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Abstract. A classical result on the representation of harmonic functions with

singularity in $R^{\mathfrak{n}}$ is proved using the distributions instead of the series expansion of

a harmonic function.

1. Introduction

M. Brelot (pp. 189-202 in [1]) has described the behaviour of harmonic function

in the neighborhood of a point singularity in $R^{n},$ $n\geq 2$ . For that study, he makes

an extensive use of the Laurent-type series expansion of harmonic function around

the singular point.

We point out in this note, how these results could be obtained using the theory

of distributions instead of the series expansion. This method is elegant and allows

a unified version of the results unlike in the series expansion where the case $R^{2}$ has

to be treated a little differently from the case $R^{n},$ $n\geq 3$ .

If $\Delta$ is the Laplacian operator, the fundamental solution $F_{n}$ in $R^{n}$ , $n\geq 1$ , is
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given by $\Delta F_{n}=\delta$ , where $\delta$ is the Dirac measure at $0$ and

$F_{n}(x)=\left\{\begin{array}{l}\frac{1}{2}|x|n=1\\\frac{1}{2\pi}|x|n=2\\\frac{-11}{(n-2)\sigma_{\mathfrak{n}}|x|^{n-2}}\geq 3,\sigma_{n}isthesurfaceareaoftheunitsphereinR^{n}\end{array}\right.$

Interpreting the linear (resp. the convex) functions in $R$ as harmonic (resp. subhar-
monic) functions, we will prove the following theorem for all $M,$ $n\geq 1$ .

Theorem: Let $u$ be harmonic in the punctured unit sphere $B_{\mathfrak{n}}^{\star},$ $n\geq 1$ , such that
$u(x)=o(\frac{1}{|x|^{\mathfrak{n}-1}})$ when $x\rightarrow 0$ . Then $u(x)$ is of the form $u(x)=v(x)+\alpha F_{n}(x)$

where $v(x)$ is harmonic in the unit sphere $B_{\mathfrak{n}}$ and $\alpha$ is a constant.

2. The Proof of Theorem

Let $B_{n}$ (resp. $B_{\mathfrak{n}}^{\star}$ ) denote the unit sphere $|x|<1$ (resp. the punctured unit
sphere $0<|x|<1$ ) in W.

Lemma: Let $u(x)$ be a harmonic function in $B_{n}^{\star},$ $n\geq 1$ , such that $u(x)=o(\frac{1}{|x|^{\mathfrak{n}-1}}I$

when $x\rightarrow 0$ , then gradu $=o(\frac{1}{|x|^{\mathfrak{n}}})$ when $x\rightarrow 0$

Proof: When $n=1,$ $u$ is of the form

$u(x)=\left\{\begin{array}{l}axx>0\\bxx<0\end{array}\right.$

where $a$ and $b$ are real. If we take gradu $=\frac{du}{dx}$ , then gradu $=o(\frac{1}{|x|}I\cdot$

When $n\geq 2$ , given $\epsilon$ , by hypothesis, there exists an $r>0$ such that $|u(x)|\leq\frac{\epsilon}{|x|^{\mathfrak{n}-1}}$

if $|x|\leq r$ . Let $x_{0}$ be a point such that $|x_{0}|=\rho<\frac{2}{3}r$ . Then if $s$ is the sphere
$|x-x_{0}|=\frac{\rho}{2},$ $\max_{xes}|u(x)|\leq\epsilon\frac{2^{n-1}}{\rho^{n-1}}$ . Consequently, (see p. 198, M. Brelot [1]),

$|gradu$ at $x_{0}|\leq\frac{A}{\rho}\frac{\epsilon 2^{\mathfrak{n}-1}}{\rho^{n-1}}$ .
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$\epsilon$ being arbitrary, this proves that

$|gradu|=o(\frac{1}{|x|^{n}}I$ $whenx\rightarrow 0$ .

Proof of theorem; When $n=1$ , this theorem can be proved quite simply as

follows: By hypothesis, $u$ is of the form

$u(x)=\left\{\begin{array}{l}ax0<x<1\\bx<x<0\end{array}\right.$

i.e. $u(x)=\frac{a+b}{2}x+\frac{a-b}{2}|x|$ . Hence $u(x)=v(x)+(a-b)F_{1}(x)$ , where $v(x)$ is harmonic

in $|x|<1$ .

When $n\geq 2$ , since $|x|^{n-1}u(x)$ is bounded in a neighbourhood of $0,$ $u(x)$ is locally

integrable in $B_{n}$ and hence defines a distribution in $B_{\mathfrak{n}}$ .

We will calculate $\Delta u$ in the sense of distribution. Let $\varphi\in C_{0}^{\infty}(B_{n})$ be a test

function.

Then $<\Delta u,$ $\varphi>$ $=$ $<u,$ $\Delta\varphi>$

$=\lim_{r\rightarrow 0}\int_{|x|\geq r}u.\Delta\varphi dv$

$<\Delta u,\varphi>=\lim_{r\rightarrow 0}[\int_{|x|\geq r}\varphi\Delta udv+\int_{|x|=r}[u\frac{\partial\varphi}{\partial n}-\varphi\frac{\partial u}{\partial n}]d\sigma$ $(\star)$

(i) since $\Delta u=0$ when $|x|\geq r>0$ , then

$\int_{|x|\geq r}\varphi\Delta udv=0$

(ii) On $|x|=r,$ $d\sigma=r^{n-1}dw$ , where $dw$ is the small surface area on the unit sphere

consequently, since $u(x)=o(\frac{1}{|x|^{n-1}}I$ and $\frac{\partial\varphi}{\partial n}$ is bounded on $|x|=r$ , then we have

$\lim_{r\rightarrow 0}\int_{|x|=r}u\frac{\partial\varphi}{\partial n}d\sigma=0$
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(iii) When $|x|=r$ is small, $|\varphi(x)-\varphi(0)|\leq A|x|$ where $A$ is real positive. From the
lemma above we have $|\frac{\partial u}{\partial n}|=o(\frac{1}{|x|^{n}})$ If we set $\alpha=-\int_{|x|=r}\frac{\partial u}{\partial n}d\sigma$ , then a is

constant multiple of the flux of $u$ which is independent of $r>0$ , since $u$ is harmonic
in $B_{n}^{\star}$ .

Consequently $|\int_{|x|=r}\varphi(x)\frac{\partial u}{\partial n}d\sigma+\alpha\varphi(0)|$

$=$ $|\int_{|x|=r}(\varphi(x)-\varphi(0))\frac{\partial u}{\partial n}d\sigma|$

$\leq\int_{|x|=r}|\varphi(x)-\varphi(0)||\frac{\partial u}{\partial n}|d\sigma\rightarrow 0$ as $r\rightarrow 0$

Thus, going back to the equation $(\star)$ we conclude that:

$<\Delta u,\varphi>=<\alpha\delta,\varphi>$ .

Since $\varphi$ is an arbitrary test function, then $\Delta u=\alpha\delta$ and consequently $u=v+\alpha F_{n}$

where $\Delta v=0$ i.e. $v$ is a harmonic function in $B_{n}$ .

Corollary. Let $u$ be a harmonic function in $B_{\mathfrak{n}}^{\star},$ $n\geq 2$ , such that $u(x)=$

$o(F_{n}(x))$ when $x\rightarrow 0$ . Then $u$ extends as a harmonic function in $B_{n}$ .
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