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ON THETA PAIRS OF MAXIMAL SUBGROUPS OF

SOLVABLE GROUPS

T. K. DUTTA and A. BHATTACHARYYA

ABSTRACT For a maximal subgroup $M$ of a finite group $G$ , a $e$-pair

is defined as a pa ir of subgroups $(C, D)$ of $G$ such that $DAG$ , $DC_{-}\neq$ C.
$<l\cdot 1$ . $C>=G,$ $<M,$ $D>=M$ and $C/D$ has no proper norrnal subgroup of

$G/D$ . We obtain several results on the maximal $e$-pairs, which

characterize solvable groups.

1. INTRODUCTION

$hany$ authors have found interest to investigate how various con-

oitions given on maximal subgro $\iota_{\grave{4}}ps$ of a finite group determine

the structure of the group. In [ $5_{d}^{\urcorner}$ , we have introduced a charac-

teristic subgroup $Sp(G)$ , which is a generalization of the Fratti-

ni subgroup $\beta(G)$ of $G$ , and studied its inf luence on solvable grouo.

We also introduced another characteristic subgroup $Bp(G)$ in [6].

In [9], Mukherj ee and Bhattacharya have introduced the concept of

maximal $\Theta$-pairs for a maximal subgroup of a finite group and

studied their effects on solvable, supersolvable and nilpotent

groups $\cdot$ In this paper, our aim is to find out some more condi-

tions on maximal $e$-pairs for a maximal subgroup $Mo^{f_{-}}$ a finite

group $G$ , which characterize the solvability of the group. All

groups consSdered here are $f$ inite and we use standard notation

as $i\iota$) $[7]$ . In $addl_{\vee}ion$ , the notation $M<\cdot c$ is sometimes used to

denote that $\nu_{l}$ is a maximal $su^{\ltimes}c_{3}ro_{\vee}^{1}$] $p$ or G.

2. PRELIMINARIES

DEEINITION For- a maximal suog roup $\nu$ of a group $G$ ,
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let $e(M)=$ { $(C, D)$ $\iota$ $C\leq G$ , $D\triangleleft G$ , $D\subsetneq C$ , \langle $M,$ $C>=G$ , \langle $Fi,$ $D>=ki$ and

$C/D$ contains properly no non-trivial normal subgroup of $G/D$ }.

This family of subgroups introduced by Mukherj ee and Bhattacharya

[ $9_{j}$ is motivated by the interesting concept of the Index complex

def ined in Deskins [3-4] .
Any pair $(C, D)$ in $e(M)$ is called a $e-P^{dir}$ . A partial order relation

{, is deflned on $e(M)$ as $f$ollows $\iota$

$(C, D)\leq(C^{\prime}, D^{\prime})$ if $Cc-C$ ‘ ; no condition is pldced on the

second component of the pairs (From the definition of $e(M)$ , it

follows that $DCD^{\prime}$ . Also $C=$ C’ implies $D=D$ ‘).

Any maximal element in $e(k_{s}^{\prime})$ with respect to thls $orderin_{\backslash J}^{r}$ is

called a maximal $e-pair$ . If a maxlmal $\Theta$-pair $(C, D)$ is such that

$C/\dot{D}-AG/D$ then we call it a norrnal maximal 6-pair. The index $0_{A}^{\epsilon}$

a $e$-pair $(C, D)$ ls def ined to be [ $C$ $ $D^{\urcorner}d$

$(2 \cdot 1)$ [9, Lemma 2 $\cdot 1$ ] rf $(C, D)$ is a maximal 6-pair in 8 (M) and

N4 $G$ , NCD then $(C/N, D/N)$ is a maximal $e$-pair in $e(M/N)$ .
Conversely if $(C/N, D/N)$ ls a maximal $e$-pair in 6 $(M/N)$ then

$(C, D)$ is a maximal $e$-pai $r$ in $e(M)$ .
$(2 \cdot 2)$ [1, temma 3] If a group $G$ possesses a maximal subgroup

with trivial core then the following properties of $G$ are
equivalent.

(i) The indices in $G$ of all the maximal subgroups with trivial

core are powers of a prime $p$ .
(ii) There exists a unique minimal normal subgroup of $G$ , and

there exists a common prime divisor of all the indices in

$G$ of all the maximal subgroups with trivial core.
(iii) There exists a non-trivial solvabie normal subgroup of G.
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solvae.

$(2 \cdot 3)$ If a group $G$ has an abelian maximal subgroup then $G$ is

bl

This result follows directly $f$ rom a result of Huppert [8, Satz 2]

DEFINITION Let $H$ and $K$ be two normal subgroups of a group $G$

wlth $KCH$ . Then the factor group $H/K$ is called a chief factor

of $G$ if there is no normal subgroup $N$ of $G$ such that K C $N\subset H$

with proper inclusion . Let $M$ be a maximal subgroup of $G$ . $H$ is

said to be a normal supplement of $M$ in $G$ if MH $=G$ . The norrnal

index of $M$ in $G$ is defined as the order of a chief factor $H/K$,

where $H$ is minimal in the set of all norrnal supplements of $M$ in

$G$ , and is denoted by $\gamma 1$( $G\iota$ M).

It was proved that $\gamma 1$( $ G\iota$ M) is uniquely determined by

$M[3, 2 \cdot 1]$ (or [2, Lemma 1]).

If ( $C$ , D) is a norrnal 6-pair in $e(M)$ then $\eta(G\iota M)=[C\iota D]$ .
It follows from the definition of normal index that

$[G \$ M]$ divides $q$( $G$ $ M). But under some conditions,

$[G\iota M]=$ $\eta$( $G\iota$ M) . For example, if $[G\iota M]$ is a $s$quare-free

lnteger then $\eta$ ( $G\iota$ M) $=[G\iota M]$ [ $10$ , Lemma 3 $\cdot 1$ ].

DEFZNITION Let $G$ be any group and $p$ be any prime . Define two

characteristic subgroups of $G$ as follows :

$B_{p}(G)=$ $\cap\{M ‘ M\in\beta_{p}(G)\}$

$\beta_{p}(G)=\cap\{M\iota$ $M\in Y_{p}^{(G)\}}$

Where $6_{p}(G)$ $=$ { $M<\cdot G\iota$ $[G\iota$ $M]_{p}=1$ and $\urcorner(G$ : M) is composite}

and $\gamma_{p}(G)$ $=\{M<G\iota [G : M]_{p}=1\}$ .
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In case $\rho_{p}(G)$ is empty then we define $B_{p}(G)=G$ and the same
thing is done for the subgroup $\beta_{p}(G)$ . Note that $\beta_{p}(G)\subseteq B(Gp)$ .

$(2 \cdot 4)$ [ $6$ , Theorem 3 $\cdot 6$ ] $B_{p}(G)$ is solvable and so $\beta_{p}(G)$ is

solvable.

3 $\cdot$ SOLVABILITY CONDITIONS.

THEOREM 3.1 For a group $G$, each of the following conditions

implies the solvability of $ G\iota$

(a) $[C\iota D]=[G\iota M]$ for each maximal $e$-pair ( $C$ , D) in $e(M)$

and any maximal subgroup $M$ in $\beta_{p}(G)$ .

(b) $[C\iota D]_{2}=[G\iota M]_{2}$ for each maximal $\Theta$-pair ( $C$, D) in

$e(M)$ and any maximal subgroup $M$ of $G$ .
(c) $G$ is $p$-solvable and $[Cs D]_{2}=[Gs M]_{2}$ for each maximal

$e$-pair ( $C$, D) in $e(M)$ and any maximal subgroup $M$ in

$\beta_{p}(G)$ .
Proof (a) Let $G$ be a group satisfying the condition stated

in (a). we shall show that $G$ is solvable. We may assume that

$\beta_{p}(G)$ is non-empty. For otherwise, $G=B(G)p$ and so $G$ .is

solvable by $(2 \cdot 4)$ . If $G$ ls simple, $(G\iota 1)$ is a maximal pa ir

in $e(M)$ for any maximal subgroup M. Then we have $|G|$ $=[G\iota M]$

by the hypothesis, and therefore any maximal subgroup of $G$ is

trivial . This implies that $G$ is a cyclic group of prime order,

sothat it is solvable . Thus we may assume that $G$ is not simple.

Let $N$ be a minimal norrnal subgroup of $G$ . By induction, $G/N$ is
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solvable. If $N_{1}$ and $N_{2}$ are two distinct minimal normal sub-

groups of $G$ , we have $N_{1}\cap N_{2}=1$ and so $G=G/N_{1};$ ) $N_{2}$ is iso-

morphic to a subgroup of $(G/N_{1})X(G/N2)$ . Since $G/N_{i}$ $(i=1, 2)$

are solvable by the argument above, $G$ is also solvable . Thus

we may assume that there is a unique minimal normal subgroup

$N$ of G. Since $B_{p}(G)$ is solvable by $(2 \cdot 4)$ , we may assume that

$B(Gp)$ $\neq G$ . If $N\subseteq B_{p}(G)$ then $N$ is solvable and hence $G$ is

solvable . If $N\not\in B(Gp)$ then there exists $Mo$ in $\rho_{p}(G)$ such

that $N\not\in Mo$ . So $G=MNo$ and $core_{Go}(M)=<1>$ , slnce $N$ is the

unique minimal normal subgroup of $G$ . Ihus $G$ possesses a

core-free maximal subgroup . Let $M$ be any maximal subgroup of

$G$ with trivial core. Then $N\not\simeq\cdot M$ and so $G=MN$ . Xt can be

verif ied that $(N, <1>)$ is a $e$-pair in $e(M)$ . If $(N, <1>)$ is

not a maximal $e$-pair, then $(N, \langle 1 ’>)<$ ( $C$ , D) for some pair

( $C$, D) in $e(M)$ . Since $M$ is core-free and $<M$, $D>=M$ it

follows that $D=$ \langle $ 1\succ$ . But then $C/\langle 1>$ has no proper normal

subgroup of $G/<1>$ , which is impossible, since $N\subset C$ . Thus

$(N, <1 >)$ is a maximal $e$-pair in 8(M). Similarly it can be

verified as above that $(N, <1>)$ is a maximal $e$-pair in $e(M_{O})$ .
By hypothesis $[G ; M_{O}]=$ I $N|$ and so $|N|_{p}=1$ . Since

$\eta(G\iota M_{O})=$ $|N|$ , $|N|$ is composite . Also the relation

$\eta(G- : k_{1}^{\prime})$ $=$ $|N|$ implies that $\eta(G \$M)p=1$ and $ wG\iota$ M) is

composite $\cdot$ Since $[G : M]$ divides $\eta_{-}$( $G$ : M), $[G : M]_{p}=1$ .
Hence $M$ belongs to $\rho_{p}(G)$ . By hypothesis $[G : M]=$ $|N|$ . This

implies that there exists a common prime divisor of all the

indices in $G$ of all the maximal subgroups with trivial core.

So by $(2 \cdot 2)$ , $N$ is solvable and hence $G$ is solvable .
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This completes the proof of (a).

The proofs of (b) and (c) are analogous to that of. (a) and so
we omit them $\cdot$

THEOREM 3 $\cdot$ 2 A group $G$ is solvable if it has a solvable maxi-

mal subgroup $M$ such that the index of each maximal pair ( $C,$ D)

in $e(M)$ is equal to $[G\iota M]$ .
Proof If possible, let $G$ be \‘e counter example of minimal

order $\cdot$ By the arguments in the proof of Theorem 3 $\cdot 1$ , we may

assume that $G$ is not simple. Assume that $H=core_{G}(M)\neq<1>$ .
Then by $(2 \cdot 1)$ , we see that $G/H$ satisfies the hypothesis of

the theorem. By minimality of $G$ , $G/H$ is solvable. Also,

since H $C-M$, it follows that $H$ is solvable and hence $G$ is

solvable, a contradiction. Thus $M$ is $core-free$ . Let $N$ be a
minimal normal subgroup of $G$ . Then $N\not\in\nu$ and so $G\Rightarrow$ MN.

Since $(N, <1>)$ is a maximal pair in $e(M)$ (see the argument

in the proof of Theorem 3 $\cdot$ 1), we have $[G \$ M]=$ $|N|$ by

hypothesis and so $M\cap N=<1>$ . Now $M$ is not simpleo For,

otherwise $M$ is commutative and so by $(2 \cdot 3)$ , $G$ is solvable, a
contradiction. Let $L$ be a minimal normal subgroup of the $\cdot$

solvable group M. Then $L$ is an $elementa\Pi$ abelian p-group for

some prime $p$ . Let A $=C_{N}(L)$ $=$ { $x\in N\iota$ $y$ xy $=x\forall y\in L$}.
$-1$

Then A is an M-invariant subgroup of $N$ and so $MC-N_{G}(A)\subseteq G$ .
This implies that either $M=N_{G}(A)$ or $N_{G}(A)$ $=$ G. rf $M=N_{G}(A)$

then A C $M\cap N$ and so A $=<1>$ . This implies that $M=G$ , a
contradiction.
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:$fN_{G}(A)=G$ then A 4 $G$ and so either A $=p_{\sim}1>$ or A $=$ N. But

A $=N$ implies that $L4G$ and consequently $core_{G}(M)$ $\neq<1$ $>$ , a

contradiction $\cdot$ Hence $A=c_{N}(L)=\langle 1\succ$ . We claim that ( $|L|,$ $|N$ I ) $=1$ .
If not, there is a prime $p$ dividing I $N|$ . Let $P$ be a Sylow $p-$

subgroup of LN containing L. Then $p\cap N$ is a non-trivial norrnal

subgroup of the nilpotent group $P$ and consequently $Z(P)\cap N\neq$ \langle 1 $>$ .

Now $Z(P)\cap N\underline{C}C_{N}(L)$ and so $Z(P)\cap N=$ \langle 1 $>$ , a contradiction.

Hence ( $|L|$ , I $N|$ ) $=1$ . Since $C_{N}(L)=<$ 1 $>$ , it $f$ollows from

Theorem 2 $\cdot 2$ [7] that $f$or each prime $q$ dividing $|N|$ , there exists

a unique L-invariant Sylow $q$-subgroup $0$ of $N$ . Then for any $g\in M$

$-1$
$g$ Qg $=0$ and thus $0$ is an M-invariant q-subgroup of N. Since

$M<\cdot G$ , it can be verified as above that the only M-invariant sub-

groups of $N$ are $N$ and $<1$ $>$ . and consequently $0=N$ . This

implies that $N$ is solvable and hence $G$ is solvable, a contradic-

tion. This completes the proof.

THEOREM 3 $\cdot 3$ For a group G. the following conditions are equi-

valent to the solva\‘oility of $ G\iota$

(a) $G$ has a solvable maximal subgroup $M$ such that for each

maximal pair $(C, D)$ in $e(M)$ , $C/D$ is solvable .
(b) $C/D$ is solvable $f$ or any maximal $e$-pair ( $C,$ $D\rangle$ in $e(M)$ and

any $M$ in $\beta_{p}(G)$ .
Proof (a) If $G$ is simple, $(G, 1)$ is a maximal pair in $e(M)$ and

then $G=G/<1$ $>$ is solvable by the hypothesis. Thus we may

assume that $G$ is not simple . Assume that $H=core_{G}(M)$ $\neq<1$ $>$ .
By induction, $G/H$ is solvable. As $H^{r_{=}^{\sim}}M$ , $H$ is solvable and hence

$G$ is solvable. Thus $M$ is $core-free$ . Let $N$ be a mtnimal noimal

subgroup of G. Then $N\not\in M$ and so $G=$ MN. By the arguments in
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the proof of Theorem 3 $\cdot 1$ , we obtain that $(N, <1 >)$ is a maximal
$e$-pair in $e(M)$ . So by hypothesis, $N$ is solvable. Also since
$G/N\simeq\sim M/M\cap N$ , it follows that $G/N$ is solvable $\cdot$ Hence $G$ is

solvable.

The converse is obvious $\cdot$

The proof of (b) is similar to that of (a).

THEOREM 3 $\cdot 4$ For a group $G$ , the $fol$ ] $owing$ conditions are equi-

valent to the solvability of $G$ :

(a) For each $M$ in $p_{p}(G)$ , there exists a normal maximal pair

$(C, D)$ in $e(M)$ such that $C/D$ is solvable.

(b) $G$ has a solvable maxim\^ol subgroup $M$ such that there exists

a normal maximal pair $(C, D)$ in $e(M)$ with $C/D$ solvable.
(c) For each $M$ in $\oint_{p}(G)$ , there exists a maximal pair $(C, D)$ in

6 (M) such that $C/D$ is abelian.

(d) $G$ has a solvable maximal subgroup $M$ such that there exists

a maximal pair $(C, D)$ in $e(M)$ with $C/D$ abelian.

Proof (a) Assume that $G$ satisfies the condition stated in (a).

We have to show that $G$ is solvable. As in the proof of Theorem

3.1 and Theorem 3 $\cdot 3$ , we may assume that $\beta_{p}(G)$ is non-empty an\‘o $G$

is not simple. Let $N$ be a minimal normal subgroup of $G$ .
We now show that $G/N$ is solvable. We may suppose that

$p_{p}(G/N)$ is non-empty by $(2 \cdot 4)$ . Let $M/N$ be a maximal subgroup in

$\beta_{p}(G/N)$ . Then $M$ belongs to $f_{p}(G)$ . By hypothesis, tbere exists

a normal maximal pair $(C, D)$ in $e(M)$ such that $C/D$ is solvable.

If $NC_{\sim}D$ then $(C/N, D/N)$ is a normal maximal pair in $e(l\vee./N)$ and

$C/N/D/N$ is solvable. Thus $G/N$ is solvable by the hypothesis

of induction.
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If $N\not\subset D$ then we claim that $N\not\subset C$ . For if NC-C then ND $\underline{c_{-}^{\wedge}}C$

an\‘o so either ND $=C$ or ND $C\prime C$ . If ND $=C$ then $Cc_{-}M$ and con-

sequently $G=$ \langle $M,$ $C>=M$, a contradiction $\cdot$ If ND C $C$ then $ND/D$

is a proper $non-trivial$ normal subgroup of $G/D$ in $C/D$, which

contra\‘oicts the definition of the $e$-pair ( $C$, D) . Now since $C/D$

is solvable, $CN/DN$ is also solvable . Let $K$ be a maximal proper

normal $s$ubgroup of $G$ contained in CN $\cap M$ and containing $DN$ . Ne

now claim that $CN/K$ is not a minimal normal subgroup of $G/K$ , For

if $CN/K$ is a minimal normal subgroup of $G/K$ then (CN, K) belongs

to $e(M)$ and ( $C$ , D) $\leq$ (CN, K) and hence $C=$ CN by the maximality

of ( $C$ , D), a contradiction .
Let $H/K$ be a minimal normal subgroup of $G/K$ such that

$H/K\subset CN/K$ . Then from the choice of $K$, we obtain that $H\not\in M$ and

so $G=$ I $E$ . Therefore ( $H$ , K) is a pair in $e(M)$ . Also $H/K$ is sol-

vable . If ( $H$ , K) is a maximal pair in $e(M)$ then $(H/N, K/N)$ is a

maximal pair in $e(M/N)$ and $H/N/K/N$ is solvable . Thus $G/N$ is

solvable by the hypothesis of induction $\cdot$

If on the other hand, $(H, K)$ is not a maximal pair in $e(M)$

then let $(H, K)<(H_{1}, K_{1})$ , where $(H_{1}, K_{1})$ is a m\‘eximal pair in $e(M)$

and consequently $HCH_{1}$ . Since $H_{1}/K_{1}$ contains properly no non -

trivial no rnal subgroup of $G/K_{1}$ , $K_{1}$ is a maximal proper normal

subgroup of $G$ in $H_{1}$ , that is contained in $M$ and $H\not\in K_{1}$ . If $HK_{1}\neq H_{1}$

then $HK_{1}/K_{1}$ is a proper normal subgroup in $H_{1}/K_{1}$ , a contradiction .
Hence $HK_{1}=H_{1}$ . If $K=K_{1}$ then $H_{1}=$ HK $=H$ and so ( $H$ , K) is a

maximal pair in $e(M)$ , a contradiction . So $KC\neq\rightarrow K_{1}$ . Also $H_{1}/K_{1}$

is solvable . Thus $(H_{1}/N, K_{1}/N)$ is a maximal pair in $e(M/N)$ such

that $H_{1}/N\int K_{1}/N$ is solvable . By induction, $G/N$ is solvable . As

in the proof of Theorem 3 $\cdot 1$ , we may assume that there is a uniLque
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$m$ inimal normal subgroup $N$ of $G$ . : $fNc_{-}Bp(\cap 0)$ then $N$ is solvable
by $(2 \cdot 4)$ and hence $G$ is solvable. If $N\not\in B_{p}(G)$ then there exists
$M$ in $\theta_{p}(G)$ such that $G=$ MN and $core_{G}(M)=<1>$ , by the $unique-$

ness $oEN$ (see the proof of Theorem 3 $\cdot 1$ ). By hypothesis, there

exists a normal maximal paic $(C, D)$ in $e(M)$ such that $C/D$ is solv-

able. Since $core_{G}(M)=<1$ $>$ , it follows that $D=$ \langle 1 $>$ and con-
sequently $C$ is solvable. Thu$sN$ is solvable, since $NCC\sim$ by the

uniqueness of the minimal noxmal subgroup N. So $G$ is solvable .
The converse holds trivially.

The proof $s$ of (b), (c) and (d) are similar to the proof of (a)

and so we omit them.

THEOREM 3 $\cdot$ 5 For a group $G$ , the following conditions are equ $i-$

vaient to the solvability of $G$ $

(a) For any two distinct maximal subgroups $M_{1}$ and 142 of $G$ ,

whenever $e(M1)$ and $e(M_{2})$ have \‘e common maximal pair $(C, D)$

it follows that $C/D$ is solvable.

(b) $G$ is p-solvable and for any two distinct maxlmal subgroups

$M_{1}$ , $M_{2}$ in $\beta_{p}(G)$ , whenever $e(M_{1})$ and $e(M_{2})$ have a common
maximal pair $(C, D)$ , it follows that $C/D$ is solvable .

Proof (a) We may assume that $G$ is not simple (see the proof of

Theorem 3 $\cdot$ 3). Let $N$ be a minimal normal subgroup of $G$ . By induc-
tion, $G/N$ is solvable. As in the proof of Theorem 3 $\cdot$ 1, we may
assume that there is a unique minimal nonnal subgroup $N$ of $G$ .
If $N$ is contained in the Frattini subgroup $\beta(G)$ , then $N$ is

solvable by $(2 \cdot 4)$ and hence $G$ is solvable. If $N\not\in\beta(G)$ then there

exists a maximal subgroup $M1$ of $G$ such that $G=MN1$ Let $q$ be a
prime divisor of $[G\iota M_{1}]$ . If $NC\wedge t_{q}(G)$ then $N$ is solvable and

hence $G$ is solvable . If $N\not\in\beta_{q}(G)$ then there exists a maxima1
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subgroup $M_{2}$ in $Y_{q}(G)$ such that $N\not\subset M_{2}$ and so $G=M_{2}N$ . As in the

proof of Theorem 3 $\cdot 1$ , we can show that $(N, <1 >)$ is a common

maximal pair in $e(M_{1})$ and $e(M_{2})$ . Since $q$ divides $[Gs M_{1}]$ but

not $[G\iota M2]$ , $M1$ and $M2$ are distinct maximal subgroups of G. By

hypothesi$sN$ is solvable and hence $G$ is solvable.

The converse follows trivially.

The proof of (b) is similar to that of (a) and so we omit it.

THEOREM 3.6 For a group $G$ , the following conditions are equiva-

lent to the solvability of $G\iota$

(a)
$C_{G/D}$ $(C/D)$ $\neq<1>$ for any normal maximal pa ir $(C, D)$ in

$e(M)$ and any $M$ in $\beta_{p}(G)$ .
(b) $G$ has a solvable maximal subgroup $M$ such that for each

norrnal maximal pair $(C, D)$ in 8 (M), it follows that

$c_{G/D}$ $(C/D)$ $\neq$ \langle 1 $>$ .
(c) For any two distinct maximal subgroups $M_{1}$ , $M_{2}$ of $G$ , when-

ever $e(M1)$ and $e(M_{2})$ have a common no $\Pi \mathfrak{n}a1$ maximal pair

$(C, D)$ , $1t$ follows that $c_{G/D}$
$(C/D)\neq$ \langle 1 $>$ .

(d) $G$ is $p$-solvable and for any two distinct maximal sub-

groups $M_{1}$ , $M_{2}$ in $\beta_{p}(G)$ , whenever $e(M_{1})$ and 6(M2) have a

common normal maximal pair $(C, D)$ , it follows that

$c_{G/D}$ $(C/D)\neq<1>$ .
Proof (a) Since $3p(G)$ is solvable by $(2 \cdot 4)$ , we may assume that

$P_{p}(G)$ is non-empty. Zf $G$ is simple then $G=Z(G)$ and hence $G$ is

solva\‘ole. So we assume that $G$ is not simple . Let $N$ be a minimal

normal su\‘ogroup of $G$ . By induction $G/N$ is solvable. We may assume

that $N$ is the unique minimal nonnal subgroup of $G$ (see the proof

of Theorem 3. 1).
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If N C $Bp(G)$ then $N$ is solvable and hence $G$ is solvable.

: $ft:\not\subset B_{p}(G)$ then there exists $M_{O}$ in $P_{p}(G)$ such that $N\not\in M_{O}$ and

so $G=MNo$ an\‘o $core_{G}(M_{O})$ $=<1$ $>$ . Also $(N, <1 >)$ is a maximal

pair in $e(M_{O})$ (see the proof of Theorem 3. 1). By hypothesis,

$c_{G}(N)\neq<1>$ and hence it follows that $NC\leftarrow C_{G}(N).$ Consequently $N$

is abelian and so $G$ is solvable.

The converse follows directly $f$ rom Theorem 3 $\cdot 2(i)$ [9]

The proofs of (b), (c) \‘end (d) are same as that of (a).

THEOREM 3 $\cdot 7$ For a group $G$ , each of the folloNlng conditions

implies the solvabilitv of $G$ :

(a) $3p(G/D)$ $\neq$ $<1$ $>$ for each maximal pair $(C, D)$ in $e(M)$ and

every $M$ in $F_{p}(G)$ .
(b) $C$ has a solvable maxiInal subgroup $M$ such that for each

maximal paic (C. D) in $e(M)$ , $Bp(G/D)$ $\neq<1>$ .
(c) For any two distinct maximal subgroups $M1$ and $M2$ of $G$ ,

whenever $e$
$(M_{1} )$ and $e(M_{2})$ have a common maximal pai $r$ $(C, D)$

it follows that $Bp(G/D)\neq<1>$ .
(d) $G$ is p-solvable and for any two distinct maximal subgroups

$M_{1}$ , $M_{2}$ in $\beta_{p}(G)$ , whenever $e(M1)$ and $e(M_{2})$ have a common
m\‘eximal.pair ( $C$ , D), it follows that $Bp(G/D)\neq<1>$ .

Proof (a) We may assume that $f_{p}^{\backslash }(G)$ is non-empty (see the proof

of Theorem 3.6). If $G$ is simple then for any maximal subgroup $M$

in $\beta_{p}(G)$ , $(G, \angle 1 >)$ $1s$ a maximal pair in $e(M)$ and so by hypothe-

sis, $B_{p}(G)$ $\neq<1>$ . Hence $G=B_{p}(G)$ and consequently $G$ is solv-

able, by (2.4). So we assume that $G$ is not simple. Let $N$ be a
minimal norrnal subgroup of $G$ . By induction, $G/N$ is solvable.

We may assume that $N$ is the unique minimal normal subgroup of G.

If N $C-B_{p}tG$ ) then $N$ is solvable an\‘o hence $G$ is solvable.
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If $N\ell B_{P}(G)$ then there exists a maximal subgroup $M$ in $\rho_{p}(G\rangle$ such

that $N\not\subset M$ and so $G=$ MN and $core_{G}(M)$ $=<1$ $>$ . Also $(N, <1 >)$ is

a maximal pair in $e(M)$ (see the proof of Theorem3 $\cdot 1$ ). By hy-

pothesis $B_{p}(G)\neq<1>$ and so $NC-Bp(G)$ . Hence $N$ is solvable

and so $G$ is solvable $\cdot$

‘rve omit the proofs of (b), (c) and (d), because they are similar

to the proof of (a).

THEOREM 3.8 For a group $G$ , each of the following conditions

implies the solvabllity of $Gs$

(a) All non-normal maximal subgroups having a common maximal

$\Theta$-pair are conjugate in $G$ .
(b) $G$ is $p-s$olvable and all non-normal $m\tilde{a}$xlmdl subgroups belonging

to $\theta_{p}(G)$ having a common $\max$imal $e-pair$ , are conjugate in $G$ .
Proof (a) Suppose that the theorem is false and let $G$ be a

counter example of minimal order $\cdot$ If $G$ is simple then since all

maximal subgroups of $G$ have a maximal $e$-palr $(G, 1)$ in common,

they are conjugate by the hypothesis . Threfore all maximal sub-

groups in $G$ have the same indices $\cdot$ So by Theorem 4 [11], $G$ is

solvable, a contradiction. Therefore, we assume that $G$ is not

simple . Let $N$ be a minimal normal subgroup of $G$ . Then since $G/N$

inherits the conjugacy property, so by using $(2 \cdot 1)$ , we can show

that $G/N$ satisfy the hypothesis of the theorem $\cdot$ Hence by minima-

lity of $G$ , $G/N$ is solvable. $|ve$ assume that there is a unique

minimal normal subgroup $N$ of $G$ (see the proof of Theorem 3 $\cdot 1$ ).

If $N$ is contained in the Frattini subgroup $\beta(G)$ then $N$ is solv-

a\‘ole and hence $G$ is solvahle, a contradiction $\cdot$ If $N\not\subset\beta(G)$ then

there exists a maximal subgroup $M1$ of $G$ such that $G=M_{1}N$ and

$core_{G}(M1)=<1>$ . Let $p$ be a prime divisor of $[G \$ M_{1}]$ .
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: $fN\subset-\mu_{p}(G)$ then $N$ is solvab1 $e$ and hence $G$ is solvable, a contra-

diction. 1 $fN\not\in\beta_{p}(G)$ then there exists $M_{2}$ in $Y_{P}(G)$ such that

$N\not\in M_{2}$ and so $G=MN2$ and $core_{G}(M_{2})=<1>$ . Also $(N, <1>)$ is a

common maximal $e$-pair in $e(M_{1})$ and $e(M_{2})$ (see the proof of

Theorem 3.1). So by hypothesis $M_{1}$ and $M_{2}$ are conjugate in $G$ and

consequently $[G\iota M_{1}]=[G\iota M_{2}]$ . This implies that $p$ divides

$[Gs \nu_{\iota_{2}}]$
, whlch contradicts the fact that $[G\iota M2]_{p}=1$ .

The proof of other part is similar and so we omit it.
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