a sequential one) for the compactness of C, on the algebra
NP when p > 1. More precisely we prove:
A composition operator C, is compact on the F-algebra NP, p > 1, if and
only if it is compact on H2.
Appealing to Shapiro[17], this result gives a complete characterization of @ for which
C, is compact on NP for the case p > 1. Recently, the authors [3] verified that
the compactness of Cy, on the Nevanlinna class N is equivalent to its compactness
on H2, From this viewpoint, later on, we will consider the compactness of C, on
NP in the case p > 1. The result of this paper relies on the Shapiro’s Nevanlinna,
counting function criterion [17] and MacCluer’s Carleson-measure criterion[7](where
the setting was more general) for the compactness of C, on H2.
Throughout this paper, the symbol ¢ will be used to denote a holomorphic self-
map of the unit disc D.

2. PRELIMINARIES

As is shown in [10], the boundedness of C,, on the algebra N” follows from Har-
nack’s inequality. (This can also be proved by Littlewood’s subordination principle.)
So, from now on, we confine ourselves to the compactness of C, on NP. Following
(10], we say that the operator C, is compact on NP if the closure of the image, under
Cy, of each bounded set is compact. We recall that a subset E of NP is bounded if
there exists a finite constant M such that ||f — g|ly» < M for all f,g € E.

Now we collect some material that will be used later. Recall that the exponent
p which appears in the rest of this paper is bigger than 1.

The first one is the following characterization of compactness of C, on N? ex-

pressed in terms of sequential convergence, which is taken from [10, Theorem 2.4.2].
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Lemma 1. Let ¢ be a holomorphic self-map of D. Then C, is a compact operator
on NP if and only if for every sequence { f,} which is bounded in NP and converges

to zero uniformly on compact subsets of D, we have ||fn o ¢||n» — 0.

The lemma below is a Littlewood and Paley-type identity, Since the proof which
is based on the Green'’s formula [6, page 236} can be obtained by a slight modification
of that of [3, Lemmal], we just state it without proof. In what follows, dA denotes

the normalized Lebesegue area measure on D.

Lemma 2. Suppose f is holomorphic in D. Then
) IR =(log(1 + £ (0)*)"

o ayes FEPIF ()P
+2 [ Lot - ot + 11ty TS

! 2
+ plog(1 + @) il Liog - aA)

where, as always “|| ||n»” denotes the quasi-norm as defined in Section 1, and
“Ufllne = 00” means “f ¢ NP”.

The next lemma is a well-known change of variable formula for the integral means,

and it can be found in [18, page 186].

Lemma 8. If g is a non-negative measurable function on D and ¢ is a holomorphic

self-map of D, then

—dA() = [ 9N (w) dA(w),
|| D

@ [ ste@le ()1 1o
where N,(w) is the (usual) Nevanlinna counting function defined by

Noy(w) = > reo—1(w) 108 T%T if we ),
¢ 0 if w¢ p(D).
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The following result is an immediate consequence of the above two formulas (2)

and (3).
Corollary 4. Suppose ¢ is a holomorphic self-map of D. Then
@) ICef e = (Log(l + | f(w(0))%)?

2 @RI w)P
+2 [ {1o- 100801 + 172 LG
' 2
+ plog(1+ 1/ (@)~ i b ) aw)

for all f holomorphic in D.

The above corollary suggests that the Nevanlinna counting function is closely

related to composition operators on the algebra N?.

The next criteria of compactness of C,,, which are due to Shapiro [17] and Mac-
Cluer (7], play crucial roles in the proof of the main result of this paper. In the

followings, we say that a positive measure u on D is a little Carleson measure if

lim -/“—L(—S—'S(L))- =0 uniformly in ( € 9D,
6—0 )

where S5(¢) = {re* €D:1-6<r <1 and |¢¥ — (| < 6}.

Lemma 5. For ¢ a holomorphic self-map of D, the following conditions are equiv-
alent:

a) C, is compact on H?.
@

(b) lim Ne®) _ g
jw| ~1 log Tl

(c) The pull-back measure i, defined by p,, = cop~! is a little Carleson measure
on D, here o = df /2.
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3. PROOF OF THE RESULT

We proceed now to prove the main result of this paper. As stated in the intro-

duction, what we want to prove is:

Main Theorem. Suppose ¢ is a holomorphic self-map of D. Then C, is compact

on the F-algebra NP, p > 1, if and only if it is compact on H2,

Proof. First we assume that C,, is compact on H 2 and will show that C,, is compact
on NP. The argument to prove this part is very similar to that of [18, Section 10.5].
For this, fix a sequence { fn}‘ with ||fn|l|[N» < M that converges to zero uniformly
on compact subsets of D. By Lemma 1, it is enough to prove that || fn o ¢||n» — 0.

Before proving this result, to simplify some writing, let us introduce the notation

I(f) for

1 |f (w)?
11+ [f(w)|2)?

p-2 |f(W)PIf (w)|?

(= Py TPUEH D)™

p(p—1)(log(1+|f (w)|?))

whenever f is a function holomorphic in ID and p > 1.
Now let € > 0 be given. Then it follows from Lemma 5 that we can choose

0 <r < 1 such that

1
N,y(w) <elog— whenever r< |w|<1.

|w|

Since fp, — 0 uniformly on compact subsets of D, so is f;,. Thus we can choose n,

so that

[fal and |fn] <VE
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on 7D U {¢(0)} whenever n > n.. Hence for each such n we have from formula (4)

and the elementary inequalities /(1 +z) <log(l+z) <z (x >0),

(5)  lfnoollie = (log(l + | fu(e(0)*))” +2 l/D +/D\ D{Ip(f)}Nw(w) dA(w)

< e +20p(p e +2e%) [ No(w)daw) +2¢ [ o Us}o 7 dAW).

The quantity in the inequality of the above (5) is at most

1

eP+2p2eP /D N,y (w) dA(w) + 2 /D ()} ok 17 dA(w)

< P +p*eP(1 — [p(0)|?) + € [[| fallBrr — (log(1 + | £ (0)[2))"]
< e +p’e? + el fallh,

< eP(1+p?) +eMP,
where in the first inequality we have used the estimate

[ Mot aaw) < L=1EOF
D

of [17, Section 4.5] and Lemma 2, and in the last inequality we used the fact that
|fnline < M for each n. Thus ||f, o ¢||n» — 0, which establishes the compactness
of C, on NP,

For the converse direction, we assume C,, is compact on NP. Because of Lemma
5, we only need to verify that the pull-back measure u, = oop~! is a little Carleson
on D.

To prove this, we let a = (1 — §)¢ where ( € 0D and 0 < § < 1, and define

(1 — |a])®

folz) = (1~ lal) /7 exp (512
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where o =1 — %(> 0). Then clearly f, — 0 uniformly on compact subsets of D as

la] /1. By simple calculations, together with the trivial inequalities
logt zy <log" z +logt y forz,y >0

and
logt expt < |t| for ¢ real,

we have

27 2n
/0 (log* |fa(rei0)|)p;i_:' S,/o log (exp(Re((1 l:'20 )))]
¢ e ) N
= /0 ( — aret? )
_ o [2™ [1—Re(are’®)\” do
=(1—lal) p,/; { |1 — are*|2 } 2r

2n
<a-la [ o
o T

—arep 2r°

In the above, the last step follows from the inequality 1 —Rew < |1 —w]| for |w| < 1.

By Proposition 1.4.10 of [15] (recall that p > 1), there is an absolute constant M>o0

such that
27
1 d0 1-p,
/o |1 —are|P 21r M(1~ lal)
so that
27 —
(log* Ifa(re“’)l)”g% <M,

and thus we have from (1) that

27 . do

I fallfre = lim [ (log(1+ |fa(re®)))"5- < 22711 + M).
T 0
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It now follows from the compactness of C, on NP and Lemma 1 that

1i =
Jm (lfaopline =0.

On the other hand, if z € S5(¢) then

1—|aj C
i hod Bl
1—az2 — ¢

for some absoulte constant C' > 0. Thus, for 2z € S5(¢), we have

— Re(az), |
—az|?

T—apr ).

log* |fa(2)] > log* |(1 = lal) /7 exp (1 i

> log* [(1 = lal) VP exp ((1 - |a|)°‘( |Z|z||zzl))

a
> log" |1~ fa) /7 exp (1 - la)* [f-=1ok5)

> log* [61/7 exp(Cd"l/")] :
Hence, forall{ € 0D and 0 < § < 1,

[log+ (61/" exp(Cé'l/”))]pmp(Sa(C)) < / (log+ |fa(z)|)pdu9,(z)

Ss(¢

< /S o, (1080 + )’ dise(2)

< [ (10801 +1£2()1%)” duo(e)

2w
< lim (log(1+|fao w(re’o)lz))p
0

= || fa o @llRe,
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where the last inequality follows from the Fatou’s lemma. As we saw above, the

compactness of C, on NP forces || fo © ¢||n» to zero as |a| /1, which implies

lim [log™ (67 exp(C5Y/7))|” 1y (85()) =0,

uniformly in ( € ). Therefore the desired conclusion follows since

(cti/z — Liog t)p
t

}i_l’l(l)(s [log+ (61/” exp(CJ"l/P))]p = tl-lfgo = CP,
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