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A THIRD ORDER DIFFERENTIAL
EQUATION AND REPRESENTABLE POLES

KATSUYA ISHIZAKI

Abstract It is showed in this note that if a third order differential equation
$w^{\prime\prime l}=\lambda(z)w^{\prime\prime}+R(z, w)w^{\prime}=\lambda(z)w^{\prime\prime}+\frac{P(z,w)}{Q(z,w)}w^{l}$ , where $\lambda(z)$ is a meromor-
phic function and $P(z, w)$ and $Q(z, w)$ are polynomials in $w$ with meromorphic
coefficients, possesses an admissible solution $w(z)$ , then $w(z)$ satisfies a linear
differential equation, a second order equation of Painlev\’e type, or first order
equation of the form $c(z)(w^{\prime})^{2}+B(z, w)w^{\prime}+A(z, w)=0$ , where $B(z, w)$ and
$A(z, w)$ are polynomials in $w$ having small coefficients with respect to $w(z)$ . The
main tools of the proof are lemmas on representable poles.

1. Introduction

In this note, we will treat algebraic differential equations with admissible so-
lutions in the complex plane. The $Malmquist-Yosida$-Steinmetz type theorems
have been studied by means of the Nevanlinna theory. During the last two
decades several mathematicians gave remarkable improvements. We can find
them, for instance, in Laine [8, Chapters 9-13].

In this note, we use standard notations in the Nevanlinna theory (see e.g. [2],
[8], [10]). Let $f(z)$ be a meromorphic function. As usual, $m(r, f),$ $N(r, f)$ , and
$T(r, f)$ denote the proximity function, the counting function, and the character-
istic function of $f(z)$ , respectively.

A function $\varphi(r),$ $ 0\leqq r<\infty$ , is said to be $S(r)f)$ if there is a set $E\subset R^{+}$ of
finite linear measure such that $\varphi(r)=o(T(r, f))$ as $ r\rightarrow\infty$ with $r\not\in E$ .
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A meromorphic function $a(z)$ is small with respect to $f(z)$ if $T(r, a)=S(r, f)$ .
In the below, $\mathcal{M}=\{a(z)\}$ denotes a given finite colection of meromorphic func-
tions. A transcendental meromorphic function $f(z)$ is admissible with respect
to $\mathcal{M}$ if $T(r, a)=S(r, f)$ for any $a(z)\in \mathcal{M}$ .

Let $ c\in \mathbb{C}\cup t\infty$ }. We call $z_{0}$ a c-point of $f(z)$ if $f(z_{0})-c=0$ . Suppose that
a transcendental meromorphic function $f(z)$ is admissible with respect to $\mathcal{M}$ .
A c-point $z_{0}$ of $f(z)$ is an admissible c-point with respect to $\mathcal{M}$ if $a(z_{0})\neq 0,$ $\infty$

for any $a(z)\in \mathcal{M}$ .
Suppose $N(r, c;f)\neq S(r, f)$ for a $ c\in \mathbb{C}\cup t\infty$ }. Let $P$ be a property. We

denote by $n_{P}(r, c;f)$ the number of c-points in $|z|\leqq r$ that admit the property
P. The integrated counting function $N_{P}(r,c;f)$ is defined in the usual fashion.
If

$N(r, c;f)-N_{P}(r, c;f)=S(r, f)$ ,
then we say that almost all c-points admit the property P.

We define an admissible solution of the equation
(1.1)

$\Omega(z, w, w^{\prime}, \ldots, w^{(n)})=\sum_{J\in J}\Phi_{J}=\sum_{J\in J}c_{J}(z)\dot{\theta}^{o}(w^{\prime})^{j_{1}}\cdots(w^{(n)})^{j_{\mathfrak{n}}}=0$ ,

where $\mathcal{J}$ is a finite set of multi-indices $J=(j_{0},j_{1}, \ldots,j_{n})$ , and $c_{J}(z)$ are
meromorphic functions. Let $\mathcal{M}_{(1.1)}$ be the colection of the coefficients of
$\Omega(z, w, w^{\prime}, \ldots,w^{(n)})$ in (1.1), say $\mathcal{M}(1.1)$ $;=\{c_{J}(z)|J\in \mathcal{J}\}$ . A meromorphic
solution $w(z)$ of the equation (1.1) is an admissible solution if $w(z)$ is admissible
with respect to $\mathcal{M}_{(1.1)}$ .

The basic Test-Power test gives us an information of the dominant behavior
of an admissible solution in a neighbourhood of its admissible pole. The ideas
which are contained in Steinmetz [12, Lemma 1, pp. 47-48] oriented us towards
the constructions of some auxiliary functions that play important roles. In Sec-
tion 2, we will give some generalizations of the Steinmetz lemma by means of
further investigations of higher order terms in the Laurent $s$eries of the admis-
sible solution in a neighbourhood of its admissible pole. In Section 3, we will
give an application of the lemmas, which we study in Section 2, to a third order
differential equation.

2. Lemmas on the representable poles

In the first part of this section, we summarize our results on representable
simple poles in Ishizaki [4], [5].

Let $f(z)$ be a transcendental meromorphic function and let $R(z)$ and $\alpha(z)$ be
small functions with respect to $f(z)$ . Let $z_{0}$ be a simple pole of $f(z)$ . We say
that $z_{0}$ is representable in the first sense by $R(z)$ and $\alpha(z)$ , if

$f(z)=\frac{R(z_{0})}{z-z_{0}}+\alpha(z_{0})+O(z-z_{0})$ , as $z\rightarrow z_{0}$

in a neighbourhood of $z_{0}$ . For the sake of simplicity, we call such a simple pole
an Sl-pole. The Steinmetz lemma [12] could be rewritten as follows in terms of
(
$S1$-pole” defined here.
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Lemma 2.1. Let $w(z)$ be a transcendental meromorphic $fu$nction. If almost
$a\Pi$ poles of $w(z)$ are Sl-poles and if $w(z)$ satisfies $m(r, w)=S(r, w)$ , then $w(z)$

satisfies a Riccati $eq$uation.

For the definition of $S2$-pole, we introduce the following further material. Let
$\lambda_{1},$ $\lambda_{0}$ be complex constants and let $L$ be a set of linear transformations of a
quantity $R$ ,

(2.1) $L=L_{(\lambda_{1},\lambda_{O})}=\{L=\frac{l_{1}R+l_{2}}{l_{3}R+l_{4}}|l_{4}^{2}-\lambda_{1}l_{3}l_{4}+\lambda_{0}l_{3}^{2}\neq 0$ ,

$l_{j}\in \mathbb{C}$ , $j=1,2,3,4$ .

We define an equivalence $relation\sim inL$ by

$L=(a_{1}R+a_{2})/(a_{3}R+a_{4})\sim M=(b_{1}R+b_{2})/(b_{3}R+b_{4})\in L$ ,

(2.2) $\left\{\begin{array}{l}\lambda_{0}(a_{1}b_{3}-b_{1}a_{3})=a_{2}b_{4}-b_{2}a_{4}\\\lambda_{1}(a_{1}b_{3}-b_{1}a_{3})=a_{1}b_{4}-b_{q}a_{4}+a_{2}b_{3}-a_{3}b_{2}\end{array}\right.$

Proposition 2.2.
(i) If $L=(a_{1}R+a_{2})/(a_{3}R+a_{4})\in L$ , then $L\sim L^{*}=A_{1}R+A_{2}$ , where

$A_{1}=\frac{-a_{2}a_{3}+a_{1}a_{4}}{\lambda_{0}a_{3}^{2}-\lambda_{1}a_{3}a_{4}+a_{4}^{2}’}$
$A_{2}=\frac{\lambda_{0}a_{1}a_{3}-\lambda_{1}a_{2}a_{3}+a_{2}a_{4}}{\lambda_{0}a_{3}^{2}-\lambda_{1}a_{3}a_{4}+a_{4}^{2}}$ .

(ii) If $L=a_{1}R+a_{2}\sim M=b_{1}R+b_{2}$ , then $a_{1}=b_{1}$ and $a_{2}=b_{2}$ .

By Proposition 2.2, we can take, for each equivalent class in $L$ , a unique
representative which is an entire linear transformation. We denote by $L^{*}=$

$L^{*}(\lambda_{1}, \lambda_{0})$ the set of all such representatives. We define $aL+bM$ and $LM$ as
follows: For $a,$ $b\in \mathbb{C},$ $L=a_{1}R+a_{2},$ $M=b_{1}R+b_{2}\in L^{*}$ ,

(2.3) $aL+bM=(aa_{1}+bb_{1})R+aa_{2}+bb_{2}$ ,

(2.4) $LM=(a_{1}b_{2}+a_{2}b_{1}-\lambda_{1}a_{1}b_{1})R+(a_{2}b_{2}-\lambda_{0}a_{1}b_{1})$ .

Let $L=a_{1}R+a_{2},$ $M=b_{1}R+b_{2}$ be two elements of $L^{*}$ . We say that $L$ and
$M$ are independent, if $a_{1}b_{2}-a_{2}b_{1}\neq 0$ . We can easily obtain the following
propositions:

Proposition 2.3. Le$tL$ and $M$ be elemen $ts$ of $L^{*}$ . If $L$ and $M$ are independent,
then for any $N\in L^{*}$ , there exist $\tau_{1},$ $\tau_{2}such$ that $N=\tau_{1}L+\tau_{2}M$ .
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Proposition 2.4. Let $L$ and $M$ be elemen $ts$ of $L^{*}$ . IfL and $M$ are independent,
then for any $N=aR+b\in L^{*}$ with $\lambda_{0}a^{2}-\lambda_{1}ab+b^{2}\neq 0,$ $NL$ and $NM$ are also
independent.

Let $f(z)$ be a transcendental meromorphic function. Let all functions $\alpha_{1}(z)$ ,
. .. , $\alpha_{4}(z),$ $\beta_{1}(z),$

$\ldots$ , $\beta_{4}(z),$ $\gamma_{1}(z),$
$\ldots,$

$\gamma_{4}(z),$ $\lambda_{1}(z),$ $\lambda_{0}(z)$ be smal functions
with respect to $f(z)$ satisfying

$\Lambda(z)$ $:=\lambda_{1}(z)^{2}-4\lambda_{0}(z)\not\equiv 0$ ,
$\tilde{\alpha}(z)$ $:=\alpha_{4}(z)^{2}-\lambda_{1}(z)\alpha_{3}(z)\alpha_{4}(z)+\lambda_{0}(z)\alpha_{3}(z)^{2}\not\equiv 0$ ,

(2.5)
$\tilde{\beta}(z)$ $:=\beta_{4}(z)^{2}-\lambda_{1}(z)\beta_{3}(z)\beta_{4}(z)+\lambda_{0}(z)\beta_{3}(z)^{2}\not\equiv 0$ ,
$\tilde{\gamma}(z)$ $:=\gamma_{4}(z)^{2}-\lambda_{1}(z)\gamma_{3}(z)\gamma_{4}(z)+\lambda_{0}(z)\gamma_{3}(z)^{2}\not\equiv 0$ .

Let $z_{0}$ be a simple pole of $f(z)$ . We say that $z_{0}$ is representable in the second
sense by $\alpha_{1}(z),$

$\ldots$ , $\alpha_{4}(z),$ $\beta_{1}(z),$
$\ldots$

$\beta_{4}(z))\gamma_{1}(z),$
$\ldots$ , $\gamma_{4}(z),$ $\lambda_{1}(z)$ and $\lambda_{0}(z)$ ,

if

(2.6) $f(z)=\frac{R}{z-z_{0}}+\alpha+\beta(z-z_{0})+\gamma(z-z_{0})^{2}+\delta(z-z_{0})^{3}$

$+O(z-z_{0})^{4}$ , as $z\rightarrow z_{0}$

in a neighbourhood of $z_{0}$ , and

(2.7) $R^{2}+\lambda_{1}(z_{0})R+\lambda_{0}(z_{0})=0$ , $\Lambda(z_{0})\neq 0$ ,

$\alpha=\frac{\alpha_{1}(z_{0})R+\alpha_{2}(z_{0})}{\alpha_{3}(z_{0})R+\alpha_{4}(z_{0})}$ , $\beta=\frac{\beta_{1}(z_{0})R+\beta_{2}(z_{0})}{\beta_{3}(z_{0})R+\beta_{4}(z_{0})}$ ,
(2.8)

$\gamma=\frac{\gamma_{q}(z_{0})R+\gamma_{2}(z_{0})}{\gamma_{3}(z_{0})R+\gamma_{4}(z_{0})}$ , $\tilde{\alpha}(z_{0})\neq 0,\tilde{\beta}(z_{0})\neq 0,\tilde{\gamma}(z_{0})\neq 0$ .

For the sake of brevity, we call such a $s$imple pole an S2-pole. Now we define the
stronger and weaker conditions than S2-po1e. In addition to the condition (2.5),
let $\delta_{1}(z),$

$\ldots$
$\delta_{4}(z)$ be small functions with respect to $w(z)$ so that

(2.9) $\tilde{\delta}(z):=\delta_{4}(z)^{2}-\lambda_{1}(z)\delta_{3}(z)\delta_{4}(z)+\lambda_{0}(z)\delta_{3}(z)^{2}\not\equiv 0$ .

Let $z_{0}$ be a simple pole of $f(z)$ . We say that $z_{0}$ is strongly representable in the
second sense by $\alpha_{1}(z),$

$\ldots$ , $\alpha_{4}(z),$ $\beta_{1}(z),$
$\ldots,$

$\beta_{4}(z),$ $\gamma_{1}(z),$
$\ldots,$

$\gamma_{4}(z),$ $\delta_{1}(z)$ ,
.. . , $\delta_{4}(z),$ $\lambda_{1}(z)$ and $\lambda_{0}(z)$ , if $f(z)$ is written as in (2.6), $R$ satisfies (2.7), and
$\alpha,$

$\beta,$
$\gamma$ , are represented as in (2.8), and

(2.10) $\delta=\frac{\delta_{1}(z_{0})R+\delta_{2}(z_{0})}{\delta_{3}(z_{0})R+\delta_{4}(z_{0})}$ $\tilde{\delta}(z_{0})\neq 0$ .
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For the sake of brevity, we call such a simple pole an $SS2- pole$ . We say that $z_{0}$ is
weakly rep resentable in the second sense by $\alpha_{1}(z),$

$\ldots$
$\alpha_{4}(z),$ $\beta_{1}(z),$

$\ldots$ , $\beta_{4}(z)$ ,
$\lambda_{1}(z)$ and $\lambda_{0}(z)$ , if the conditions with respect to $\alpha$ and $\beta$ in $(2.5)-(2.8)$ hold.
For the sake of brevity, we call such a simple pole an WS2-pole.

Let $z_{0}$ be a pole of $f(z)$ such that $\Lambda(z_{0})\neq 0$ . We denote by $L[z_{0};R]$ the set
of linear transformations of $R$ as in (2.1):

$L[z_{0};R]=L_{(\lambda_{1}(z),\lambda_{0}(z))}(z_{0})=\{L=\frac{l_{1}(z_{0})R+l_{2}(z_{0})}{l_{3}(z_{0})R+l_{4}(z_{0})}|$

(2.1) $l_{j}(z),$ $j=1,2,3,4$ , small for $f(z)$ ,

with $l_{4}(z_{0})^{2}-\lambda_{1}(z_{0})l_{3}(zo)l_{4}(z_{0})+\lambda_{0}(z_{0})l_{3}(z_{0})^{2}\neq 0\}$ .

Let $R_{1}$ and $R_{2}$ be the roots of (2.7) for a fixed $z_{0}$ . Since $\Lambda(z_{0})\neq 0$ , we have
$R_{1}\neq R_{2}$ . By simple calculation, $L=(a_{1}(z_{0})R+a_{2}(z_{0}))/(a_{3}(z_{0})R+a_{4}(z_{0}))$ ,
$M=(b_{1}(z_{0})R+b_{2}(z_{0}))/(b_{3}(z_{0})R+b_{4}(z_{0}))\in L(z_{0})$ , satisfying $L_{1_{R=R_{j}}}=M_{1_{R=R_{j}}}$

$j=1,2$ if and only if

(2.2’) $\left\{\begin{array}{l}\lambda_{0}(z_{0})(a_{1}(z_{0})b_{3}(z_{0})-b_{1}(z_{0})a_{3}(z_{0}))=a_{2}(z_{0})b_{4}(z_{0})-b_{2}(z_{0})a_{4}(z_{0})\\\lambda_{1}(z_{0})(a_{1}(z_{0})b_{3}(z_{0})-b_{1}(z_{0})a_{3}(z_{0}))=a_{1}(z_{0})b_{4}(z_{0})-b_{1}(z_{0})a_{4}(z_{0})+\\+a_{2}(z_{0})b_{3}(z_{0})-a_{3}(z_{O})b_{2}(z_{0})\end{array}\right.$

Hence, the following (A) and (B) are equivalent to each other:

(A) $L,$ $M\in L[z_{0};R],$ $L\sim M$ ,
(B) $L,$ $M\in L[z_{0};R],$ $L=M$ under the condition (2.7).

The condition $s$ in (2.5) imply that $\alpha,$
$\beta,$ $\gamma\in L[z_{0};R]$ , while (2.9) implies $\delta$

$\in L[z_{0};R]$ . In other words, the conditions (2.5) and (2.9) are the criteria for
$\alpha,$

$\beta,$
$\gamma$ and $\delta$ to be resonances or not, see e.g. [1, 718-720], [7, 334-340].

By Proposition 2.2, for any $L\in L[z_{0};R]$ , we have a unique entire form $L^{*}$

$\in L^{*}[z_{0};R]$ such that $L_{1_{R=R_{j}}}=L_{1_{R=R_{j}}}^{*},$ $j=1,2$ . From now on, under the

condition (2.7), we write $L=(a_{1}(z_{0})R+a_{2}(z_{0}))/(a_{3}(z_{0})R+a_{4}(z_{0}))$ , in the form
$A_{1}(z_{0})R+A_{2}(z_{0})$ , where $A_{1}(z)$ and $A_{2}(z)$ are defined as in Proposition 2.2 (i).
We can ascertain that the operations (2.3) and (2.4) in $L^{*}[z_{0};R]$ are wel defined
under the condition (2.7). Hence Propositions 2.3 and 2.4 hold for the elements
of $L^{*}[z_{0};R]$ . Let $[R]$ be a root of (2.7) for a fixed $z_{0}$ , where $\lambda_{1}(z_{0})^{2}-4\lambda_{0}(z_{0})\neq 0$ .
We denote by $[L]^{*}[z_{0};R]$ the set of values of the elements of $L^{*}[z_{0};R]$ for $R=[R]$ .
We obtained the result below, see [4, Lemma 2.1], [5, Lemma 2.4].

Lemma 2.5. Let $w(z)$ be a transcendental meromorphic $fu$nction and let $\alpha_{1}(z)$ ,
.. . , $\alpha_{4}(z)_{f}\beta_{1}(z),$

$\ldots$
$\beta_{4}(z),$ $\gamma_{1}(z))$ $\gamma_{4}(z),$ $\delta_{1}(z),$

$\ldots$
$\delta_{4}(z),$ $\lambda_{1}(z)$ an $d\lambda_{0}(z)$

be small $fu11$ctions with respect to $w(z)$ . We denote by $n_{(S2\}}(r, w),$ $n_{(SS2)}(r, w)$

an$dn_{(WS2)}(r, w)$ the numbers of the S2-poles, the SS2-poles and the WS2-poles
of $w(z)$ in $|z|\leqq r$ , respectively. The integrated counting $fu$nction $ N(S2\rangle$ $(r, w)$ ,
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$N_{(SS2)}(r, w)$ and $N_{\{WS2)}(r, w)$ are defined in terms of $n_{\{S2)}(r, w),$ $n_{(SS2)}(r, w)$

and $n_{(WS2)}(r, w)$ in the usual way, respectively. If

(2.10) $m(r, w)+(N(r, w)-N(S2)(r, w))=S(r, w)$ ,

then either $w(z)$ satides a diHerential equation of the form

(2.11) $c(z)(w^{\prime})^{2}+B(z, w)w^{\prime}+A(z, w)=0$ ,

where $c(z)$ is a small function with respect to $w(z)$ , and $B(z, w),$ $A(z, w)$ are
polynomialS in $wh$aving small coeficients with respect to $w(z)$ , or $w(z)$ satishes
a differential equation ofsecond order

(2.12) $w^{\prime\prime}=\tilde{P}(z, w)w^{\prime}+\tilde{Q}(z, w)$ ,

where $\tilde{P}(z, w),\tilde{Q}(z, w)$ are polynomials in $w$ having small coefHcients with $ r\leftarrow$

spect to $w(z)$ . If

(2.13) $m(r, w)+(N(r, w)-N(SS2\}(r, w))=S(r, w)$ ,

then $w(z)$ satisfies a differenti$aI$ equation of the form (2.11). If

(2.14) $m(r, w)+(N(r, w)-N_{\{WS2)}(r, w))=S(r, w)$ ,

then either $w(z)$ satisfies a differential equation of the form (2.11), $w(z)$ satisfes
a differential $eq$uation of second order (2.12), or $w(z)$ satisfies a differential
$eq$ua $t$ion of third order

(2.15) $w^{\prime\prime\prime}=(\sigma_{1}(z)w+\sigma_{0}(z))w^{\prime\prime}+\sigma_{1}(z)(w^{\prime})^{2}+E(z, w)w^{\prime}+F(z, w)$ ,

where $\sigma_{0}(z),$ $\sigma_{1}(z)$ are small functions with respect to $w(z)$ , and $E(z, w),$ $F(z, w)$

are polynomials in $w$ having small coefhcients with respect to $w(z)$ with
$\deg_{w}E(z, w)\leqq 2,$ $\deg_{w}F(z, w)\leqq 4$ . In particular, if $\lambda_{1}(z)\equiv 0$ , then $\sigma_{1}(z)\equiv 0$

in (2.15).

The $s$econd part in this section is devoted to an exhibition of lemmas on a
representable double poles. Let $f(z)$ be a transcendental meromorphic function
and let $r_{1}(z),$ $r_{2}(z),$ $a_{0}(z),$ $a_{1}(z),$

$\ldots$ , $a_{S}(z)$ be small functions with respect to
$f(z)$ . Let $z_{0}$ be a double pole of $f(z)$ . We call $z_{0}$ representable double pole in
the first sense of $f(z)$ by $r_{1}(z),$ $r_{2}(z),$ $a_{0}(z),$ $a_{1}(z),$

$\ldots,$
$a_{3}(z)$ , if $w(z)$ is written

in a neighbourhood of $z_{0}$ as

(2.16) $f(z)=\frac{r_{2}(z_{0})}{(z-z_{0})^{2}}+\frac{r_{1}(z_{0})}{z-z_{0}}+a_{0}(z_{0})+a_{1}(z_{0})(z-z_{0})$

$+a_{2}(z_{0})(z-z_{0})^{2}+a_{3}(z_{0})(z-z_{0})^{3}+O(z-z_{0})^{4}$ ,
as $z\rightarrow z_{0}$ .
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For the sake of simplicity, we abbreviate it Dl-pole. Further we define the
stronger and the weaker conditions than Dl-pole. We say that $z_{0}$ is strongly
representable double pole of $f(z)$ in the first sense by $r_{1}(z),$ $r_{2}(z),$ $a_{0}(z),$ $a_{1}(z)$ ,
.. . , $a_{5}(z)$ , if the coefficients of the first eight terms of the Laurent series of $f(z)$

in a neighbourhood of $z_{0}$ are written in terms of the small functions, say, $r_{1}(z)$ ,
$r_{2}(z),$ $a_{0}(z),$ $a_{1}(z),$

$\ldots,$
$a_{5}(z)$ , respectively. We further define the notion of the

double pole that is weakly representable in the first sense by $r_{1}(z),$ $r_{2}(z),$ $a_{0}(z)$ ,
$a_{1}(z)$ , if the coefficients of the first four terms of the Laurent series of $f(z)$ in
a neighbourhood of $z_{0}$ are written in terms of the small functions, say, $r_{1}(z)$ ,
$r_{2}(z),$ $a_{0}(z),$ $a_{1}(z)$ , respectively. We simply call them SDl-pole and WDl-pole,
respectively.

We denote by $n_{(D1)}(r, f),$ $n_{(SD1\}}(r, f)$ and $n_{(WD1\}}(r, f)$ the number of the Dl-
poles, SDl-poles and WDl-poles of $f(z)$ in $|z|\leqq r$ , respectively. The integrated
counting function $N_{\{D1)}(r, f),$ $N_{(SD1\}}(r, f)$ and $N_{\langle WD1)}(r, f)$ are defined in terms
of $n_{(D1\}}(r, f),$ $n_{(SD1\}}(r, f)$ and $n_{t^{WD1)}}(r, f)$ in the usual way, respectively.

Lemma 2.6. Let $w(z)$ be a transcendental meromorphic function and let $r_{1}(z)$ ,
$r_{2}(z),$ $a_{0}(z),$ $a_{1}(z),$

$\ldots$ , $a_{5}(z)$ be $sm$all $fu$nction $s$ with respect to $w(z)$ . If

(2.17) $m(r, w)+(N(r, w)-N_{\{D1\}}(r, w))=S(r, w)$ ,

then $w(z)$ satisfies a differen$tialeq$uation of the form (2.11) or satisfies a differ-
ential $eq$uation ofsecond order of the form (2.12). If

(2.18) $m(r, w)+(N(r, w)-N_{\{SD1\rangle}(r, w))=S(r, w)$ ,

then $w(z)$ satisfies a differenti$aleq$uation of the form (2.11). If

(2.19) $m(r, w)+(N(r, w)-N_{(WD1\rangle}(r, w))=S(r, w)$ ,

then $w(z)$ satisfies a differential equation of the form (2.11), $w(z)$ satisfies a
differential equation of the form (2.12) with $\deg_{w}\tilde{P}(z, w)=0$ , or $w(z)$ satisfies
a differenti$al$ equation of third order of the form (2.15) with $\sigma_{1}(z)\equiv 0$ , say,

(2.21) $w^{\prime\prime\prime}=\sigma(z)w^{\prime\prime}+E(z, w)w^{\prime}+F(z, w)$ ,

where $E(z, w),$ $F(z, w)$ are polynomials in $wh$aving small coeflicients with re-
spect to $w(z)$ .
Proof of Lemma 2.6. In the proofs of Lemma 2.6 the term “small function”
means small meromorphic function with respect $w(z)$ . First we consider the
case where $w(z)$ satisfies the condition (2.17). Let $z_{0}$ be a Dl-pole of $w(z)$ .
We see from (2.16) that the principal parts of the Laurent series at $z_{0}$ of the
functions $w^{\prime}(z)^{2},$ $w(z)^{3},$ $w^{\prime}(z)w(z),$ $w(z)^{2},$ $w^{\prime\prime}(z),$ $w^{\prime}(z),$ $w(z)$ are written in
terms of small functions directly. Hence there exist small functions $\sigma_{2}(z),$ $\sigma_{3}(z)$ ,
.. . , $\sigma_{6}(z)$ and $\tau_{2}(z),$ $\tau_{3}(z),$

$\ldots$ , $\tau_{4}(z),$ $\kappa_{1}(z),$ $\kappa_{2}(z)$ in a neighbourhood of $z_{0}$

(2.21) $U_{1}(z, w(z),$ $w^{\prime}(z))=\frac{\kappa_{1}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,
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where

$U_{1}(z, w, w^{\prime})=(w^{\prime})^{2}+\sigma_{6}(z)w^{3}+\sigma_{S}(z)w^{\prime}w+\sigma_{4}(z)w^{2}+\sigma_{3}(z)w^{\prime}+\sigma_{2}(z)w$

and

(2.22) $U_{2}(z, w(z),$ $w^{\prime}(z),$ $w^{\prime l}(z))=\frac{\kappa_{2}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

where
$U_{2}(z, w, w^{\prime}, w^{\prime\prime})=w^{\prime\prime}+\tau_{4}(z)w^{2}+\tau_{3}(z)w^{\prime}+\tau_{2}(z)w$

From (2.21) and (2.22), there exist small functions $\mu_{1}(z),$ $\mu_{2}(z)$ , which satisfy
$|\mu_{1}|+|\mu_{2}|\not\equiv 0$ such that

$U(z, w, w^{\prime}, w^{\prime\prime})=\mu_{1}(z)U_{1}(z, w, w^{\prime})+\mu_{2}(z)U_{2}(z, w, w^{\prime}, w^{\prime\prime})$

is regular at $z_{0}$ . Thus, by (2.17) we have that $N(r, U)=S(r, w)$ , where
$U(z)=U(z, w(z),$ $w^{\prime}(z),$ $w^{\prime\prime}(z))$ . By (2.17) and the theorem on the logarith-
mic derivative,

$m(r, U)\leqq 4m(r, w)+S(r, w)\leqq S(r, w)$ .
It follows that $U(z)$ is a smal function. Thus the function $w(z)$ satisfies a dif-
ferential equation of the form (2.11) or satisfies a differential equation of second
order of the form (2.12).

Secondly we consider the case where $w(z)$ satisfies the condition (2.18). Let
$z_{0}$ be a SDl-pole of $w(z)$ . It is easy to see that the principal parts of the
Laurent series at $z_{0}$ of the functions $w(z)^{4},$ $w^{\prime}(z)^{2}w(z),$ $w^{\prime}(z)w(z)^{2},$ $w^{\prime}(z)^{2}$ ,
$w(z)^{3},$ $w^{\prime}(z)w(z),$ $w(z)^{2},$ $w^{\prime}(z),$ $w(z)$ are written in terms of small functions
directly. Hence there exist small functions $\tilde{\sigma}_{2}(z),\tilde{\sigma}_{3}(z),$

$\ldots$ , $\tilde{\sigma}_{8}(z)$ and $\tilde{\tau}_{2}(z)$ ,
$\tilde{\tau}_{3}(z),$

$\ldots$ , $\tilde{\tau}_{6}(z),\tilde{\kappa}_{1}(z),\tilde{\kappa}_{2}(z)$ in a neighbourhood of $z_{0}$

(2.23) $\tilde{U}_{1}(z, w(z),w^{\prime}(z))=\frac{\tilde{\kappa}_{1}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

where

$\tilde{U}_{1}(z, w, w^{\prime})=w^{4}+\tilde{\sigma}_{8}(z)(w^{\prime})^{2}w+\tilde{\sigma}_{7}(z)w^{\prime}w^{2}+\tilde{\sigma}_{6}(z)w^{3}+\tilde{\sigma}_{S}(z)w^{\prime}w$

$+\tilde{\sigma}_{4}(z)w^{2}+\tilde{\sigma}_{3}(z)w^{\prime}+\tilde{\sigma}_{2}(z)w$

and

(2.24) $\tilde{U}_{2}(z, w(z),w^{\prime}(z))=\frac{\tilde{\kappa}_{2}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

where

$\tilde{U}_{2}(z, w, w^{\prime})=w^{3}+\tilde{\tau}_{6}(z)(w^{l})^{2}+\tilde{\tau}_{5}(z)w^{\prime}w+\tilde{\tau}_{4}(z)w^{2}+\tilde{\tau}_{3}(z)w^{\prime}+\tilde{\tau}_{2}(z)w$
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From (2.23) and (2.24), there exist small functions $\tilde{\mu}_{1}(z),\tilde{\mu}_{2}(z)$ , which satisfy
$|\tilde{\mu}_{1}|+|\tilde{\mu}_{2}|\not\equiv 0$ such that

$\tilde{U}(z, w, w^{\prime})=\tilde{\mu}_{1}(z)\tilde{U}_{1}(z, w, w^{\prime})+\tilde{\mu}_{2}(z)\tilde{U}_{2}(z, w, w^{\prime})$

is regular at $z_{0}$ . Hence using the similar reasoning in the first case, we con-
clude that $\tilde{U}(z)=\tilde{U}(z, w(z),$ $w^{\prime}(z))$ is a small function. Thus the function $w(z)$

satisfies a differential equation of the form (2.11).
Finally we consider the case where $w(z)$ satisfies the condition (2.19). Let $z_{0}$

be a WDl-pole of $w(z)$ . We see that the principal part $s$ of the Laurent series at
$z_{0}$ of the functions $w^{\prime}(z)w(z),$ $w(z)^{2},$ $w^{\prime}(z),$ $w(z),$ $w^{\prime\prime}(z)w^{l\prime/}(z)$ are written in
terms of small functions directly. Hence there exist small functions $\hat{\sigma}_{2}(z),\hat{\sigma}_{3}(z)$ ,
.. . , $\hat{\sigma}_{5}(z)$ and $\hat{\tau}_{2}(z),\hat{\tau}_{3}(z),\hat{\tau}_{4}(z),\hat{\kappa}_{1}(z),\hat{\kappa}_{2}(z)$ in a neighbourhood of $z_{0}$

(2.25) $\hat{U}_{1}(z, w(z),$ $w^{\prime}(z),$ $w^{\prime\prime}(z),$ $w^{\prime\prime\prime}(z))=\frac{\hat{\kappa}_{1}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

where

$\hat{U}_{1}(z, w, w^{\prime}, w^{\prime\prime}, w^{\prime\prime\prime})=w^{\prime\prime\prime}+\hat{\sigma}_{5}(z)w^{\prime}w+\hat{\sigma}_{4}(z)w^{\prime\prime}+\hat{\sigma}_{3}(z)w^{\prime}+\hat{\sigma}_{2}(z)w$

and

(2.26) $\hat{U}_{2}(z, w(z),$ $w^{\prime}(z),$ $w^{\prime\prime}(z))=\frac{\hat{\kappa}_{2}(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

where
$\hat{U}_{2}(z, w, w^{\prime}, w^{\prime\prime})=w^{2}+\hat{\tau}_{4}(z)w^{\prime\prime}+\hat{\tau}_{3}(z)w^{\prime}+\hat{\tau}_{2}(z)w$ .

From (2.25) and (2.26), there exist small functions $\hat{\mu}_{1}(z))\hat{\mu}_{2}(z),$ $|\hat{\mu}_{1}|+|\hat{\mu}_{2}|\not\equiv 0$

such that

$\hat{U}(z, w, w^{\prime}, w^{\prime\prime}, w^{\prime l/})=\hat{\mu}_{1}(z)\hat{U}_{1}(z, w, w^{l}, w^{\prime\prime}, w^{l//})+\hat{\mu}_{2}(z)\hat{U}_{2}(z, w, w^{\prime}, w^{\prime\prime\prime})$

is regular at $z_{0}$ . It follows from the similar reasoning in the first and the second
cases that that $U(z)=\hat{U}(z, w(z),$ $w^{\prime}(z))$ is a small function. This implies our
assertion. $\square $

Furthermore, we state a preliminary lemma relating with representable poles.

Lemma 2.7. Let $w(z)$ and $H(z)$ be transcendental meromorphic functions such
that $m(r, w)+m(r, H)=S(r, w)$ , an $d$ let $\lambda_{0}(z),$ $\lambda_{1}(z),$ $\alpha_{1}(z),$

$\ldots,$
$\alpha_{4}(z),$ $p(z)$

be small function $s$ with respect to $w(z)$ . Suppose that

$\Lambda(z)$ $:=\lambda_{1}(z)^{2}-4\lambda_{0}(z)\not\equiv 0$

(2.27)
$\tilde{\alpha}(z)$

$:=\alpha_{4}(z)^{2}-\lambda_{1}(z)\alpha_{3}(z)\alpha_{4}(z)+\lambda_{0}(z)\alpha_{3}(z)^{2}\not\equiv 0$ ,
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and suppose that almost all poles of $H(z)$ are poles of $w(z)$ and for almost all
poles $z_{0}$ of $w(z)$ , we can write $H(z)$ and $w(z)$ in a neighborhood of $z_{0}$ as

(2.28) $H(z)=\frac{p(z_{0})}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ ,

(2.29) $w(z)=\frac{R}{z-z_{0}}+\alpha+O(z-z_{0})$ , as $z\rightarrow z_{0}$ ,

with

(2.30) $R^{2}+\lambda_{1}(z_{0})R+\lambda_{0}(z_{0})=0$ ,

(2.31) $\alpha=\frac{\alpha_{1}(z_{0})R+\alpha_{2}(z_{0})}{\alpha_{3}(z_{0})R+\alpha_{4}(z_{0})}$ ,

Then there exist small functions $m(z),$ $\eta_{1}(z)$ and $h(z)$ with respect to $w(z)$ such
that

(2.32) $w^{2}-\lambda_{1}(z)w^{\prime}-\lambda_{0}(z)\tilde{H}$‘ $(z)+\eta_{0}(z)w+\eta_{1}(z)\tilde{H}(z)+h(z)=0$ ,

where $\tilde{H}(z)=H(z)/p(z)$ .

Proof of Lemma 2.7. $We$ may assume that $\alpha\in[L]^{*}[z_{0};R]$ and the coefficients
of the principle parts of the Laurent expansions of the functions $w(z),$ $w^{\prime}(z)$ ,
$\tilde{H}^{\prime}(z)$ belong to $[L]^{*}[z_{0};R]$ by $(2.27)-(2.28)$ . Put $F(z, w, w^{\prime})=w^{2}-\lambda_{1}(z)w^{\prime}-$

$\lambda_{0}(z)\tilde{H}^{\prime}(z)$ . Then by our assumption, we can write $F(z)$ $:=F(z, w(z),$ $w$
‘
$(z))$ in

a neighborhood of $z_{0}$ as

$F(z)=\frac{L_{1}}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ , $L_{1}\in[L]^{*}[z_{0};R]$ .

By Proposition 2.3 there exist small functions $\eta_{1}(z),$ $\eta_{0}(z)$ with respect to $w(z)$

such that
$-h(z)$ $:=F(z)+\eta_{1}(z)w(z)+\eta_{0}(z)\tilde{H}(z)$

is regular at $z_{0}$ . Thus, by our assumption, we get $N(r, h)=S(r, w)$ . By virtue
of the lemma on the logarithmic derivative,

$m(r, h)\leqq 2m(r, w)+m(r,\tilde{H})+S(r, w)+S(r,\tilde{H})\leqq S(r, w)+S(r,\tilde{H})$ .

By our assumption, we have $T(r,\tilde{H})=T(r, w)+S(r, w)$ , which implies that
$S(r,\tilde{H})=S(r, w)$ . Hence $h(z)$ is a small function with respect to $w(z)$ , from
which the assertion (2.32) follows. a
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3. An application to a third order differential equation

In this section, we consider the differential equation of third order

(3.1) $w^{\prime l/}=\lambda(z)w^{\prime l}+R(z, w)w^{\prime}=\lambda(z)w^{\prime l}+\frac{P(z,w)}{Q(z,w)}w^{\prime}$ ,

where $\lambda(z)$ is a meromorphic function and $P(z, w)$ and $Q(z, w)$ are polynomials
in $w$ with meromorphic coefficients with $\deg_{w}P(z, w)=p$ and $\deg_{w}Q(z, w)=q$ ,
respectively:

(3.2) $\left\{\begin{array}{ll}P(z, w)=\xi_{p}(z)uP+\xi_{p-1}(z)w^{p-1}+\cdots+\xi_{0}(z), & \xi_{p}(z)\not\equiv 0\\Q(z, w)=\eta_{q}(z)w^{q}+\eta_{q-1}(z)w^{q-1}+\cdots+\infty(z), & \eta_{q}(z)\not\equiv 0,\end{array}\right.$

where $\xi_{j}(z),$ $j=0,1,$ $\ldots,$ $p,$ $\eta_{k}(z),$ $k=0,1,$ $\ldots$ , $q$ , are meromorphic func-
tions. We suppose that $P(z, w)$ and $Q(z, w)$ are relatively prime. Sometimes
we call $\xi_{j}(z)/\eta_{q}(z),$ $\eta_{k}(z)/\eta_{q}(z)$ as the reduced coefficients of $R(z, w)$ . Put
$\max(p, q)=\deg_{w}R(z, w)=d$ . We are concerned with the determination of
the equation (3.1) that admits a meromorphic solution, and we will treat the
equation (3.1) from the function theoretic point of view. Applying the lemmas
and the theorems in Section 1.2 and 3.1-3.3 to the equation (3.1), we try to
obtain $Malmquist-Yosida$-Steinmetz type theorems to the equation (3.1), say,
we consider the problem: Under what conditions the admissible solution of (3.1)
satisfies some lower order differential equation. Recalling the results of second
order equation, we know the articles, for instance, Ince [3], Ishizaki [1], $v$ . Ri-
eth [11] and Steinmetz $[13]-[18]$ treated the second order differential equation of
the form

(3.3) $w^{\prime l}=\tilde{L}(z, w)(w^{\prime})^{2}+\tilde{M}(z, w)w^{\prime}+\tilde{N}(z, w)$ ,

where $\tilde{L}(z, w),\tilde{M}(z, w)$ and $\tilde{N}(z, w)$ are rational functions in $z$ and $w$ .
Here we prove the following theorem.

Theorem 3.1. Suppose thai the equation (3.1) possesses an admissible solu tion
$w(z)$ . Then either $w(z)$ satisfies a first order differential equation of the form
(2.11) or the equation (3.1) is of the following forms:

(3.4) $w^{l//}=\lambda(z)w^{\prime\prime}+(\xi_{2}(z)w^{2}+\xi_{1}(z)w+\xi_{0}(z))w^{\prime}$ ,

(3.5) $w^{\prime\prime\prime}=\lambda(z)w^{\prime\prime}+(\xi_{1}(z)w+\xi_{0}(z))w^{\prime}$ ,

(3.6) $w^{\prime\prime\prime}=\lambda(z)w^{\prime\prime}+\xi_{0}(z)w^{\prime}$ .

To prove Theorem 3.1, we need Lemmas 3.2-3.6 below, which imply Theo-
rem 3.1.
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Lemma 3.2. Suppose that the $eq$uation (3.1) possesses an admissible solu $t$ion
$w(z)$ . Then we have

(3.7) $dT(r, w)\leqq 2\overline{N}(r, w)+N(r,$ $\frac{1}{w})+S(r, w)$ .

Proof of Lemma 3.2. We may writ$e(3.1)$ as

(3.8) $\frac{w^{\prime\prime\prime}}{w^{l}}-\lambda(z)\frac{w^{\prime\prime}}{w^{\prime}}=R(z, w)=\frac{P(z,w)}{Q(z,w)}$ .

If $z_{0}$ is an admissible pole of $w(z)$ , then $w^{\prime\prime\prime}(z)/w^{\prime}(z)-\lambda(z)w^{\prime\prime}(z)/w^{\prime}(z)$ has a
double pole at $z_{0}$ . Hence

(3.9) $N(r,$ $\frac{w^{\prime//}}{w^{\prime}}-\lambda\frac{w^{\prime\prime}}{w})\leqq 2\overline{N}(r, w)+N(r,$ $\frac{1}{w})+S(r, w)$ .

From (3.9) and by the Valiron-Mokhon’ko theorem [9] and the theorem on the
logarithmic derivative

(3.10)

$dT(r, w)=T(r, R)+S(r, w)=m(r,$ $\frac{w^{\prime\prime\prime}}{w^{\prime}}-\lambda\frac{w^{\prime\prime}}{w^{l}})$

$+N(r,$ $\frac{w^{\prime/\prime}}{w^{l}}-\lambda\frac{w^{\prime l}}{w^{\prime}})+S(r, w)=N(r,$ $\frac{w^{\prime\prime\prime}}{w^{\prime}}-\lambda\frac{w^{\prime\prime}}{w^{\prime}})+S(r, w)$ .

Thus from (3.9) and (3.10), we obtain (3.7). $\square $

Lemma 3.3. Suppose that $q\geqq p$ in th $e$ equa $t$ion (3.1), and suppose that the
$eq$uation (3.1) possesses an admissible solu tion $w(z)$ . Then either (3.1) is of the
form (3.6), or $w(z)$ satisfies a Riccati $\eta$uation.

Proof of Lemma 3.3. Suppose that $w(z)$ has an admissible pole $z_{0}$ . Since $q\geqq p$ ,
$R(z);=R(z, w(z))$ is regular at $z_{0}$ . While $w^{\prime/\prime}(z)/w^{\prime}(z)-\lambda(z)w^{\prime\prime}(z)/w^{\prime}(z)$ has
a double pole at $z_{0}$ , which is a contradiction. Thus, we have $\overline{N}(r, w)=S(r, w)$ .
Hence, by Lemma 3.2, the theorem on the logarithmic derivative and the first
fundamental theorem

(3.11)

$dT(r, w)\leqq N(r,$ $\frac{1}{w})+S(r, w)\leqq m(r, w^{\prime})+N(r, w^{\prime})+S(r, w)$

$\leqq m(r,$ $\frac{w^{\prime}}{w})+m(r, w)+N(r, w)+\overline{N}(r, w)+S(r, w)$

$\leqq T(r, w)+S(r, w)$ .
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This implies that $d\leqq 1$ . If $d=0$ , then (3.1) is of the form (3.6). It remain $s$ to
treat the case $d=1$ . We write (3.1) as

(3.12) $\frac{w^{\prime\prime\prime}}{w^{\prime}}-\lambda(z)\frac{w^{\prime l}}{w^{\prime}}=\frac{\tilde{\xi}_{1}(z)w+\tilde{\xi}_{0}(z)}{w-\eta(z)}=\tilde{\xi}(z)+\frac{\tilde{\xi}_{1}(z)\eta(z)+\tilde{\xi}_{0}(z)}{w-\eta(z)}$

From (3.12), if $z_{1}$ is an admissible zero of $w(z)-\eta(z)$ , then $z_{1}$ is a zero of $w^{\prime}(z)$

and $\omega(z_{1},1/(w-\eta))\leqq\omega(z_{1},1/w^{\prime})$ . From (3.12), we get $\overline{N}(r, w)=S(r, w)$ . We
define $\sigma(z)$ $:=w^{\prime}(z)/(w(z)-\eta(z))$ . Then $N(r, \sigma)=S(r, w)$ and by (3.12) and
the theorem on the logarithmic derivative

$m(r, \sigma)\leqq m(r,$ $\frac{w^{\prime}-\eta^{\prime}}{w-\eta})+m(r,$ $\frac{\eta^{\prime}}{w-\eta})+S(r, w)\leqq S(r, w)$ .

Hence, $\sigma(z)$ is a small function with respect to $w(z)$ . Therefore, $w(z)$ satisfies a
first order differential equation, i.e., $w^{\prime}=\sigma(z)w-\sigma(z)\eta(z)$ . $\square $

For a meromorphic function $f(z)$ , we define $\omega(z_{0}, f)$ as follows: if $z_{0}$ is a
pole of multiplicity $\mu(\geqq 1)$ for $f(z)$ , then $\omega(z_{0)}f)=\mu$ ; if $ f(z_{0})\neq\infty$ , then
$\omega(z_{0}, f)=0$ . We sometimes write $\omega(z_{0},1/(f-a))$ as $\omega(z_{0}, a;f)$ .

Lemma 3.4. Suppose that $q<p$ in the equation (3.1), and suppose that the
equation (3.1) possesses an admissible solution $w(z)$ . Then $m(r, w)=S(r, w)$

and there exists an admissible pole. Let $z_{0}$ be an admissible pole of $w(z)$ . Then
we have $\omega(z_{0}, w)=2$ or $\omega(z_{0}, w)=1$ . Further, we $h$ave

(a) $p-q=1$ if $\omega(z_{0)}w)=2$ .
(b) $p-q=2$ if $\omega(z_{0}, w)=1$ .

Proof of Lemma 3.4. Write (3.1) as

(3.13) $\{\xi_{p}(z)w\}w^{p-1}=(\frac{w^{\prime\prime\prime}}{w^{\prime}}-\lambda(z)\frac{w^{\prime\prime}}{w})Q(z, w)-\sum_{i=0}^{p-1}\xi_{j}(z)c\dot{d}$ .

We regard $\eta_{k}(z)(w^{\prime\prime\prime}/w^{\prime}-\lambda(z)w^{\prime\prime}/w^{\prime}),$ $k=0,$ $\ldots$ , $q$ as coefficients. Since we
assume that $p>q$ , the degree of the right side of (3.13) is at most $p-1$ . Thus
by the Clunie lemma, we have $m(r, w)=S(r, w)$ . Further, from (3.13) and by
Theorem 2 (i) in [6], we have $N_{(M}(r, w)=S(r, w)$ for some $M$ . Hence we may
assume that $w(z)$ has an admissible pole. Let $z_{0}$ be an admissible pole of $w(z)$

and set $\omega(z_{0}, w)=\mu$ . From (3.8), $2=\omega(z_{0}, w^{\prime\prime\prime}/w^{l}-\lambda w^{l/}/w^{\prime})=\omega(z_{0}, R)=$

$(p-q)\mu$ . This gives the assertion of Lemma 3.4. $\square $

Lemma 3.5. Suppose that $p-q=1$ in the $eq$uation (3.1), and suppose that
the equation (3.1) possesses an admissibl$e$ solution $w(z)$ . Then either (3.1) is
of the form (3.5) or $w(z)$ satisfies a first order $di$fferen $tialeq$uation of the form
(2.11).

Proof of Lemma 3.5. In view of Lemma 3.4, we see that almost all poles of $w(z)$

are of order 2. Hence, we have

(3.14) $T(r, w)=N(r, w)+m(r, w)=2\overline{N}(r, w)+S(r, w)$ .
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By Lemma 3.2 and the first fundamental theorem,

(3.15)

$dT(r, w)\leqq 2\overline{N}(r, w)+N(r,$ $\frac{1}{w})+S(r, w)\leqq N(r, w)+N(r, w^{\prime})$

$+m(r, w^{\prime})+S(r, w)\leqq 2N(r, w)+\overline{N}(r, w)+S(r, w)$ .

Combing (3.14) and (3.15), we get

$dT(r, w)\leqq\frac{5}{2}T(r, w)+S(r, w)$ ,

hence $d\leqq 5/2<3$ . Thus we may consider the cases $p=1$ and $p=2$ . In case
$p=1$ , then $q=0$ , which implies that (3.1) is of the fom (3.5). If $p=2$ , then
we may suppose that (3.1) is of the form

(3.16) $\frac{w^{\prime//}}{w^{\prime}}-\lambda(z)\frac{w^{\prime\prime}}{w^{\prime}}=\tilde{\xi}_{1}(z)w+\tilde{\xi}_{0}(z)+\frac{\xi(z)}{w-\eta(z)}$ , $\tilde{\xi}_{1}(z)\not\equiv 0$ ,

where $\tilde{\xi}_{1}(z),\tilde{\xi}_{0}(z),$ $\xi(z)$ and $\eta(z)$ are small functions with respect to $w(z)$ . Let
$z_{0}$ be an admissible pole of $w(z)$ . Write $w(z)$ in a neighbourhood of $z_{0}$ as

(3.17) $w(z)=\frac{R_{2}}{(z-z_{0})^{2}}+\frac{R_{1}}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0},$ $R_{2}\neq 0$ .

From (3.16) and (3.17), we get

(3.18) $R_{2}=\frac{12}{\tilde{\xi}_{1}(z_{0})}$ and $R_{1}=\frac{1}{5}(-\frac{48\tilde{\xi}_{1}^{\prime}(z_{0})}{\tilde{\xi}_{1}(z_{0})^{2}}+\frac{12\lambda(z_{0})}{\tilde{\xi}_{1}(z_{0})})$ .

From (3.18), we can write $R_{2}$ and $R_{1}$ in terms of small functions. Define

$R_{2}(z):=\frac{12}{\tilde{\xi}_{1}(z)}$ and $R_{1}(z)$ $:=\frac{1}{5}(-\frac{48\tilde{\xi}_{1}^{\prime}(z)}{\tilde{\xi}_{1}(z)^{2}}+\frac{12\lambda(z)}{\tilde{\xi}_{1}(z)})$ ,

and define $\varphi(z)$ $:=w^{\prime}(z)/(w(z)-\eta(z))$ . Then by (3.16), Lemma 3.4 and the
theorem on the logarithmic derivative,

(3.19) $m(r, \varphi)\leqq m(r,$ $\frac{w^{\prime}-\eta^{\prime}}{w-\eta})+m(r,$ $\frac{\eta^{l}}{w-\eta})+S(r, w)\leqq S(r, w)$ .

From (3.16), if $z_{1}$ is an admissible zero of $w(z)-\eta(z)$ , then $z_{1}$ is a zero of $w^{l}(z)$

and $\omega(z_{1},1/(w-\eta))\leqq\omega(z_{1},1/w^{\prime})$ . Hence $z_{1}$ cannot be a pole of $\varphi(z)$ . Thus
if $z_{0}$ is a pole of $\varphi(z)$ and neither a zero nor a pole of the coefficients, then we
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may assume that $z_{0}$ is an admissible pole of $w(z)$ . Using (3.18), we write $\varphi(z)$

in a neighbourhood of $z_{0}$ as

(3.20) $\varphi(z)=\frac{-2}{z-z_{0}}+\frac{R_{1}(z_{0})}{R_{2}(z_{0})}+O(z-z_{0})$ , as $z\rightarrow z_{0}$ .

Put $\sigma(z)=w(z)-\mu_{1}(z)\varphi^{2}(z)+\mu_{2}(z)\varphi(z)$ , where $\mu_{1}(z)=R_{2}(z)/4$ and $\mu_{2}(z)=$

$-(2R_{1}(z)+R_{2}^{l}(z))/2$ . Then from (3.17), (3.18) and (3.20), $\sigma(z)$ is regular at $z_{0}$ .
This implies that $N(r, \sigma)=S(r, w)$ . From (3.19),

$m(r, \sigma)\leqq m(r, w)+2m(r,\varphi)+S(r, w)\leqq S(r, w)$ ,

hence $\sigma(z)$ is a smal function with respect to $w(z)$ . Therefore, we conclude that
$w(z)$ satisfies a first order equation of the form (2.11). [:]

Lemma 3.6. Suppose that $p-q=2$ in the equation (3.1), and suppose that
the equation (3.1) possesses an admissible solution $w(z)$ . Then either (3.1) is
of the form (3.4) or $w(z)$ satisfies a first order differential equation of the form
(2.11).

Proof of Lemma 3.6. By Lemma 3.2 and the $se$cond fundamental theorem,

$dT(r, w)\leqq 2\overline{N}(r, w)+N(r,$ $\frac{1}{w^{l}})+S(r, w)\leqq 4T(r, w)+S(r, w))$

which gives that $d\leqq 4$ . Thus we consider the case $p=2,3$ and 4. If $p=2$ , then
$q=0$ , which implies that (3.1) is of the form (3.4). It remains to treat the cases
$p=3$ and 4.

First we will treat the case $p=4$ . Let $z_{1}$ be an admissible zero of $Q(z)$ $:=$

$Q(z, w(z))$ . From (3.8) and by Theorem 1 (ii) in [6], $z_{1}$ must be a zero of $w^{\prime}(z)$ .
Put $\sigma(z)=w^{\prime}(z)/Q(z)$ . Then $\sigma(z)$ is regular at $z_{1}$ . Let $z_{0}$ be an admissible
pole of $w(z)$ . By Lemma 3.4 (b), $\omega(z_{0}, w)=1$ . Since $\omega(z_{0}, w^{\prime})=2$ and $\omega(z_{0}, Q)$

$=2,$ $\sigma(z)$ is also regular at $z_{0}$ . Therefore, $N(r, \sigma)=S(r, w)$ . By the theorem on
the logarithmic derivative,

$m(r, \sigma)\leqq m(r,$ $\frac{1}{Q})+m(r,$ $\frac{w^{\prime}}{w})+m(r, w)+S(r, w)\leqq S(r, w)$ .

This means that $\sigma(z)$ is a small function with respect to $w(z)$ . Hence, $w(z)$

satisfies a Riccati equation, i.e., $w^{\prime}=\sigma(z)Q(z, w)$ .
Finally we treat the case $p=3$ . In this case, we may write (3.1) as

(3.21) $\frac{w^{\prime\prime\prime}}{w^{\prime}}-\lambda(z)\frac{w^{\prime\prime}}{w^{\prime}}=\tilde{\xi}_{2}(z)w^{2}+\tilde{\xi}_{1}(z)w+\tilde{\xi}_{0}(z)+\frac{\xi(z)}{w-\eta(z)}$ , $\tilde{\xi}_{2}(z)\not\equiv O$ ,

where $\tilde{\xi}_{2}(z),\tilde{\xi}_{1}(z))\tilde{\xi}_{0}(z),$ $\xi(z)$ and $\eta(z)$ are small functions with respect to $w(z)$ .
We define $\varphi(z)$ $:=w^{\prime}(z)/(w(z)-\eta(z))$ . $S$imilarly to the case $p=4$ , if $z_{1}$ is an
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admissible zero of the $w(z)-\eta(z)$ , then $\varphi(z)$ is regular at $z_{1}$ . Thus if $z_{0}$ is a pole
of $\varphi(z)$ neither a zero nor a pole of the coefficients, then $z_{0}$ is an admissible pole
of $w(z)$ . By Lemma 3.4 (b), almost all poles of $w(z)$ are simple poles. We write
$w(z)$ in a neighbourhood of $z_{0}$ as

(3.22) $w(z)=\frac{R}{z-z_{0}}+\alpha+O(z-z_{0})$ , as $z\rightarrow z_{0},$ $R\neq 0$ .

From (3.21) and (3.22), we have

(3.23) $\tilde{\xi}_{2}(z_{0})R^{2}-6=0$ ,
(3.24) $2\tilde{\xi}_{2}(z_{0})R\alpha=-\tilde{\xi}_{2}^{\prime}(z_{0})R^{2}-\tilde{\xi}_{1}(z_{0})R+2\lambda(z_{0})$ .

We have

(3.25) $\varphi(z)=\frac{-1}{z-z_{0}}+O(1)$ , as $z\rightarrow z_{0}$ .

Hence, by $(3.23)-(3.25)$ and Lemma 2.7, $w(z)$ satisfies a differential equation of
the form (2.11). Thus Lemma 3.6 is proved.

By Theorem 3.1, under the assumption of the existence of an admissible
solution, we can assume that (3.1) is of the form

(3.26) $w^{\prime\prime\prime}=\lambda(z)w^{\prime\prime}+\Xi(z, w)w^{\prime}$ ,

where $\Xi(z, w)$ is a polynomials in $w$ with meromorphic coefficients with
$\deg_{w}\Xi(z, w)\leqq 2$ . Moreover, we show the following theorem.

Theorem 3.7. Suppose that $\lambda(z)\not\equiv O$ in the equation (3.26) and suppose that
the equation (3.26) possesses an admissible solu tion $w(z)$ . Then $w(z)$ sa$ti*$

fies a linear differential equation, satisfies a differential equation of the form
(2.11) or satisfies a differential equation of second order of the form (2.12) with
$\deg_{w}\tilde{P}(z, w)=0$ .

Proof of Theorem 3.7. According to Lemma 3.4, we will divide the proof into
two cases:

(a) $\deg_{w}\Xi(z, w)=2$ , i.e., the equation (3.26) is of the form (3.4);
(b) $\deg_{w}\Xi(z, w)=1$ , i.e., the equation (3.26) is of the form (3.5).

First we consider the case (a). It was said in Lemma 3.4 that almost all poles
of $w(z)$ are simple poles and $m(r, w)=S(r, w)$ . Let $z_{0}$ be an admissible simple
pole of $w(z)$ . We write $w(z)$ in a neighbourhood of $z_{0}$ as

(3.27) $w(z)=\frac{R}{z-z_{0}}+\alpha+\beta(z-z_{0})+O(z-z_{0})^{2}$ , $R\neq 0$ , as $z\rightarrow z_{0}$ .
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Using Test-power text, we get

(3.28) $\xi_{2}(z_{0})R^{2}-6=0$ ,
(3.29) $(\xi_{2}(z_{0})R)\alpha=P_{1}(R;z_{0})$

(3.30) $(\xi_{2}(z_{0})R)\beta=P_{2}(R, \alpha;z_{0})$

where $P_{j}$ $($ . ; $z_{0}),$ $j=1,2$ , are polynomials in the corresponding arguments with
small coefficients. It follows from $(3.28)-(3.30)$ that $z_{0}$ is a WS2-po1e in terms of
the fixed small functions. Hence we see by Lemma 2.5 that $w(z)$ satisfies a first
order differential equation of the form (2.11) or satisfies a third order differential
equation of the fom (2.15) with $\sigma_{1}(z)\equiv 0$ , i.e., (2.19). We may assume that
$F(z, w)\not\equiv 0$ in (2.19). In fact, recalling the proof of Lemma 2.5 of the part of
WS2-po1e, see [5, proof of Lemma 4], $w(z)$ satisfies the equation

$\phi(z)=\kappa_{1}(z)D_{11}(z, w, w^{\prime}, w^{\prime\prime}, w^{\prime l/})+\kappa_{2}(z)\overline{D}_{11}(z, w, w^{\prime}, w^{\prime\prime})+\kappa_{3}(z)w$ ,

where

$D_{11}(z, w, w^{l}, w^{ll}, w^{\prime\prime\prime})=6w^{\prime}w^{2}-2\lambda_{1}(z)(w^{l/}w+(w^{\prime})^{2})+\lambda_{0}(z)w^{\prime\prime\prime}$

$+\eta_{21}(z)ww^{\prime}+\eta_{22}(z)w^{3}+\nu_{11}(z)w^{\prime}+\nu_{12}(z)w^{2}$ ,
$\overline{D}_{11}(z, w, w^{\prime}, w^{\prime/})=w^{\prime/}+\overline{\eta}_{21}(z)ww^{\prime}+\overline{\eta}_{22}(z)w^{3}+\overline{\nu}_{11}(z)w^{\prime}+\overline{\nu}_{12}(z)w^{2}$ .

If $\overline{\kappa}_{3}(z)\not\equiv 0$ , then we have nothing to prove. It is not difficult to see that we
can admit the term $\overline{\eta}_{22}(z)w^{\prime\prime}$ in the construction of $\overline{D}_{11}(z, w, \ldots , w^{\prime\prime/})$ in the
place $\overline{\eta}_{22}(z)w^{3}$ . Hence if $\overline{\kappa}_{2}(z)\not\equiv 0$ , the assertion follows. So, we consider the
case $\overline{\kappa}_{2}(z)\equiv 0$ and $\overline{\kappa}_{3}(z)\equiv 0$ , which implies that $\overline{D}_{11}(z, w(z),$

$\ldots,$
$w^{\prime l/}(z))\equiv 0$ .

If $\overline{\eta}_{22}(z)\not\equiv 0$ or $\overline{\nu}_{12}(z)\not\equiv 0$ , then the assertion is true. In case $\overline{\eta}_{2}(z)\equiv 0$ and
$\overline{v}_{12}(z)\equiv 0$ , then we see that $w(z)$ satisfies a third order differential equation of
the form

$ w///=---(z, w)w^{\prime}\sim$ ,

where $\Xi(z, w)$ is a polynomial in $w$ having small coefficient $s$ with respect to $w(z)$

with $\deg_{w}\Xi(z, w)\leqq 2$ . Hence, we conclude that $w(z)$ satisfies a differential
equation of the form (2.12) because of $\lambda(z)\not\equiv O$ .

Secondly we treat the case (b). We also have by Lemma 3.4 that almost all
poles of $w(z)$ are double poles and $m(r, w)=S(r, w)$ . Let $z_{0}$ be an admissible
double pole of $w(z)$ . We write $w(z)$ in a neighbourhood of $z_{0}$ as

(3.31) $w(z)=\frac{R_{2}}{(z-z_{0})^{2}}+\frac{R_{1}}{z-z_{0}}+a_{0}+a_{1}(z-z_{0})+O(z-z_{0})^{2}$ ,

$R_{2}\neq 0$ , as $z\rightarrow z_{0}$ .
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Using Test-power test again, we get

(3.32) $\xi_{1}(z_{0})R_{2}-12=0$ ,

(3.33) $(3\xi_{1}(z_{0})-\frac{6}{R_{2}})R_{1}=Q_{1}(R_{2};z_{0})$ ,

(3.34) $(\xi_{1}(z_{0})R_{2})a_{0}=Q2(R_{1}, R_{2};zo)$ ,
(3.35) $(\xi_{1}(z_{0})R_{2})a_{1}=Q_{3}(R_{1}, R_{2}, a_{0};z_{0})$ .
where $Q_{j}$ $($ . ; $z_{0}),$ $j=1,2,3$ are polynomials in the corresponding arguments
with small coefficients. It follows from $(3.32)-(3.35)$ that $z_{0}$ is a WDl-pole by
the fixed smal functions. Hence we see by Lemma 2.6 that $w(z)$ satisfies a first
order differential equation of the form (2.11), satisfies a second order differential
equation of the form (2.12), or satisfies a third order differential equation of the
form (2.15). As in the case (a), we may assume that $F(z, w)\not\equiv O$ in (2.15). In
fact, we $re$cal the proof of Lemma 2.6 of the part of WDl-pole. If $\hat{\mu}_{2}(z)\not\equiv 0$ ,
then the assertion follows. Hence, we consider the case $\hat{\mu}_{2}(z)\equiv 0$ , that is to
say, $\hat{U}_{1}(z, w(z),$

$\ldots,$
$w^{\prime l/}(z))\equiv 0$ . Similarly to the case (a), if $\hat{\sigma}_{2}(z)\equiv 0$ , then

$w(z)$ satisfies a differential equation of the form (2.15). In case $\hat{\sigma}_{2}(z)\not\equiv 0$ , then
obviously we have $F(z, w)\not\equiv O$ .

It remains to show that if $w(z)$ satisfies the third order differential equations
(3.26) and (2.15) at the same time, then $w(z)$ satisfies a first order differential
equation of the form (2.11) or $s$atisfies a equation of the form (2.15). Actu-
ally, combining (3.26) and (2.15), we see that $w(z)$ satisfies the second order
differential $e$quation

(3.36) $(\sigma(z)-\lambda(z))w^{\prime\prime}+(E(z, w)-\Xi(z, w))w^{l}+F(z, w)=0$ .
Since $F(z, w)\not\equiv 0$ , we may assume that $\sigma(z)-\lambda(z)\not\equiv 0$ , nevertheless $w(z)$

satisfies a Riccati equation by Theorem 2.1. From (3.26) and (3.36), we get, by
simple computation,

(3.37) $A_{w}(z, w)(w^{\prime})^{2}+T(z, w)w^{l}+U(z, w)=0$ ,

where

$A(z, w)=\frac{E(z,w)_{-}^{-}--(z,w)}{\sigma(z)-\lambda(z)}$ , $B(z, w)=\frac{-F(z,w)}{\sigma(z)-\lambda(z)}$ ,

$T(z, w)=A_{z}(z, w)+B_{w}(z, w)+\Xi(z, w)-A(z, w)(\lambda(z)+A(z, w))$ ,
$U(z, w)=B_{z}(z, w)-B(z, w)(\lambda(z)+A(z, w))$ .

From (3.37), if one of the polynomials $A_{w}(z, w),$ $T(z, w)$ and $U(z, w)$ does not
vanish, then $w(z)$ satisfies a first order differential equation. So, we consider
the case $A_{w}(z, w),$ $T(z, w)$ and $U(z, w)$ al vanish. From $A_{w}(z, w)\equiv 0$ , we
have $\deg_{w}A(z, w)=0$ . It follows from $T(z, w)\equiv 0$ that $\deg_{w}B_{w}(z, w)=$

$deg_{w}\Xi(z, w)$ . This means that $\deg_{w}F(z, w)\leqq 3$ . Hence, we have proved Theo-
rem 3.2. $\square $
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