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ON THETA PAIRS OF MAXIMAL SUBGROUPS OF
SOLVABLE GROUPS

T. K. DUTTA and A. BHATTACHARYYA

ABSTRACT For a maximal subgroup M of a finite group G, a 6-pair
is defined as a pair of subgroups (C,D) of G such that DaGgG, Dg_c,
{M,c> = G, {M,D> = M and C/D has no proper normal subgroup of
G/D. We obtain several results on the maximal 6-pairs, which

characterize solvable grours-

1. INTRODUCTION

Many authors have found interest to investigate how various con-
aitions given on maximal subgroups of a finite group determine
the structure of the group. 1In [5), we have introduced a charac-
teristic subgroup §§D(G), which is a generalization of the Fratti-
ni subgroup ¢(G) of G, and studied its influence on solvable group.
We also introduced another characteristic subgroup Bp(G) in [6].
In [9], Mukherjee and Bhattacharya have introduced the concept of
maximal 6=-pairs for a maximal subgroup of a finite group and
studied their effects on solvable, supersolvable and nilpotent
groups. In this paper, our aim is to find out some more condi-
tions on maximal 6-pairs for a maximal subgroup M of a finite
group G, which characterize the solvability of the group. All
groups considered here are finite and we use standard notation
as in [7]+ 1In addition, the notation M{ G is sometimes used to

denote that M is a maximal subgroup of G.

2. PRELIMINARIES

DEFINITION For a maximal supgroup M of a group G,
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let 6(M) = {(C,D) 3 C&G, D4AG, DGC, (MC> =G, (N,D> = N and

C/D contains properly no non-trivial normal subgroup of G/Dj.
This family of subgroups introduced by Mukherjee and Bhattacharya
[9; is motivated by the interesting concept of the Index complex
defined in Deskins [3-4].
Any pair (C,D) in 6(M) is called a e-pair. A partial order relation
< is defined on (M) as follows 3

(C,D) £ (Cc',D*') if C S C'; no condition is placed on the

second component of the pairs (From the definition of 6(M), it
follows that DCD'. Also C = C' implies D = D').
Any maximal element in 6(M) with respect to this ordering is
called a maximal 6-pair. If a maximal 6-pair (C,D) is such that
C/dfg G/D then we call it a normal maximal 6-pair. The index of

a 6-pair (C,D) is defined to be [C s Dl.

(z.1) [9, Lemma 2.1] If (C,D) is a maximal 6-pair in 6(M) and
N4 G, NCD then (C/N, D/N) is a maximal 6-pair in ©(M/N).
Conversely if (C/N, D/N) is a maximal 6-pair in 6(M/N) then

(C,D) is a maximal 6-pair in €(M).

(2.2) {1, Lemma 3] If a group G possesses a maximal subgroup

with trivial core then the following properties of G are

equivalent.

(i) The indices in G of all the maximal subgroups with trivial
core are powers of a prime p.

(i1) There exists a unique minimal normal subgroup of G, and
there exists a common prime divisor of all the indices in
G of all the maximal subgroups with trivial core.

(1i1) There exists a non-trivial solvable normal subgroup of G.
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(2.3) If a group G has an abelian maximal subgroup then G is

solvable.

This result follows directly from a result of Huppert [8, Satz 2]

DEFINITION Let H and K be two normal subgroups of a group G

with KCH. Then the factor group H/K is called a chief factor
of G if there is no normal subgroup N 6f G such that K C NCH
with proper inclusion. Let M be a maximal/subgroup of G H is
said to be a normal supplement of M in G if MH = G The normal
index of M in G is defined as the order of a chief factor H/K,

where H is minimal in the set of all normal supplements of M in

G, and is denoted by M(G 3 M).

It was proved that 7(G s M) is uniquely determined by

M [3, 2.1] (or [2, Lemma 1]).
If (C, D) is a normal €-pair in €(M) then 7(G s M)=[C s D]J.

It follows from the definition of normal index that
[G H M] divides ?gG $ M). But under some conditions,
(G s M] = “qﬁG $ M). For example, if [G s M] is a square-free

integer then 7G ¢ M) = [G s M] [10, Lemma 3.1].

DEFINITION Let G be any group and p be any prime. Define two
characteristic subgroups of G as follows 3

Bp(G) = N{M s ME Bp(G)}

#,(G) N{M s ME YplG)}

1 and NG 3 M) is composite}

l

where 5p(G) {M<& G [Gs M]p

(1]

1

and ‘Y’p(G) fM& G s [G M]p = 1}.
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In case Bp(G) is empty then we define Bp(G) = G and the same

thing is done for the subgroup ¢p(G)- Note that ¢p(G)(;-Bp(G).

{(2.4) [6, Theorem 3.6] BP(G) is solvable and so ¢p(G) is
solvable.

3. SOLVABILITY CONDITIONS.

THEOREM 3.1 For a group G, each of the following conditions

implies the solvability of G s

(a) [cs D] =[G s M] for each maximal €-pair (C, D) in €(M)

and any maximal subgroup M in ﬁp(G)-

(b) [Cs Djz = [G 3 M]2 for each maximal 6-pair (C, D) in

8(M) and any maximal subgroup M of G.

(c) G is p—sblvable and [C s D]2 = [G s M}z for each maximal
©-pair (C, D) in 6(M) and any maximal subgroup M in
Bp(G).

Proof (a) Let G be a group satisfying the condition stated

in (a)e We shall Show that G is solvable. We may assume that
Bp(G) is non-empty. For otherwise, G = Bp(G) and so G is
solvable by (2.4). If G is simple, (G s 1) is a maximal pair
in €(M) for any maximal subgroup M. Then we have |G| = [G M]
by the hypothesis, and therefore any maximal subgroup of G is
triviale This implies that G is a cyclic group of prime order,
sothat it is solvable. Thus we may assume that G is not simple.

Let N be a minimal normal subgroup of Ge By induction, G/N is
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solvable. If N, and N2 are two distinct minimal normal sub-
groups of G, we have Nl(\N2 = 1 and so G = G/Nll'\N2 is iso-
morphic to a subgroup of (G/N1)><(G/N2). Since G/N, (i =1, 2)
are solvable by the argument above, G is also solvable. Thus
we may assume that there 1s a unique minimal normal subgroup

N of G. Since Bp(G) is solvable by (2.4), we may assume that
Bp(G) # Ge If NC Bp(G) then N is solvable and hence G is
solvable. If N<¢?Bp(G) then there exists M_ in ﬁp(G) such

that Ngf Mo e« SO G = MbN and cOreG(Mé) = < 1>, since N is the
unigue minimal normal subgroup of G. Thus G possesses a
core-free maximal subgroup. Let M be any maximal subgroup of

G with trivial core. Then N4¢:M and so G = MNe It can be
verified that (N, {1 >) is a 6-pair in €(M). If (N, <{1>) is
not a maximal €-pair, then (N, {1 >) £ (C, D) for some pair
(C, D) in ©(M). Since M is core-free and <M, D> = M it
follows that D = { 1 ». But then C/ {1 > has no proper normal
subgroup of G/ (1 >, which is impossible, since N € C. Thus
(N, €1 >) is a maximal &-pair in 6(M). Similarly it can be
verified as above that (N, {1 >) is a maximal 6-pair in e(Mo).
By hypothesis [G 3 M ] = [N| and so INlp = 1. Since

(G 3 M)

(G s M)

IN], IN] is composite. Also the relation .

|N] implies that )G s M)p = 1 and 7UYG 3 M) is
composite. Since [G ¢ M] divides 7(G : M), [G : M]p = 1.
Hence M belongs to Bp(G). By hypothesis [G ¢ M] = |N|. This
implies that there exists a common prime divisor of all the
indices in G of all the maximal subgroups with trivial core.

So by (2.2), N is solvable and hence G is solvable.

— 141 —



This completes the proof of (a).

The proofs of (b) and (c) are analogous to that of.(a) and so

we omit them.

THEOREM 3.2 A group G is solvable if it has a solvable maxi-

mal subgroup M such that the index of each maximal pair (C, D)
in 6(M) is equal to [G s M].

Proof If possible, let G be a counter example of minimal
order. By the arguments in the proof of Theorem 3.1, we may
assume that G is not simple. Assume that H = coreG(M) # <1>.
Then by (2.1), we see that G/H satisfies the hypothesis of
the theorem. By minimality of G, G/H is solvable. Also,
since HC VM, it follows that H is solvable and hence G is
solvable, a contradiction. Thus M is core~free. Let N be a
minimal normal subgroup of G. Then N¢ M and so G = MN.

Since (N, {1>) is a maximal pair in 6(M) (see the argument
in the proof of Theorem 3.1), we .have [G s M] = |N| by
hypothesis and so M1 N = < 1>. Now M is not simple. For,
otherwise M is commutative and so by (2.3), G is solvable, a
contradiction. Let L be a minimal normal subgroup of the:
solvable group M. Then L is an elementary abelian p-group for
some prime p. lLet A = CN(L) = {X&€ N s y-lxy =X,vy € L}.
Then A is an M~invariant subgroup of N and so M C NG(A)C; G.
This implies that either M = N;(A) or N (A) = G. If M= N, (Aa)
then ACM/(IN and so A = { 1D« This implies that M = G, a

contradiction.
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If NG(A) = G then A4G and so either A = { 1 > or A = N. But

A = N implies that L 4 G and consequently coreG(M) # L1 >, a
contradiction. Hence A = CN(L)==(I>-We claim that (|L], |N|)=1.
If not, there is a prime p dividing |N|. Let P be a Sylow p-
subgroup of LN containing L. Then PN N is a non-trivial normal
subgroup of the nilpotent group P and consequently Z(P)N\N # €1 >.
Now Z(P)N\N C C (L) and so 2(P)AN = {1 >, a contradiction.
Hence (|L|, IN|) = 1. since ¢ (L) = < 1 >, it follows from
Theorem 2.2 [7] that for each prime q dividing IN}], there exists
a unique L-invariant Sylow g-subgroup Q of N. Then for any gé&M
g-ng = Q and thus Q is an M-invariant g-subgroup of N. Since
M< G, it can be verified as above that the only M-invariant sub-
groups of N are N and (1 >. and consequently Q = N. This
implies that N is solvable and hence G is solvable, a contradic-

tion. This completes the proof.

THEOREM 3.3 For a group‘G, the following conditions are equi-

valent to the solvability of G s

(a) G has a solvable maximal subgroup M such that for each
maximal pair (C,D) in 6(M), C/D is solvable.

(b) C/D is solvable for any maximal €-pair (C,D) in €(M) and

any M in ﬁp(G).

Proof (a) If G is simple, (G, 1) is a maximal pair in €(M) and
then G = G/< 1 > is solvable by the hypothesis. Thus we may
assume that G is not simple. Assume that H = core,(M) # 1 >,
By induction, G/H is solvable. As HC M, H is solvable and hence
G 1is solvable. Thus M is core-free. Let N be a minimal normal

subgroup of G. Then N<ﬁ.M and so G = MN. By the arguments in
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the proof of Theorem 3.1, we obtain that (N, {1 >) is a maximal
6-pair in 6(M). So by hypothesis, N is solvable. Also since
G/N ZM/MNN, it follows that G/N is solvable. Hence G is
solvable.

The converse 1is obvious.

The proof of (b) is similar to that of (a).

THEOREM 3.4 For a group G, the following conditions are equi-

valent to the solvability of G 3

(a) For each M in Bp(G), there exists a normal maximal pair
(C,D) in 6(M) such that C/D is solvable.

(b) G has a solvable maximal subgroup M such that there exists
@ normal maximal pair (C,D) in 6(M) with C/D solvable.

{c) For each M in ﬁp(G), there exists a maximel pair (C,D) in
6(M) such that C/D is abelian.

(da) G has a'solvable maximal subgroup M such that there exists

a maximal pair (C,D) in 6(M) with C/D abelian.

Proof (a) Assume that G satisfies the condition stated in (a).
We have to show that G is solvable. As in the proof of Theorem
3.1 and Theorem 3.3, we may assume that pb(c) is non-empty and G
is not simple. Let N be a minimal normal subgroup of G.

We now show that G/N is solvable. We may suppose that
ﬁp(G/N) is non-empty by (2.4). Let M/N be a maximal subgroup in
ﬁp(G/N)- Then M belongs to ﬁp(G)- By hypothesis, there exists
4 normal maximal pair (C,D) in €(M) such that C/D is solvable.
If NC D then (C/N, D/N) is a normal maximal pair in 8(M/N) and
C/N / D/N is solvable. Thus G/N is solvable by the hypothesis

of induction.
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If N¢D then we claim that N¢C. For i1f NCC then NDC C
and so either ND = C or ND<;:C. If ND = C then C € M and con-
sequently G = {M,CD> =M, a con’;radictiono If ND ¢ C then ND/D
is a proper non-trivial normal subgroup of G/D in C/D, which
contradicts the definition of the 6-pair (C, D). Now since C/D
is solvable, CN/DN is also solvable. Let K be a maximal proper
normal subgroup of G contained in CN/\ M and containing DN. We
now claim that CN/K is not a minimal normal subgroup of G/K, For
if CN/K is a minimal normal subgroup of G/K then (CN, K) belongs
to 6(M) and (¢, D) < (CN, K) and hence C = CN by the maximality
of (¢, D), a contradiction.

Let H/K be a minimal normal subgroup of G/K such that
H/K C CN/K. Then from the choice of K, we obtain that HsﬁM and
so G = MH. Therefore (H, K) is a pair in 6(M). Also H/K is sol-
vablee. If (H, K) is a maximal pair in (M) then (H/N, K/N) is a
maximal pair in ©€(M/N) and H/N / K/N is solvable. Thus G/N is
solvable by the hypothesis of induction.

If on the other hand, (H,K) is not a maximal pair in e(M)V
then let (H,K) <(H1,K1), where (Hl'Kl) is a maximal pair in €6(M)
and consequently Hc:Hl- Since Hl/K1 contains properly no non =
trivial normal subgroup of G/Kl, Kl is a maximal proper normal
subgroup of G in Hl, that is contained in M and H¢ Kl' If HKl"‘Hl
then HKl/Kl is a proper normal subgroup in Hl/Kl' a contradiction.

HenceHK1=H-IfK=K then H, = HK = H and so (H, K) is a

1 1 1
maximal pair in 6(M), a contradictione. So K 9 K, Also H,/K,
is solvable. Thus (Hl/N' Kl/N) is a maximal pair in 6(M/N) such
that Hl/N/Kl/N is solvable. By induction, G/N is solvable. As

in the proof of Theorem 3.1, we may assume that there is a unique
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minimal normal subgroup N of G. If NC Bp(G) then N is solvable
by (2.4) and hence G is solvable. If N¢¢ Bp(G) then there exists
M in Bp(G) such that G = MN and coreG(M) =4 1 >, by the unique-
ness of N (see the proof of Theorem 3.1). By hypothesis, there
exists a normal maximal paic (C,D) in 6(M) such that C/D is solv-
able. Since core_ (M) = { 1 > it follows that D= {1 > and con-
sequently C is solvable. Thus N is solvable, since NCC by the
uniqueness of the minimal normal subgroup N. So G is solvable.

The converse holds trivially.

The proofs of(b), (c) and (d) are similar to the proof of (a)

and so we omit them.

THEOREM 3.5 For a group G, the following conditions are equi-

valent to the solvability of G s

(a) For any two distinct maximal subgroups M, and M2 of G,
whenever e(Ml) and G(Mz) have a common maximal pair (c,D)
it follows that C/D is solvable.

(b) G is p-solvable and for any two distinct maximal subgroups
My, M, in ﬁp(G), whenever e(Ml) and e(Mz) have a common

maximal pair (C,D), it follows that C/D is solvable.

Proof (a) We may assume that G is not simple (see the proof of
Theorem 3.3). Let N be a minimal normal subgroup of G. By induc-
tion, G/N is solvable. As in the proof of Theorem 3.1, we may
assume that there is a unique minimal normal subgroup N of G.

If N is contained in the Frattini subgroup #(G), then N is
solvable by (2¢4) and hence G is solvable. If NZ #(G) then there
exists a maximal subgroup M1 of G such that G = M,N. Let q be a

1
prime divisor of [G 3 M;]. If NC 8,(G) then N is solvable and

hence G is solvable. If N<¢ ¢q(G) then there exists a maximal
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subgroup M, in ﬁ{a(G) such that N ¢;M2 and so G = M_N. As in the

2

proof of Theorem 3.1, we can show that (N, {1 >) is a common
maximal pair in B(Ml) and e(Mz). Since q divides [G 3 M1] but
not [G s Mz], M, and M2 are distinct maximal subgroups of G. By
hypothesis N is solvable and hence G is solvable.

The converse follows trivially.

The proof of (b) is similar to that of (a) and so we omit it.

THEOREM 3.6 For a group G, the following conditions are equiva-

lent to the solvability of G s

(a) CG/D (c/D) # L1 > for any normal maximal pair (C,D) in

6(M) and any M in ﬁp(G)-
(b) G has a solvable maximal subgroup M such that for each
normal maximal pair (C,D) in 6{(M), it follows that
Cs/p
{c) For any two distinct maximal subgroups M. M2 of G, when-

(c/D) # {1 >.

ever 6(M,) and e(mz) have a common normal maximal pair

(c,D), it follows that cG/ (c/p) # L1 >.

D

(a) G is p-solvable and for any two distinct maximal sub-
groups M;, M, in ﬁp(G),.whenever 8(M;) and G(Mz) have a
common normal maximal pair (C,D), it follows that

cG/D (c/D) # L1 >.

Proof (a) Since Bp(G) is solvable by (2.4), we may assume that
ﬁp(G) is non-empty. If G is simple then G = Z(G) and hence G is
solvable. So we assﬁme that G is not simple. Let N be a minimal
normal subgroup of G. By induction G/N is solvable. We may assume
that N is the unique minimal normal subgroup of G (see the proof

of Theorem 3.1).
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If NC Bp(G) then N is solvable and hence G is solvable.
If N B (G) then there exists M, in B (G) such that N¢ M and
so G = M_N and core, (M) = {1 > Also (N, <1l >) is a maximal
pair in e(Mo) (see the proof of Theorem 3.1). By hypothesis,
Cg(N) # < 1 > and hence it follows that N ¢ C5;(N). Consequently N
is abelian and so G is solvable.
The converse follows directly from Theorem 3.2(i) (9]

The proofs of (b), (c) and (d) are same as that of (a).

THEOREM 3.7 For a group G, each of the following conditions

implies the solvability of G ¢

(a) Bp(G/D) # £ 1 > for each maximal pair (C,D) in ©(M) and
every M in ﬁp(G)-

(b) G has a solvable maximal subgroup M such that for each
maximal pair (C,D) in 6(M), Bp(G/D) # L1 >,

(c) For any.two distinct maximal subgroups M, and M, of G,
whenever G(Ml) and €(M,) have a common maximal pair (C, D)
it follows that Bp(G/D) A L1 >.

(a) G is p=-solvable and for any two distinct maximal subgroups
M, M2 in pp(G), whenever G(Ml) and G(Mz) have a common

maximal .pair (C, D), it follows that Bp(G/D) # 1>

Proof (a) We may assume that‘ﬁp(G) is non-empty (see the proof
of Theorem 3.6). If G is simple then for any maximal subgroup M
in Bp(G), (G, £1 >) is a maximal pair in €(M) and so by hypothe-~
sis, Bp(G) # <1 >. Hence G = Bp(G) and consequently G is solv-
able, by (2.4). So we assume that G is not simple. Let N be a
minimal normal subgroup of G. By induction, G/N is solvable.

We may assume that N is the unique minimal normal subgroup of G.

If N4§;Bp(G) then N is solvable and hence G is solvable.
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If BI¢TBP(G) then there exists a maximal subgroup M in Pp(G) such
that N¢ M and so G = MN and core, (M) = L1 > Also (N, <1 >) is
a maximal pair in 6(M) (see the proof of Theorem 3.1). By hy-
pothesis Bp(G) # ¢ 1 > and so N<;.Bp(G). Hence N is solvable

and so G 1s solvable.

we omit the proofs of (b), (c) and (d), because they are similar

to the proof of (a).

THEOREM 3.8 For a group G, each of the following conditions

implies the solvability of G s

(a) All non-normal maximal subgroups having a common maximal
6-pair are conjugate in G.

(b) G is p=-solvable and all non-normalmaximal subgroups belonging

to gp(c)having a common maximal €-pair,are conjugate in Ge.

Proof (a) Suppose that the theorem is false and let G be a
counter example of minimal order. If G is simple then since all
maximal subgroups of G have a maximal 6-pair (G, 1) in common,
they are conjugate by the hypothesis. Threfore all maximal sub-
groups in G have the same indices. So by Theorem 4 [11], G is
solvable, a contradiction. Therefore, we assume that G is not
simple. Let N be a minimal normal subgroup of G. Then since G/N
inherits the conjugacy property, so by using (2.1), we can show
that G/N satisfy the hypothesis of the theorem. Hence by minima-
lity of G, G/N is solvable. we assume .that there is a unique
minimal normal subgroup N of G (see the proof- of Theorem 3.1).

If N is contained in the Frattini subgroup #(G) then N is solv-
able and hence G is solvahle, a contradiction. 1If N(ﬁ #(G) then
there exists a maximal subgroup M1 of G such that G = M_.N and

1
core, (M) = £ 1 >. let p be a prime divisor of (G s Mll-
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If NC ¢p(G) then N is solvable and hence G is solvable, a contra-
diction. If N«¢j¢b(G) then there exists M2 in n{;(G) such that
N(f,Mz and so G = MZN and coreG(Mz) = {1 > Also (N, L1 >) is a
common maximal 6-pair in e(Ml) and G(MZ) (see the proof of
Theorem 3.1). So by hypothesis M, and M2 are conjugate in G and
consequently (G s Ml} =[G M2]- This implies that p divides

Pl

[G 3 M,], which contradicts the fact that (G 3 MZ)p = 1.

The proof of other part is similar and so we omit it.
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