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Generalized Metrics For Second Order Equations
Satisfying Huygens’ Principle

NoBUHIRO INNAMI

1. Introduction. Let M be an n-dimensional manifold without bound-
ary of class C® and = : TM — M the tangent bundle of M. A second
order equation on M such that it is locally expressed by

d?z? il 1 . dz! dz®
(1.1) —d_tT=F (z 1° @ ’_d—t—’”.’_gt—)

is considered to be a vector field V on TM with =,V (y) = y, where (U; 22,
.++, 2*) and (TU;2t, ---, 2™, 9!, - -+, y®) are local coordinate neighbor-
hoods in T'M, respectively. Restricting its domain to a hypersurface S in
TM, we define second order equations on S satisfying the Huygens prin-
ciple as follows ([4]). Let f* : TM — TM be the local one-parameter
group of diffeomorphisms generated by V. We assume that there exists a
hypersurface 0 ¢ S in TM such that S is fi-invariant and each fibre S,
p € M, is a hypersurface in T, M. We say that the local one-parameter
group of diffeomorphisms f* : § — S satisfies the Huygens principle if
there exists a complementary ff-invariant distribution D on S, where D
is by definition such that

(1) dim D =dim S —1 = 2n— 2,

(2) V(y) € D(y) for any y € S,

(3) D(y) DT, Sq, ¢ = =(y), for any y € S, |

(4) f:.D(y) = D(f'y) for any y € S, where f*, is the differential map

of f£.

We proved in [4] that D is the natural almost contact structure of S.
Further, we showed some conditions equivalent to the principle. In partic-
ular, we were suggested to use methods developed in Riemannian geome-
try for the investigation of second order equations satisfying the Huygens
principle. The purpose of the present paper is to introduce a generalized
metric and the connection of Rund type, and try to find out what con-
dition on this connection allows us to use them in the same way as in
Riemannian geometry.

In Section 2 we need to study the relation between the second order
equation on S satisfying the Huygens principle and the equation of ex-
tremals of variational principle [ L(z,z)dt in order to define a generalized
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metric we shall use, where L is given as follows. Since there exists a com-
plementary f*-invariant distribution D, each fibre Sp must be star-shaped
around the origin for any p € M ([4]). Let C = {Ay|y € 5,1 > 0}. We
can define a positively homogeneous function L : C — R of degree 1 such
that the indicatrices of L is S, i.e,, L(Ay) = A for any y € S and X > 0.
We shall show that a local one-parameter group of diffeomorphisms on S
satisfies the Huygens principle if and only if its orbits are extremals with

unit speed of the variational problem for L. It should be noted that we
2,3

suppose the equation (2.1) with gd'iz as unknown variables has a solution

of class C* in the tangent bundle of S, instead of usually assuming that

the fundamental tensor of L is positive definite or non-singular. Here the

fundamental tensor of L is defined by

02 Lz
Oyt 0y’

gi(y) = (v)
forye TM. .

In Section 3 we shall introduce a generalized metric which plays the
same roles as ones used in [4] to state the conditions equivalent to the
Huygens principle, and the connection of Rund type (cf. [7]) which is
compatible with the generalized metric. Theory of generalized metrics
and connections has developed in a group of Finsler geometry ([6]). The
theory begins with given generalized metrics which then define Finsler
metrics. Conversely, the construction of generalized metrics here shows
that any Finsler metric is represented with a generalized metric. There-
fore, combined with the results in Section 2, the methods and results
for Finsler geometry can be applied to the investigation for second order
equations satisfying Huygens’ principle.

In Section 4 the curvature tensor will be defined ala Finsler geometry
(cf. [7]) and we shall give a condition that ensures its symmetric property
with respect to the generalized metric. Further, we shall have a condition
such that a variation through the projection of orbits yields a differential
equation of Jacobi type as seen in the geometry of geodesics for Rieman-
nian geometry (cf. [1]).

The generalization of the curvature tensor and the equation of Jacobi
type are studied for second order equations which yield vector fields on the
homogeneous (or projective) fibre bundles over manifolds in some papers
(cf. [2],[3]). Here, the homogeneous fibre bundle is by definition a manifold
whose points are all equivalence classes [y] = {Ayly € TM — 0,1 > 0}.



Starting from this point, our results in this paper would be applied if there
exists a hypersurface S in TM such that second order equations on the
homogeneous fibre bundle are realized on S. The distinguished point from
those papers is that we introduce the metrics even if the indicatrices S are
not convex. Instead, we assume Huygens’ principle.

We shall find in [5] another way to use the generalized metrics given
in this paper. There, for any point p € M a Riemannian metric g, is
constructed on C, = C N Tp M such that the envelope of the projection
7,(t) = xf'y of orbits for any ¢ > 0 and y € S, which start from p € M
in the tangent space T, M at p are geodesics with respect to gp.

2. Complementary invariant distribution. Let C be an open cone
in TM and L a positively homogeneous function of degree 1 defined on C

fori,j=1,--- ,n and any y € C which is called the fundamental tensor
of L. Then, we have

> gy = L(y)

i,j=1

for any y € C. We do not assume that the matrix (g;;) is positive definite
or non-singular. We see in [7] that the extremals with unit speed of a
variational problem

b
f L(3(2))dt
satisfy the equation

= dzzj = 1 agib agai 0g¢b dz® dzb
(2.1) ;9"' diz 2 2 (aza t Pt 02‘) dt dt

a,b=1

We assume that a vector field V on S with =,V (y) = y is associated with
the equation (2.1), namely all integral curves (z(t), 2(t)) satisfy the equa-
tion (2.1). The V may be different from the one in the introduction. We
denote by f' : S — S the local one-parameter group of diffeomorphisms
generated by V. If S has a parametrization -

(217"' 1zn’y1"" "yn_la-H(zl"" »zn)'yl"" ’yn—l))



in (TU;2!,---,2",9%, .-+ ,9™), namely
L(zl,... ’z"’yl’... ’yn-l’H(zl,... ,cn,yl’... ’yn—l)) — 1’

then T, S is generated by

(2.2) 0zt Oz Oy»
. X”+’. — 8 + 0H 0 y _1 e e n—l
- ayj ayj oyn’ )= ] L ]

Let D = {X € T, S|g(y,%.X) = 0}. Then, D(y) is generated by

0y
Xt j=1,---,n—-1.

(23) {Xi-'-a—HX“’ i=1,n-1,

We first prove the following.

PROPOSITION 2.1. The distribution D is f'-invariant. In partic-
ular, D is a complementary f!-invariant distribution on S, and, hence,
the local one-parameter group of diffeomorphisms on S whose orbits are

extremals with unit speed satisfies the Huygens principle.

PROOF. We have only to prove that [X, V] € D for any vector field

X contained in D because of Proposition 2.3 in [4]. Let -

kG 0 .. 0
(2.4) V=§:y'az,.+Hazn+ZbJ—..
i=1 j=1

Then, by (2.2),

. . OH oty ob*
n+j — YJ n n+h
(2.5) [X*t V]=X + 55X +z.§=1:_‘9 5 Gand

for j = 1,---,n — 1, and, therefore, by (2.3), we see that [X*ti V] e D

for j =1,-..,n — 1. It remains to prove that

(2.6) g(y,w. [X"+g—;—{-X",V])=O



fori=1,:--+,n — 1. Since

bk
(2.7) X%, V] = aH +Za X"HR =1, m,

by (2.2), we have that

(2.8) Xt + ——X VI = 52t + 0y" py —V'a? 0—2;

[ 0H ] (0H O0H OH O0H ) 0
Te iy =

for:=1,.--,n — 1. Hence

(2.9)

i OH ., _1( 8L* BL*6H 0OL* ( 0H
o (v [+ gex]) =5 (G- o (V)

fori=1,---,m — 1, because

= ; w182 , 10812

(2.10) ;giny = ; §0y‘0y“y = 5—;;
and

0L* OL*O8H
(2.11) | 5 T B 5 =
Since

8L* OL®6H
(2.12) by + By Oy 0
fori=1,---,n — 1, we see that

OL? dL*\ 6H OI? OH

(213) i (Vay”) by oy (Vay‘) =9

X oL? oL\ 0H
fori=1,.-- ,n — 1. We shall compute Vﬁ_y- and (V-b;y—-) o . Since

all integral curves of V satisfy the equation (2.1), we have

8L3 L?



fori=1,---,n — 1. We also have

( 0L’) OH _ 01 OH
Oy ) 0y~ Oazm Oy

(2.15)

fori=1,---,n — 1. At last we have from (2.13), (2.14) and (2.15),
. 0L (8H oL 8L\ 8H
@10 o=55 (5) Vo + (Vo) B
_or? (VOH ) oL? 4 0L? 6H
T 0y U By Ozt Ozm By
fori=1,--+,n — 1. This implies that

;  OH a _
9(""" [" o "’D =0

fori=1,--,n — 1, This completes the proof.

Combined with Theorem 2.6 in [4] it follows from Proposition 2.1 that

integral curves of V satisfy the original second order equation (1.1), i.e.,

2
¥ = Fi|S,if Hy; = a‘;—bﬂ;(y) make a non-singular matrix for all y € S,

because the nonsingularity of the matrix (H;;) implies the uniqueness of
the local one-parameter group f* which leaves D invariant. Conversely,
the following proposition shows that the solutions of the original equation
satisfy the equation (2.1).

PROPOSITION 2.2. It holds that on S

= : < 1 (0gis  89si Ogus b
7 = — — _ a
(2.17) ;g,,F z 2 (03“ + B Oz’ ) vy

a,b=1

fori =1,---,n. Thus, the orbits of a second order equation on S satisfying

the Huygens principle consist of extremals of the variational problem for
L.

PROOF. Since L(zla 2™yl ", H(z,--, zn.’ ¥ yn—l))

=1, we have, by differentiating } 7 ._, gsm¥*y™ = 1in ¢,

(2.18) Dogav* + ) gt =
‘ k=1 h=1 oy
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fori=1,---,n—1a.nd
H
(2.19) ag""‘ " "‘+Zzg,,,.y WOH

for i =1,- - -, n. Therefore, we get, by differentiating (2.18) in ',

8H  O8H OHOH < . 0°H
(220)  gji +gnig g+ gingr +Iung 55 +Zgnz.y 5407

fori,j =1, n — 1. Thus, we have, from (2.20),

(2.21) ZQJ.F’+ng0yJF ng ,

i=1

L OHOH ;& ;
+Zlgnna,ay J+Zzgnky oy,a, 7 =0.
=

k=1 j=1

By making use of the equation

(2.22) = Ey: "Z piOE

(see [4]), we get

7 (223) Z g'm F = ng" Z gn:yJ
and
n—1
OHOH L OH 0
(2'24) Egﬂna ] ayj nnF Z ﬂﬂ ay 835

fori=1,---,n — 1. Hence, by substituting (2.23) and (2.24) into (2.21),
we get

| ud oOH 0H
(225) ,2:; (g,'.' + gjn'b?) Fi — (gm + gun ) ZyJ 625
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(2.29) ;=T

fori=1,--+,n —1. On one hand, we have, by differetiating (2.18) along

n 0
Ea:ly 08“,
89:1: a 89"6“ GaH
(2-26) ;1 y* +Zg.,,0 —y* + ; y* o
= 0H ,0H
+az=;gnn0 Gy oy hglgnhy “Oy'y =0,

and, from Proposition 2.6 in [4] and (2.26), we have

n n—1 . O*H
Z ZgnhthJ dy’ by

h=1j=1

= Zgnky e + Zgnh'yk gg g-H,, Z 89“?/’. ¢

LI ): ( _og_)( 8H)
+k; oy T2\ T 3oe

fori=1,--+,n—1. Therefore, we get, by making use of (2.19) and (2.25),
i OH Ogin 8gia 89ax
2 : y j -

> (s amgg) ¥+ ,.; : (50 + o0~

Ogni Ogna _ ogah) 0H ) k y®
+ (82“ + 0z*  dem ) By =0

fori=1,---,n— 1. Let

0 (] a ia a a a |
(2.28) Ty(z,y) = E.%:F’ + Z (ai: ai" B 01"')3/ v

hya=1

fori =1,.-+,n. Then, the above equation (2.27) becomes
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fori=1,---,n—1. We want to show that ['; =0 fori=1,---,n. To do
this we first have that ) _, I'vy* = 0. In fact, since L? is constant along
both solutions of the original equation (1.1) and of (2.1), we have

i i §L?
(2.30) Zy’ 8zi z; Zy’ 8z Z d:z B'y’

2
and, therefore, by Zz, =Y =1 29ixy" and (2.1), we get

= : 89ja , 8950  Ogat\ o ¢
(2.31) ;29,-;1"13/‘ Z y’(0;, ety vl KO

Jlya=1

namely, 337, I'yy* =0. T, =0, then; =0 fori =1,--,n—1 because

- of the above equation (2.29). Suppose for 1nd1rect proof that I, # 0 for

some y € S. Then,

0= T’ =T, (y - E 0yky;.)
k=1

By assumption, we have
X 0H
yn = H(zl,. . .,z"”yl’. . n 1) — Z ayhyh

on a neighborhood of y. We work in a coordinate neighborhood (U; 2! ,-- -,

z") such that z((y)) = 0, 00
(0,:++0,1). On the other hand,

= y. Then, the y has the coordinate

n-l

y* = H(0,---,0 Za =(0,+++,0)y* =0,

- contradicting y = 0 ¢ S. Hence, we claim that ', = 0, and, therefore,

=0 for ¢ =1, -, n. This completes the proof.



3. Generalized metrics and connections. We call a function f :
TM — R a generalized function on M and a map X : TM — TM with
X(y) € Tr(y;)M a generalized vector field on M. Hereafter let Q be a
generalized distribution on M such that y € Q(y) C Tx(,)M, Q(Ay) =
Q(y) for A > 0, and the faundamental tensor g(y) = (g;;(v)) is positive

definite on Q(y) forany y € C. Let E; = T’-‘I)
basis of Q with respect to g, namely, g(y)(E:(y), E;(y)) = &;; and {E(y), -

s Em(y)} spans Q(y) for any y € C. Define a generalized metric h as
follows, by making use of a Riemannian metric § on M,

y***y Em be an orthonormal

(3.1)  R(y)(X,Y) = §(x(y)) (X — P(X),Y — P(Y)) + g(P(X), P(Y))

for any X, Y € Ty(y)M, where P(X) = 33°%, g(X, E;(y))E;(y). We
should notice that the function L is represented with this generalized met-
ric, i.e.,

(3.2) Y by = L(y)?

i,j=1

for any y € C. Since k(X,-) = g(X,-) for any X € Q(y), we have the .
following.

LeMMA 3.1. It holds that

(3.3) Ry = gy,
i=1 i=1
" Ohyi ;o= Ogii
(3-4) ;—;’,,-y’ = ga—i’;y’,
2 Ohj;
3. =y = gui — hai
( 5) g} 0y"yl s hk

foranyye€ C and k,i=1,--.,n.
We omit the proof.
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Let an associated vector field V be
(3-6) V= Zy’ - + Z (y)

on S. We may think ¥ = Fi|S for j = 1,---,n in virtue of Proposition
2.1 and 2.2. We extend the vector field V on S to C by putting ¥ (Ay) =
A2V (y) for any y € S and A > 0. As seen before for L?(y), we put
1 6%*
.h- —_ — = ] .
75 i(y) 2 5y 07 ()

(cf. [4]). We define the coefficients N*; of a non-linear connection by
(3.7) N*(y) =D v v*®»)

i=1
and a differential operator (see [7])

b,
(3.8) w M ZN

fori =1,--.,n. For a generalized function f : C — R we put

(3.9) Xf= EX’ o

if a generalized vector field X is expressed as X = E?:a. X’EZ—- in a

coordinate neighborhood (U;2!,- - -,2"), where X’ : CN=x~}(U) — R.
We also define the coefficients I';¥; of a V-connection (see [7]) by

ia [ 6hak Sh,-., Shjx
(3.10) Ti's(y) = 2 Zh ( Sai 6z" Sz ) '
and a covariant differentiation V (see [7]) by

(3.11) VxY(y) = Z X! ( ir*’*(y)yk) ai:

Ji=1

for any generalized vector fields X = 377 | X’ 5%1- andY =337, Y/ 5%-

on M. From definition we have the following.



LeEMMA 3.2. It holds that
(3.12) Xh(Y,Z)=h(VxY,2) + hY,Vx2Z)

for any generalized vector fields X, Y, Z on M.

As usual we can define the covariant differentiation of a vector field Y
along a curve ¢ : I — M with ¢(t) € C (see [7]);

(3.13) Vi)Y = Z ( Z ry ,,(c(t)) ) %

i,h=1

We call a curve ¢ : I — M a geodesic if Vi) =0 for any t € I.

LEMMA 3.3. Let ay(t) = xf'y fort and y € S. Then, o, is a
geodesic.

PRoOF. We suppose ay(t) = (z!(t),- - -,2%(t)) in a coordinate
neighborhood (U;2!,: - -,2%). Since f*y is an integral curve of V and

(3.14) @) =— 3 ws)vs,

j k=1

we see from (3.4) that

d’ ; N il eraanedrin
(3.15) = b (&) = - ) 1'a(2(2)# (2)2"(2).
jk=1
Hence, it suffices to prove that
(3.16) ¥=—3 Iiwfy
Jhk=1

for any y € S. By (3.10), (3.8), (3.5), (3.14), (3.4), (3.3) and (2.17), we
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have

- i in 1 O~ ((Ohu  Ohj  Ohyy
(3.17) Z hiili' Wy = Y Z ((025 T 92k Bzt

ijh=1 Jk=1
= Oh Oh; 8h
b a th b, a it b i h k
= Y (P ntia + e — v ))y’
a,b=1 ( 3y“ ay

_ 1 i Ohn. (9h¢ 0hk : h ki a
T2 (Zl ( 923 T 0.':" - a;t )ny +Z—:2b (Qta —hta))

- Zgatb + Z ba(gta - hta) - Zb htc

a=1 a=1

Since h¢, make a non-singular matnx, we get the desired equation.

LEMMA 3.4. Let a, be a geodesic and let X, Y be any generalized
vector fields along a,. Then,

(3.18)
Zh(EO)X,Y) = hey () (Va0 X, Y) +May(0) (X, Yoy ¥)

for any t.

PRroOF. Let ay(t) = (2(t), -+, 2"(t)) in a coordinate neighborhood
(U;=!, -+ -,2*). Then, we have

; d de B * (dz" Ohi; d?zh Oh;
(3.19) =hy; (z(t),;,;(t)) -; ( dt beh | an 0'y")

_ e da ah,, z k dz* dzb 8h,'j
_E(dt Sk Z"’“ Y3t dt Oyh

_ i iﬂi 8h,-,- _ dz® b Oh,,
T 2sdt | Ozt dt 7 Moy

a,b=1

= dz* §h;; dz®
= WEJ-J'=Z — (BesTita + hiel5%) -
h=1

=

By using (3.19) and (3.11) we get (3.18). This completes the proof.



4. Curvature tensor. We have already defined a covariant differentia-
tion by generalized vector fields. Here we also define a covariant differen-
tiation by vertical vector fields. Let f : C — R be a generalized function

on M and Y a vertical vector field on C, namely Y = E;.’zl Y/ (—9% in a

coordinate neighborhood. Then,
(4.1) Yf=)Y o

If X is a generalized vector field, then

X 8

2
(4.2) VyX = ZY 3y 5

i,Jj=1

in a coordinate neighborhood (U; 2!,---,2"). To define a curvature tensor
we need the generalized Lie bracket {X,Y} for generalized vector fields
X, Y on M, which is by definition

X, Y} =X(Yf)-Y(Xf)

for any generalized function f : TM — R. By direct computation we get
the following.

LeMMA 4.1. It holds that

(43) {x,Y}= 2,,: (XJ’ W -Y’ 5xf ) 2

£ LY b2 ) Oaxi
Hhi=1
i .. (§N%, . §N%.\ @
ivyi i _ i v
+a§-1x Y ( bzt 627 ) O0y*

where X, Y are generalized vector fields on M with X = ) 3w X"a—-i?

andY =37 | Y"—o—‘. in a coordinate neighborhood (U;2?,- .- 2").

Oz
LEMMA 4.2. The following are true.
(4.4) {X,Y} = —{, X}.
(4.5) {rx,v} =X, Y} - (Y)X.

{X,fY} =(Xf)Y + f{X,Y}.



Here f is any generaliged function and X, Y are any generalized vector

fields on M.
We can define the curvature tensor R by
(4.6) R(X,Y)Z=VxVyZ-VyVxZ -VixvZ

for any generalized vector fields X, Y, Z on M as seen in [7].. The local
expression is given in the following. ‘
LeMMA 4.3. It holds that
51‘5'.5 _ §T.0s
§z° Szi

(47) R(X,Y)Z = i: X“Y"Z"(

a,b,j,i=1

= i § 4
+1.2=:1 (Ta®aT3% —Tj*4Tas)) Bat

For convenience we write < -, >= h(-, ).

LEMMA 4.4. For any tangent vectors X, Y, Z, W of M, we have
the following.

(4.8)

< R(X,Y)Z,W >=—- < R(Y,X)Z,W >
(4.9) | |
< R(X,Y)Z,W >+ < R(Y,2)X,W >+ < R(Z,X)Y,W >=0

We define a curvature tensor N of the non-linear connection by

(4.10) N(X,Y)= zn: Xiy® (

Ji=1

ON*; _ 6N“.') 0
St dzi | Oy*

for any tangent vectors X, Y of M as seen in [7]. The coefficients N;%;

are given by
« ON®; 0N
Ni%s = Sz Szi
LEMMA 4.5. For any tangent vectors X, Y, Z, W of M, the fol-
lowing is true.

(411) < R(X,Y)Z,W >= - < R(X, Y)W, Z > + (VNnx,v)k) (Z,W)
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PROOF. Let p be a point of M with X, Y, Z, W € T, M and let
y € C with x(y) = p. Extend X, Y, Z, W to genera.hzed vector fields on
a neighborhood of p such that they depend only on the underlying points
p. We denote them by the same notation. From (3.12) we have

(4.12) X(Y < Z,W >)=<VxVyZ,W >+ < VyZ VW >
+< VxZ,VyW >+ < Z,VxVyW >

(4.13) Y(X <Z,W >) = VyVxZ,W > + < VxZ,VyW >
+<VyZ,VxW >+ < Z,VyVxW >

apd

(4.14) {X,Y}< Z,W >=< VixyyZ, W >
+ < Z,V{x'y}W > +(VN(x’y)h)(Z, w).

These formulas and the definition (4.6) of R give us this lemma.

We will get the symmetric property of the curvature tensor, assuming
a condition.

THEOREM 4.6. If the (0,2)-tensor E.-1 ¥ N;%(ges — hep) is zero at
y € S, then

(4.15) < R(X,y)y,Y >=< R(Y,y)y, X >

for any tangent vectors X, Y € Tey)M.
ProoF. By (4.11), (4.10), (3.5), (4.9) and the assumption, we have

(4.16)

<R(X,y)y,Y >=— < R(X,y)Y,y > + E X3 of N;b, 228t Ohue .

Y‘
ji
J,sbht 1 ayb

= - < R(X,y)Y,y > + Z Xy’ N;%i(ger - hus)Y*

J.i,bt=1
=< R(3,Y)X,y >+ < R(Y, X)y,y > .

— 20 —



By (4.11), (3.5) and (3.3), we get

(4.17) i
<R, X)yy>=-<RY,X)y,y>+ Y Y XN(90 —hu)y'
Jribt=1
= - < R(Y,X)y,y >,
and, therefore,
(4.18) < R(Y,X)y,y >=0.
and, hence
(4.19) < R(X,y)y,Y >=< R(y,Y)X,y >

Combining (4.19), (4.8) and (4.11), we get, by the skew-symmrtric prop-
erty of N,

(4.20)
< R(Xa y)y:Y > =< R(Ya y)va >+ Z iniiji(gtb - htb)Xt
Jibit=1
=< R(Y,y)y, X >

This completes the proof.

We conclude this section to see that the curvature tensor R(-,y)y ap-
pears from the geodesic variation. To see it we need a lemma.

LEMMA 4.7. Let Y be a generalized vector field on M and o a
geodesic. Then

dy: <& o
(4.21) VanY = Z ( + ) T ,. ) 7o

i=1 j k=1

where a(t) = (2!(¢),: - -, 2™(t)) and ¥ = > 7, Y'B%.— in a coordinate
neighborhood (U;2t,: - -,2").
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PrRoOF. By definition, (3.13), (3.14), (3.7) and (3.8), we have

(4.22)

hid dzj é ki i % 0
Vao¥ =2, (3—7 + D TY ) =

i,j=1 1

_ s dzj 0Yi h a 0Yi i i A 8
= W(EE“;N’@«“L,_;P’ "Y)EIJ

i,j=1

= i (%h(‘)ﬁ(ﬂ)*‘ ) I‘,-‘,.%Y") 3%

i=1 h,j=1

because « is a geodesic.
Let B: I x(—¢,€) = M be a geodesic variation, namely 8, : I — Misa
geodesic for each s € (—¢,¢), and let X(¢,s) = %—'f(t, $),Y(s)= g—'[:(t, s)

for any (¢,5) € I x (—¢,€). We make the covariant derivative of Y along
the geodesic a = By twice in a coordinate neighborhood. Then, we have,

by (4.21), (3.14), (3.7), (3.15), (3.16),
Va)Van)Y = R(a(t),Y)a(t)

o~ O3t [OY° L N e yhgs) i 0
3 0y“(0tX+62=;NbYX Xi o=

i,j,a,k=1

In the computation we should notice that Vi)Y is a generalized vector
field along «. We have just proved the following.

i) L
Oy
geodesic variation vector field Y along any geodesic a satisfies the equation

of Jacobi type

ProPOSITION 4.8. If (¥)¥ = 0 for any y € S, then any

VaVsY + R(Y,d)d = 0.

It should be noted that the assumptions of Theorem 4.6 and Proposition
4.8 are satisfied if h = g, namely, y — L(y)? is strictly convex and Q(y) =
Tx(y)M for any y € S and we can see a systematic description for this case
(cf. [7]). The properties in Theorem 4.6 and Proposition 4.8 play very
important roles in the proof of Rauch’s comparison theorem.
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