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1. INTRODUCTION

Let M = (M, J, g) be a 6-dimensional almost Hermitian manifold. We denote by
V, R, p and 7 the Riemannian connection, the curvature tensor, the Ricci tensor

and the scalar curvature of M, respectively. We assume that the curvature tensor

R is given by
R(X, Y)Z = [VX7 VY]Z - V[X,Y]Z,

R(X,Y,Z, W) =g(R(X,Y)Z,W)
for X,Y,Z, W € X(M). The holomorphic sectional curvature is defined by
HX)=-R(X,JX,X,JX)

for X € T,M(p € M) with g(X,X) = 1. If H(X) is constant u(p) for all X €
T,M(p € M) at each point p of M, M is said to be of pointwise constant holomor-
phic sectional curvature. Further, if u is constant whole on M, then M is said to be

of constant holomorphic sectional curvature. It is well known that if a 6-dimensional

nearly Kaehler manifold M is of constant holomorphic sectional curvature u, then
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either M is Kaehlerian, or M is of constant curvature pu > 0([5]). Also, it is well
known that any 6-dimensional nearly Kaehler manifold is an Einstein one ([3],[7])

and its curvature tensor R satisfies the following identity([4]):
(*) R(X,Y,Z,W)=R(JX,JY,Z,W)+ R(JX,Y,JZ, W)+ R(JX,Y,Z,JW)

for X,Y, Z, W € X(M).

In this paper we want to prove that if a 6-dimensional almost Hermitian manifold
M with pointwise constant holomorphic sectional curvature y is Einsteinian and the
curvature tensor R of M satisfies the identity (*), then either M is Kaehlerian, or M
is of constant curvature u. In a 6-dimensional quasi-Kaehler manifold M, we want
to have the same conculsion under the assumption that M is locally symmetric and

T # 0 (or u # 0) instead of the assumption that M is Einsteinian.

2. PRELIMINARIES

Let M = (M, J, g) be a 6-dimensional almost Hermitian manifold. Then we have
(VxJ)JY = —-J(VxJ)Y,
9(Vx )Y, Z2) = —g((Y,(Vx J)Z),
9((VxJ)Y,Y) =0,
g(VxJ)Y,JY) =0,
for X, Y, Z € X(M). The Ricci *-tensor p* and the *-scalar curvature 7* are defined

respectively by

P (X,Y) =g(Q*X,Y) = trace(Z — R(X,JZ)JY),

7% = trace Q*
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for all X, Y, Z € T,M, p € M. By the definition of p*, we get easily
p*(X,Y) = p*(JY,JX)

for X,Y € T,(M),p€ M. M = (M, J,g) is said to be a weakly *-Einstein manifold

*

if p* = %g holds.

We shall recall the definitions of special kinds of almost Hermitian manifolds.

An almost Hermitian manifold M is called Kaehlerian if
VxJ =0
for all X € Z(M), M is called nearly Kaehlerian if
(VxJ)Y +(VyJ)X =0
for all X, Y € X(M) and M is called quasi-Kaehlerian if
(Vx )Y + (VixJ)(JY) =0

for all X, Y € X(M).

We define three linear operators L;, i = 1, 2, 3 as the following:
(LiR)(X,Y, 2, W) = %{R(JX, JY,Z, W)+ R(Y,JZ,JX,W)
+ R(JZ,X,JY, W)},
(LR)(X,Y, 2, W) = %{R(X, Y. Z,W) + R(JX,JY,Z,W) + R(JX,Y,JZ,W)

+ R(JX,Y,Z,JW)},

(LsR)(X,Y,Z,W) = R(JX,JY,JZ,JW)
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forall X, Y, Z, W € X(M). It is easy to see that curvature identity (*) implies
L;R=R and L3R = R.
For a (0,2) type tensor S, we define ¢(S) and ¥(S) by

e(S)(X,Y,Z,W) =g(X, Z2)S(Y,W) + g(Y,W)S(X, 2)
- 9(X,W)S8(Y, 2) - g(Y, 2)S(X, W),
»(S)(X,Y,Z,W) =2¢(X,JY)S(Z,IW) + 29(Z,IJW)S(X,JY)
+ 9(X,JZ)S(Y,JW) + g(Y,JW)S(X, J Z)

— g(X,IW)S(Y,JZ) — g(Y,JZ)S(X, IW).

Tricerri and Vanhecke proved the following.

Theorem A([6]). Let M be an almost Hermitian manifold with dimension 6 and
curvature tensor R. Then we have the following identity:
1 v
(I = L1)(I+ L2)(I + L3)R = — 5(3<p - w){p(R + L3R) — p*(R+ L3R)}
1 *
+ Z(T —7%)(3m — m2),

where
m(X,Y)Z = g(X, 2)Y — g(Y, 2)X,
m2(X,Y)Z = 29(JX,Y)JZ + g(J X, Z)JY — g(JY, Z)J X,
{p(R+ L3R)} (X,Y) = trace(Z —> R(Z,X)Y — JR(JZ,JX)JY),

{p*(R+ LsR)}(X,Y) = trace(Z — R(X,JZ)JY — JR(JX, Z)Y).

On the other hand, Gray obtained the following
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Lemma B([1]). Let M be a quasi-Kaehler manifold. Then
(2.1) G(X,Y,Z,W)+ G(JX,JY,JZ,IJW) + G(JX,Y,JZ,W) + G(X,JY, Z, ZW)
= =29((Vvxny-(vy nxJ)Z, W),

where G(X,Y,Z,W) = R(X,Y, 2, W) — R(X,Y,JZ,JW).

For a quasi-Kaehler manifold M with the curvature identity (*), the equation
(2.1) is reduced to

1
(2.2) GX,Y,Z,W) = —59(Vivx ny-(vy nxJ)Z, W)

3. EINSTEIN ALMOST HERMITIAN MANIFOLDS WITH POINTWISE
CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let M = (M,J,g) be a 6-dimensional almost Hermtian manifold and let the
curvature tensor R of M satisfies the identity (*). Then we find, from Theorem A,
L,R=R and L3R =R,

(3.1) BR(X,Y,Z,W)
= 2{2R(JX,JY, 2,W) — R(JY,JZ,X,W) — R(JZ,JX,Y,W)}
+29(X, JY){p(Z,IW) = p*(Z,TW)} + 29(Z, IW){p(X,JY) — p*(X,JY)}
+9(X, JZ){p(Y,IW) = p* (Y, IW)} + g(Y, IW){p(X, T Z) — p*(X,J Z)}
= 9(X, IW){p(Y,JZ) - p*(Y,JZ)} — g(Y,JZ){p(X, TW) — p*(X,IW)}
~3[g(X, 2){p(Y, W) — p*(Y, W)} + oV, W){p(X, 2) — p*(X,2)}

_g(X7 W){p(Y’Z) - P*(Y’Z)} —g(Y’Z){p(-X, W) - p*(X, W)}]

+ %(7‘ — T*){g(X, Z)g(Y, W) —g(Y,Z)g9(X, W)}

— 30— ™) {26(TX, Y)a(JZ, W) + g(JX, 2)g(JY, W) - g(JY, Z)g(J X, W)}.
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Moreover, we assume that M is of pointwise constant holomorphic sectional

curvature u. Then we have

(3.2)  R(X,Y,Z,W)
= p{g(X,W)g(Y, Z) — 9(X, Z)g(Y, W) + g(J X, W)g(JY, Z)
- g(JXs Z)g(']Y) W) - 2g(JX7 Y)g(JZ7 W)}

— {2R(JX,JY,Z,W) ~ R(JY,JZ,X,W) - R(JZ,JX,Y,W)}

(See Lemma 3.1 in [2]).
From (3.1) and (3.2) we obtain
(3.3) 8R(X,Y,Z,W)
=29(X,JY){p(Z,IW) — p*(Z,IW)} + 29(Z, JW){p(X,JY) — p*(X,JY)}
+9(X, JZ){p(Y, W) — p* (Y, JW)} + (Y, IW){p(X, T Z) - p*(X, T Z)}
— 9(X, IW){p(Y, JZ) — p*(Y,J2)} - 9(¥, TZ){p(X, TW) — p*(X,JW)}
= 3[9(X, Z){p(Y, W) — p* (Y, W)} + g(Y,W){p(X, Z) - p*(X, 2)}
—9(X,W){p(Y, Z) - p*(Y,2)} — g(Y, Z){p(X, W) — p* (X, W)}]

3

+{Z(r = ) — 2u}{g(X, 2)g(Y, W) — g(Y, Z)g(X, W)}

{3 — ) + 2} {20(IX, V)9 (I Z, W) + 9(JX, D)g(IY, W)

- 9(JY, Z)g(JX,W)}.

In a 6-dimensional almost Hermitian manifold with pointwise constant holomor-
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phic sectional curvature p and with curvature identity (), we have ([4])
(3.4) p(X,Y) +30"(X,Y) = 8ug(X, V),

p(X,Y) = p(JX,JY),

pi(X,Y) = p*(Y, X),

p(X,Y) = p*(JX,JY),

T+ 37% = 48u.

From (3.3) and (3.4), we find

(3.5) R(X,Y,Z,W)
_ %{29()(, IY)p(2, IW) + 2p(X, JY)g(Z, JW) + g(X, JZ)p(Y, JW)
+ o(X, JZ)g(Y, IW) — (X, JW)p(Y, JZ) — p(X, JW)g(Y, JZ)}
- %{g(X, Z)p(Y, W)+ g(Y,W)p(X,Z) — g(X,W)p(Y, Z). —9(Y, Z)p(X, W)}

T+ 2u

5 19(X,2)9(Y, W) — g(Y, Z)g(X, W)}‘

+

T+ 10u
24

{29(JX,Y)g(JZ,W) +g(JX,Z)g(JY, W) — g(JY, Z)g(JX,W)}.

Now, we assume that M is Einsteinian (or equivalently, weakly *-Einsteinian).

Then we have

(3.6) p(X,Y) = £9(X,Y)
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Substituting (3.6) into (3.5) and using (3.4), we obtain

(3.7) R(X,Y,Z,W)
_ (7_2 - 15—2“) {20(JX,Y)9(IZ, W) + 9(JX, Z)g(JY, W)

~9(JY, Z)g(JX, W)}

+ (=37 + £) {90X, 2)9(v, W) - 9(X, W)g(¥, 2)}.

On the other hand, Tricerri and Vanhecke proved the following

Theorem C([6]). Let M be a connected almost Hermitian manifold with real di-

mension 2n > 6 and Riemannian curvature tensor R of the following form:
R = fim + fams

where fi and fu are C® functions on M such that f; is not identical zero. Then M
i1s a complez space form(i.e. a Kaehler manifold with constant holomorphic sectional

cuvature).

In the proof of Theorem C, Tricerri and Vanhecke showed that the functions f;

5
and f, are both constant. Thererfore we can conclude that ;—2— — oM is constant

provided that M is connected. So u is constant on M.

If — — S = 0, then we have from (3.7)

72 12"
R(X,Y,Z,W) = l‘{g(X7 W)g(Y, Z) — g(X, Z)g(Y, W)}

which shows that M is a manifold of constant sectional curvature pu.

If 7—7;2 - -15—2u # 0, then M is a complex space form from Theorem C.

Thus we have the following
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Theorem 1. Let M be a siz dimensional connected almost Hermitian manifold with
pointwise constant holomorphic sectional curvature p and with curvature identity
(x). If M is Einsteinian or weakly *-Finsteinian, then M is one of the following:

(a) a manifold of constant sectional curvature p
(b) a complez space form.
Since a 6-dimensional nearly’ Kaehlerian manifold is Einsteinian and has the
curvature property (*), we have the following

Corollary 2([5]). If M is a 6-dimensional connected nearly Kaehlerian manifold
with pointwise constant holomorphic sectional curvature, then M is one of the fol-
lowing:

(a) a manifold of constant sectional curvature

(b) a complez space form.

4. LOCALLY SYMMETRIC ALMOST HERMITIAN MANIFOLDS
WITH POINTWISE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let M be a 6-dimensional almost Hermitain manifold with pointwise constant
holomorphic sectional curvature x and let its curvature tensor R satisfies the identity
(*). Since dimM = 6, it is possible to choose two unit vectors X and W which

define orthogonal holomorphic planes {X, JX} and {W, JW}.

We assume that M is locally symmetric and 7 # 0 (or u % 0). Then we obtain,
by the help of (3.5), '

(41)  W(f)JW + 3hg((VwJ)X,JW)JX + -;- [p((VWJ)X, IW)JX

+ (X, W)(VwI)X + g((VwJ)X, JW)Q(JX)] =0,
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where {X,JX} and {W,JW} are arbitrary orthogonal holomorphic planes, f =

T+ 10u
24

1
—(T + 2/“‘)7 h =

3 and @ is the Ricci tensor of type (1,1).

Moreover, we assume that M is a quasi Kaehler manifold. Then p is globally

constant on M ([4]) and hence W(f) = 0. Thus (4.1) can be rewritten as

(4.2) 6hg(VwJ)X,JW)JX + p(VwJ)X,JW)JX

+ (X, W) VW)X + g(Vw)X, JW)Q(JX) = 0.

From (4.2), we obtain

(4.3) p(X, W)g((VwJ)X,JW) =0,
(4.4) p(X,W)g(JX,(VwJ)W) =0,
(4.5)

6hg(Vw )X, JW) + p(VwJ)X,IW) = —g((Vw )X, JW)p(X, X),

(4.6)
6hg(Yw )W, JX) + p(Vw )W, JX) = —g(Vw )W, JX)p(X, X).

Substituting (4.5) into (4.2), we have
(4.7) —g(Vw)X,JW)p(X,X)JX

+ p(X, W) (VW)X +g(Ywd)X, JW)Q(IX) = 0.
Multiplying (4.7) with p(X, W) and taking account of (4.3), we obtain

(4.8) (X, W)(Vw )X =0,

which and (4.7) imply
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(4.9) I(Vw)X,IW)QIX) = g(VwJ)X, JW)p(X, X)J X.

Substituting (4.9) into (4.2), we find
(4.10) [6R + p(X, X)]g((Vw )X, JW) = —p((VwJ) X, W),

(4.11) [6h + p(X, X)]g(Vw )W, JX) = —p(Vw )W, JX).

If we interchange X and W respectively in (4.11), then we obtain
[6h + p(W, W)]g((Vx J)X,IJW) = —p((VxJJ)X, W),

which implies, using p(JW,JW) = p(W,W) and the fact that {W,JW} and
{J W, J?W} determine the same holomorphic plane,

(4.12) [6h + p(W, W)]g(VxJ)X, W) = —p((Vx )X, W).

Now, suppose that M is not nearly Kaehleian. Then there exists a unit vector

field X in an open neighborhood U of p € M such that (VxJ)X # 0. We put

X =e€, JX =e,, (VxJ)X/H(VxJ)XH=€3, Jes = eq4.

Then {e1, ez} and {es, e4 } are orthogonal holomorphic planes. If we put W = e3
in (4.12), then we obtain

(4.13) p(es,e3) = p(es,e4) = —3h.

Next we choose another holomorphic plane {es, ee = J 85} which is orthogonal

to {e1,e2} and {es, es} respectively.
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Since {él = e—l%,Jél} and {53 = 61\—/-;3 ,Jé3} are also orthogonal holo-

morphic planes, we obtain, using (4.8),

p(él ) 63)(V¢'1 J)é3 =0,

p(&s,€1)(Ve,J)er = 0.

From these equations, we find

[p(el ’ 61) - p(e3, 63)] [(Vex .])81 - (VCaJ)e:‘l] = 0’

which implies, by the help of g((V¢;J)es, e3) =0,

(4.14) p(e1,e1) = p(es,es).

.. . . ey +es e +es
Similarly, for two pairs of orthogonal holomorphic planes J ,
y p g pac p { V2 V2 }

{el-—es J61—65}and{63+65 J63+65} {63—65 Je3_65} we obtain

[p(es, es) — pler, e1)] [(Ve, )er — (VegT)es] =0,

[p(es, e5) — ples, €3)] [(VeaT)es — (VegJ)es] = 0.
From these equations, we find, by the help of (4.14),

[P(e57 65) - p(€1, €1 )] [(Vel J)el - (ves'-])e3] =0,

which shows that p(es,es) = p(e1,e1).

Thus we obtain, using (4.13) and (4.14),
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(4.15) plei,ei) = —3h(1 <1 <6).

T+ 10u
24

6
Since Zp(ei,ei) =7 and h = —

=1

, we have, by the help of (4.15),

(4.16) T = 304.

Since 7 and pu are constants on M, the relation (4.16) holds whole on M.

If we put W = es and W = eg respectively in (4.12), then we obtain

(4.17) ples, e5) = p(es, e6) = p(es, e5) = p(es, e6) = 0.

Since the Ricci tensor of M is parallel, it is easy to check

(4.18) p(Y,(VwJ)Y) =0, p(JY,(YwJ)Y) =0,

p(Z,(VwI)Y) + p(Yw])2,Y) = 0.

From (4.18) and (3.4), we obtain
(4.19) p(e1,e2) = p(es, es) = p(es, es) = p(e1, €3)

= p(e1,e4) = p(ez,e3) = p(ez,e4) = 0.

Suppose that p(e;,es5) # 0 on an open neighborhood U’(C U) of p. Then we
have, using (4.8),

(4.20) (Ve,J)es = (Ve,J)er =0
on U’. Thus (2.2) and (4.20) imply

(4.21) R(ei,es,e1,e5) = R(e1,es,e2,€6).
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From (3.5) and (4.21), we find

4+

R

?

ool 9

pler,e1) =

which implies 7 = 0 by the help of (4.15) and (4.16). This contradicts to the
hypothesis. Therefore we have p(e1, es) = 0. Similarly, we have p(e;,es) = 0. From
these results, (4.15), (4.17) and (4.19), we can conclude that Q@ = Al for some

function A\ on U.

Now suppose that there escists a point ¢ € M such that (VwJ)W = 0 for any
vector field W at q. We take arbitrary orthogonal holomorphic planes {X, JX} and
{Y, JY'}, and assume that p(X,Y) # 0 at g. Then we have (VxJ)Y = (VyJ)X =0
from (4.8) and hence we obtain, by the help of (2.2),

(4.22) R(X,Y,Z,W) - R(X,Y,JZ,JW) =0

for any vector fields Z and W at q. If we put Z = X and W =Y in (4.22) and use
(3.5), then we find

(4.23) p(X, X) + p(Y,Y) = 7 +p.

If we take another holomorphic plane {Z,JZ} which is orthogonal to {X,JX}
and {Y, JY'} respectively, then we find from (4.22) and (3.5),

(424) p(X’ JZ)g(Y) JW) - p(X’ Z)g(Ya W)

- g(X7JW)p(Y7JZ) +g(X7 W)p(Ya Z) =0
for all W. If we put W = X,Y in (4.24) respectively, we have

(4.25) p(Y,Z)=p(X,Z) =0.
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: X+7Z X—f—Z} {X——Z X——Z}
For the orth 1 holomorphic planes ,J and ,J .
rthogonal holomorphic p { 7 7 7 7

we obtain from (4.8)
[p(X, X) = p(Z, )] (V2 )X — (VxJ)Z] = 0.

If p(X, X) # p(Z,Z) at g, then we have (VxJ)Z = (VzJ)X at ¢. Since (VxJ)Z+
(VzJ)X =0 at q, we have (VxJ)Z = (VzJ)X = 0 at q. By the same arguments
as in the preceding paragraph, we have p(X,Y) = 0. This contradicts to the
hypothesis. Hence p(X,X) = p(Z,Z). Similarly, we obtain p(Y,Y) = p(Z,2).
Therefore we find, by the help of (4.23),

T = 12u,

which and (4.16) imply 7 = 0. This is impossible. Hence we can conclude that
p(X,Y) = 0 for any orthogonal holomorphic planes {X,JX} and {Y,JY}. Hence
P(X,Y)=p(X,Z)=p(Y,Z)="---=p(X,JZ) = p(JY,JZ) = 0 for the orthogonal
holomorphic planes {X,JX}, {Y,JY} and {Z, JvZ}.

X+Y JX+Y}and{X—Y JX—Y}
V2 T V2 V2 T V2

) = 0. Hence we have p(X,X) = p(Y,Y). Similarly,

For the orthogonal holomorphic planes {

we have (X+YJX—Y
NV
we obtain p(X,X) = p(Z,Z). Hence we get

p(X,X) = p(Y,Y) = P(Z,Z) =p(JXaJX) = p(JY,JY) = p(JZ’JZ)

Therefore, we have Q = AT at q.

Summing up, we have Q = A\l whole on M and hence M is Einsteinian. From
theorem 1 and the hypothesis that M is not nearly Kaehlerian, we can conclude
that M is of constant sectional curvature p.

On the other hand, if M is nearly Kaehlerian, then M is a mainifold of constant
sectional cur\fature or a complex space form by virtue of corollary 2. Thus we have

the following

— 199 —



Theorem 3. Let M be a 6-dimensional connected quasi-Kaehler manifold with
pointwise constant holomorphic sectional curvature p and let the curvature tensor
R of M satisfies the identity (x). If M is locally symmetric and 7 # 0 (or p #0),
then it is one of the following:

(a) a manifold of constant sectional curvature

(b) a complez space form.
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