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CURVATURE-ADAPTED SUBMANIFOLDS

J\"urgen Berndt and Lieven Vanhecke

Abstract

We show that the classification of curvature-adapted submanifolds in 3-spaces can
be reduced to that of curvature-adapted hypersurfaces by using tubes about submani-
folds. Moreover, we treat the special case of non-flat complex and quaternionic space
forms. This leads to a complete classification of the curvature-adapted submanifolds in
quaternionic projective spaces.

1. Introduction

In this note we study a certain class of submanifolds whose extrinsic curvature is
adapted in a natural way to the intrinsic curvature of the ambient Riemannian manifold.
A general measure for the extrinsic curvature of a submanifold is provided by all the
shape operators $A_{\zeta}$ with respect to normal vectors $\xi$ . Given a normal vector $\xi$ to a
submanifold, the Jacobi operator $R_{\zeta}$ $:=R(., \xi)\xi$ measures the intrinsic curvature of the
ambient Riemannian manifold $\overline{M}$ in the direction of $\xi$ . Here, $R$ denotes the Riemannian
curvature tensor of $\overline{M}$ . Both $A_{\zeta}$ and $R_{\zeta}$ are self-adjoint operators; their eigenvalues
represent extremal curvatures, and their eigenspaces point out directions for which the
curvature becomes extremal. We say that a submanifold $M$ of a Riemannian manifold
$\overline{M}$ is curvature-adapted if for every normal vector $\xi$ to $M$ , say at $p\in M$ , the Jacobi
operator $R_{\zeta}$ leaves the tangent space $T_{p}M$ of $M$ at $p$ invariant, that is, if

(1) $R_{\zeta}(T_{p}M)\subset T_{p}M$ ,

and if there exists a basis of $T_{p}M$ consisting of eigenvectors both of $A_{\zeta}$ and $K_{\xi}$ $:=$

$R_{\xi}|T_{p}M$ , that is, if

(2) $A_{\zeta}oIt_{\zeta}^{r}=Ii_{(}^{\prime}oA_{\zeta}$ .
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The operator $K_{\zeta}$ is called the normal Jacobi operator of $M$ with respect to $\zeta$ . Clearly,
in order to see whether a submanifold is curvature-adapted, it suffices to check (1) and
(2) for unit normal vectors.

Obviously, every submanifold of a space of $\infty nstallt$ curvature is curvature-adapted.
Also, every totally umbilical hypcrsurface of a Riemannian manifold is curvature-adapt-
ed. Note that condition (1) is always satisfied for hypersurfaces.

Special cases of curvature-adapted submanifolds already appeared in the literature
in various contexts. For instance, J.E. D’Atri [9] studied isoparametric hypersurfaces in
symmetric spaces which are amenable. For the rank one case this notion turns out to be
equivalent to that of curvature-adaptedness. A. Gray [10] studied tubes about curvature-
adapted (he calls them compatible) submanifolds in symmetric spaces. Further, the first
author [3] classified all curvature-adapted real hypersurfaces in quaternionic projective
spaces. And the authors [4] studied recently properties of Riemannian manifolds all of
whose (sufficiently small) geodesic hyperspheres are curvature-adapted.

In this note we continue the study of curvature-adapted submanifolds. In Section
2 we discuss the relations between this notion for submanifolds and the tubes about
them hereby showing that for the so-called $\mathfrak{P}$-spaces (see [4]) the classification of all
curvature-adapted submanifolds is entirely determined by that of the curvature-adapted
hypersurfaces. In Section 3 we discuss this for complex space forms and in Section
4 for the quaternionic space forms, hereby obtaining a complete classification of the
curvature-adapted submanifolds in quaternionic projective spaces.

2. Tubes and curvature-adapted submanifolds

A locally symmetric $spa\infty\overline{M}$ can be characterized by the property that for every
geodesic $\gamma$ in $M$ the associated Jacobi operator $R_{\gamma}$ $:=R(.,\dot{\gamma})\dot{\gamma}$ has constant eigenvalues
and is diagonalizable by a parallel orthonormal frame field along $\gamma$ . In [4] the authors
studied Riemannian manifolds all of whose Jacobi operators $R_{\gamma}$ have constant eigen-
values (so-called $C$-spaces) or are diagonalizable by a paraUel orthonormal frame field
along the affiliated geodesic $\gamma$ (so-called $\mathfrak{P}$-spaces). In particular, we proved

Theorem 1. [4] Let $M$ be a curvature-adapted $su$bmanifold of a $\mathfrak{P}$-space M. Then
the tubes a$bo$ut $M$ are also curvature-adapt$ed$ in $\overline{M}$ .

Note that the tubes are always defined at least locally and for small radii.

Theorem 2. [4] $A$ real analytic Riemannian manifold is a $\mathfrak{P}$-space if and only if all its
($su$fficiently small) geodesi $c$ hyperspheres are curvature-adapted.

In the special case of locally symmetric spaces Theorem 1 has been proved by A.
Gray [10, Theorem 6.14]. Theorem 2 provides us with particular examples of curvature-
adapted submanifolds, namely geodesic hyperspheres in locally symmetric spaces and,
more generally, in $\mathfrak{P}$-spaces (see [4] for examples of non-symmetric $\mathfrak{P}$-spaces). We shall
IIOW be concerned with a converse of Theorem 1 for general Riemannian manifolds.
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Theorem 3. Let $M$ be a $su$bmanifold of a Riemann $i$an manifold M. If the (sufliciently
$sm$all) tubes about $M$ are curvature-adapted, then $M$ is also curvature-adapted.

Proof. Let $p$ be any point in $Af$ and $\zeta$ a unit normal vector of $M$ at $p$ . We choose a
geodesic $\gamma$ in $\overline{M}$ defined on an open interval $I\subset \mathbb{R}$ such that $0\in I,$ $p=\gamma(0)$ and
$\xi=\dot{\gamma}(0)$ . Let $D$ be the solution of the End $(T\overline{M})$-valued Jacobi equation

$Y^{\prime\prime}+R_{\gamma}oY=0$

along $\gamma$ with initial values

$Y(O)=\left(\begin{array}{ll}id_{T_{p}M} & 0\\0 & 0\end{array}\right)$ and $Y^{l}(0)=\left(\begin{array}{ll}-A_{\zeta} & 0\\0 & id\perp M\prime\end{array}\right)$

where the matrix decomposition is with respect to the orthogonal decomposition $T_{p}\overline{M}=$

$T_{p}M\oplus\perp_{p}M$ . For some sufficiently small $\epsilon\in \mathbb{R}+we$ may define

$B$ $:=D^{\prime}oD^{-1}|$ ] $0,$ $\epsilon[$ .

$B$ is a solution of the End $(T\overline{M})$-valued Riccati equation

$B^{\prime}+B^{2}+R_{\gamma}=0$

along $\gamma|$ ] $0,$ $\epsilon$ [. It is known that $B(r)|(\mathbb{R}\dot{\gamma}(r))^{\perp}$ is the shape operator of the tube $M_{r}$ of
radius $ r\in$ ] $0,$ $\epsilon[aboutM$ with respect $to-\dot{\gamma}(r)$ . Moreover, $R_{\gamma}(r)|(\mathbb{R}\dot{\gamma}(r))^{\perp}$ is the normal
Jacobi operator of $M_{r}$ with respect $to-\dot{\gamma}(r)$ . Hence, by means of our assumption and
as $\dot{\gamma}$ is an eigenvector of $B$ and $R_{\gamma}$ on ] $0,$ $\epsilon$ [, we have

$BoR_{\gamma}=R_{\gamma}oB$ .

Alas, $B$ cannot be extended continuously to $0$ . Therefore we define

$C(r)$ $:=\left\{\begin{array}{ll}rB(r) & , if r\in] 0, \epsilon[,\\[Matrix] & , if r=0\end{array}\right.$

(see for instance [5, p. 161] for the special case where $M$ is a single point and [11] for
the general case). $C$ is a differentiable tensor field of $T\overline{M}$ along $\gamma|[0,\epsilon$ [ with

$C^{l}(0)=(^{-A_{\xi}}0$ $00)$

and, by means of the corresponding property of $B$ ,

$CoR_{\gamma}=R_{\gamma}oC$ on ] $0,$ $\epsilon[$ .

We now write

$C(?\cdot)=C(0)+fC^{l}(0)+rcmainder$ term,

$R_{\gamma}(’\cdot)=R_{\gamma}(0)+rR_{\gamma}^{l}(0)+remainder$ term.
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From these expressions and the above commutativity condition we get by a standard
argument

$C(0)R_{\gamma}(O)=R_{\gamma}(O)C(O)$

alld
$C(0)R_{\gamma}^{\prime}(0)+C^{l}(O)R_{\gamma}(O)=R_{\gamma}^{\prime}(O)C(O)+R_{\gamma}(O)C^{\prime}(O)$ .

It can be seen easily that the first of these two conditions is equivalent to

$R_{\zeta}(T_{p}M)\subset T_{p}M$,

and using this fact the second condition is equivalent to

$A_{\epsilon^{oI\iota^{\prime}}\epsilon=K_{\zeta}oA_{\xi}}$ .

This proves that $M$ is curvature-adapted. $\square $

Combining now Theorem 1 and Theorem 3 we get

Corollary 1. Let $M$ be a $su$bmanifold of a $\mathfrak{P}$-space M. Then $M$ is curva $t$ure-adapted
if an $d$ only if all the (suMciently small and at least locally defined) tubes a$boutM$ are
curvature-adapted.

Hence, for a particular $\mathfrak{P}$-space, the determination of all the curvature-adapted sub-
manifolds depends on that of the curvature-adapted hypersurfaces. In the two following
sections we shall discuss this problem for complex and quaternionic space forms. Note
that due to Theorem 2 the preceding corollary is not true for general Riemannian man-
ifolds. This is easily seen by choosing $\Lambda f$ to be a single point.

We finish this section by recalling the notion of focal sets, which play an important
role in the following. Let $M$ be a submanifold of a complete Riemannian manifold $\overline{M}$ and
$\xi\in\perp 1M$ a unit normal vector of $M$ at some point $p\in M$ . $Mor\infty ver$, let $\gamma_{\zeta}$ : $[0,\infty[\rightarrow\overline{M}$

be the geodesic in $\overline{M}$ with $\gamma_{\zeta}(0)=p$ and $\dot{\gamma}_{\xi}(0)=\zeta$ . The point $\gamma_{\xi}(r)(r>0)$ is said to
be a $fo$cal point of $M$ along $\gamma_{\zeta}$ if the differential of the normal exponential map of $M$

is singular at $ r\zeta$ . It might happen that there are no focal points along $\gamma\epsilon$ . But if there
are any, we put $r_{\zeta}$ $:=\min$ { $r>0|\gamma_{\zeta}(r)$ is a focal point of $M$ along $\gamma\epsilon$ } and call $\gamma\epsilon(r_{\zeta})$

the first focal point of $M$ along $\gamma_{\zeta}$ . By the focal set of $M$ we mean the set of the first
focal points of $M$ along all the orthogonaUy emanating geodesics $\gamma_{\zeta},\xi\in 1^{1}M$ .

3. Curvature-adapted submanifolds in complex space forms

Let $(\overline{M}, g, J)$ be a K\"ahler manifold of constant holomorphic sectional curvature $c\neq 0$

and of complex dimension $n>1$ . The Riemannian curvature tensor $R$ of $\overline{M}$ is given by

$R(X, Y)Z=\frac{c}{4}(g(1^{\prime}, Z)X-g(X, Z)Y+g(JY, Z)JX-g(JX, Z)JY-2g(JX, Y)JZ)$ .
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Hence we have for every unit tangent vector $\xi$ of $\overline{M}$ , say at $p\in\overline{M}$ ,

$R_{\zeta}X=\frac{c}{4}(X-g(X, \zeta)\xi+3g(X, J\xi)J\zeta)$ .

Thus $R_{\xi}$ has three distinct constant eigenvalues, namely $0,c$ and $c/4$ ; the corresponding
eigenspaces are $\mathbb{R}\xi,$ $\mathbb{R}J\xi aIld$ the orthogonal complement of $R\xi\oplus \mathbb{R}J\xi$ in $T_{p}\overline{M}$ . So the
shape operator $A_{\zeta}$ of a submanifold $Af$ of $\overline{M}$ and $R_{\zeta}$ satisfy (1) and (2) if and only if
either $ J\xi$ is normal to $\Lambda i$ or $ J\xi$ is tangent to $M$ and an eigenvector of $A_{\zeta}$ . Therefore
we have

Proposition 1. Let $M$ be a connected $su$bmanifold of M. Then $M$ is curva $t$ ure-
adapted if and only if one of the following two statements is valid:

$(a)M$ is a complex submanifold of $\overline{M}$ ;
$(b)J$ maps the $n$ormaJ bundle of $Af$ into the tangent bundle of $M$ and for every unit

normal vector $\zeta$ of $\Lambda f$ the vector $ J\xi$ is a princip$al$ curvature vector of $M$ with
respect to $\xi$ .

Let $M$ be an orientable real hypersurface in $\overline{M}$ and $\zeta$ a unit normal field on $M$ . The
preceding proposition says that $Af$ is curvature-adapted if and only if $ J\xi$ is a principal
curvature vector of $M$ everywhere. Real hypersurfaces in complex space forms satisfy-
ing the latter condition appear frequently in the literature (see [1] and the references
there). In [1] the first author introduced the notion of Hopf hypersurface for such a
hypersurface. This notion can be motivated by the fact that $ J\xi$ is a principal curvature
vector everywhere if and only if the foliation on $M$ induced by the integral curves of
$ J\xi$ is totally geodesic. In the special situation of the unit sphere in $\mathbb{C}$“ this foliation
is just the well-known Hopf foliation of the sphere by great circles. Combining now
Proposition 1 and Corollary 1 we have

Corollary 2. A $subm$anifold $M$ in $\Lambda\overline{f}$ is curvature-adapted if and only if all (suff ciently
$sm$all) tubes about $M$ are Hopf hypersurfaces.

So the whole classification of the curvature-adapted submanifolds in non-flat complex
space forms is reduced to that of Hopf hypersurfaces. We shall now discuss this in more
detail for the ambient spaces $\mathbb{C}P$ “ and $\mathbb{C}H^{n}$ , where $\mathbb{C}P^{\mathfrak{n}}$ and $\mathbb{C}H$ “ denote the n-
dimensional complex projective and hyperbolic space of constant holomorphic sectional
$curvature+4$ and-4, respectively.

1. Complex submanifolds. The zero set of one or several homogeneous polynomials
on $\mathbb{C}^{n+1}$ always determines a complex submanifold in $\mathbb{C}P^{\mathfrak{n}}$ . Conversely, every compact
complex submanifold of $\mathbb{C}P^{\mathfrak{n}}$ can be realized in this way, that is, is an algebraic sub-
manifold of $\mathbb{C}P^{n}$ (see [8]). As $\mathbb{C}H^{\mathfrak{n}}$ is biholomorphically equivalent to an open ball in
$\mathbb{C}^{\mathfrak{n}}$ , every complex submanifold in $\mathbb{C}^{n}$ determines one in $\mathbb{C}H^{\mathfrak{n}}$ . Clearly, there are no
compact complex submanifolds in $\mathbb{C}H^{n}$ .

2. Hopf hypersurfaces. (See [1] for more details.) By meaIis of Proposition 1 and
Corollary 2 every tube about a conrplex $sul$)$lnallifold$ in $\mathbb{C}P^{\prime\iota}$ or $\mathbb{C}H^{\mathfrak{n}}$ is a Hopf hyper-
surface. Conversely, a result of T.E. Cecil and P.J. Ryan [7] says that every tubular
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Hopf hypersurface in $\mathbb{C}P$ ’ can be realized as a tube about a complex submanifold in
$\mathbb{C}P^{n}$ (and perhaps also as a tube about another kind of submanifold; that depends on
the structure of the focal set of the hypersurface). This is not true in $\mathbb{C}H^{n}$ . In fact, the
focal set of a tube $M$ about the n-dimensional totally geodesic real hyperbolic subspace
$RH^{n}$ in $\mathbb{C}H^{n}$ is $RH^{n}$ itself, which implies that $M$ cannot be realized as a tube about
a complex submanifold. Note that in the corresponding projective situation a tube
about $RP^{n}$ in $\mathbb{C}P^{\mathfrak{n}}$ can also be regarded as a tube about the complex quadric in $\mathbb{C}P^{\mathfrak{n}}$

(see [7]). Moreover, there are Hopf hypersurfaces in $\mathbb{C}H^{n}$ which are not tubular. For
instance, a horosphere in $\mathbb{C}H$ “ is a Hopf hypersurface without any focal points. All its
parallel hypersurfaces are also horospheres. However, we do not know any examples of
non-tubular Hopf hypersurfaces in $\mathbb{C}P^{t}$ .

S. Non-complex curvature-adapted submanifolds of codimension greater than one. It
is easy to convince oneself that the totally geodesic real hyperbolic subspace $RH^{\mathfrak{n}}$ is
a curvature-adapted submanifold in $\mathbb{C}H^{n}$ . (Note that condition (1) does not hold for
the lower-dimensional totally geodesic real hyperbolic subspaces $RH^{k},0<k<n$ ). To
our knowledge this is the only known example of a curvature-adapted submanifold in
$\mathbb{C}H^{n}$ belonging to the class considered here. In case of $\mathbb{C}P^{\mathfrak{n}}$ we may use Corollary 2
and the classification (see [13]) of all Hopf hypersurfaces in $\mathbb{C}P^{\mathfrak{n}}$ with constant princi-
pal curvatures to get a few examples. (Note that the corresponding classification for
$\mathbb{C}H$ “ in [2] does not provide any examples except the above mentioned $RH^{\mathfrak{n}}.$ ) From
this classification and the results in [6] we know that the Hopf hypersurfaces in $\mathbb{C}P^{\mathfrak{n}}$

with constant principal curvatures are precisely the tubes about the complex normally
homogeneous submanifolds in $\mathbb{C}P^{\mathfrak{n}}$ . Let $N$ be complex normaly homogeneous subman-
ifold in $\mathbb{C}P^{\mathfrak{n}}$ . Every tube about $N$ can also be regarded as a tube about its focal set $P$ .
Thus, by means of Corollary 2, $P$ is a curvature-adapted submamifold of $CP^{n}$ . The focal
sets of the complex normally homogeneous submanifolds in $\mathbb{C}P^{\mathfrak{n}}$ have been computed
explicitly in [6]. Selecting the non-complex ones we get the following further examples
of curvature-adapted submanifolds in $\mathbb{C}P^{\mathfrak{n}}$ :

- the focal set of the complex quadric in $\mathbb{C}P^{\mathfrak{n}}$ ; this is precisely $RP^{\mathfrak{n}}$ (codimension n) ;
- the focal set of the Segre embedding of $\mathbb{C}P^{1}x\mathbb{C}P^{m}$ in $\mathbb{C}P^{2m+1},m\geq 2$ (codimension

three);
- the focal set of the Pl\"ucker embedding of the complex Grassmann manifold $\mathbb{C}G_{2,5}$

(of all two-dimensional linear subspaces in $\mathbb{C}^{5}$ ) in $\mathbb{C}P^{9}$ (codimension five);
- the focal set of the half spin embedding of the Hermitian symmetric space $SO(10)/U(5)$

in $\mathbb{C}P^{1S}$ (codimension seven);

(see also [1] for more details). We do not know any other examples of curvature-adapted
submanifolds in $\mathbb{C}P^{\mathfrak{n}}$ belonging to this class.

4. Curvature-adapted submanifolds in quaternionic space forms

Let $(\overline{M}, g, 3)$ be a quatcrnionic $K^{:}d$hler manifold of constant quaternionic sectional
curvature $c\neq 0$ and of quatcrIiionic dimension $n\geq 2$ . Here, $\mathfrak{J}$ denotes the quaternionic

–182 –



K\"ahler structure of $\overline{M}$ . The Riemannian curvature tensor $R$ of $\overline{M}$ is locally of the form

$R(X, Y)Z=\frac{c}{4}(g(1^{:}, Z)X-g(X, Z)Y$

$+\sum_{i=1}^{3}(g(J_{i}Y, Z)J_{i}X-g(J_{i}X, Z)J_{i}Y-2g(J;X, Y)J_{i}Z))$ ,

where $J_{1},$ $J_{2},$ $J_{3}$ is a canonical local basis of $J$ (see [12]). Hence, if $\zeta$ is a unit tangent
vector of $\overline{M}$ at some point $p\in\overline{M}$ , we have

$R_{\zeta}X=\frac{c}{4}(X-g(X,\xi)\xi+3\sum_{i=1}^{3}g(X, J_{i}\xi)J_{i}\zeta)$ .

We see that $R_{\zeta}$ has three distinct eigenvalues, namely $0,$ $c$ and $c/4$ of multiplicity 1, 3
and $4(n-1)$ , respectively; the corresponding eigenspaces are $\mathbb{R}\xi,\mathfrak{D}_{0}(\xi)$ and $\mathfrak{D}(\xi)$ , re-
spectively, where

$\mathfrak{D}_{0}(\xi)$ $:=\{J\xi|J\in \mathfrak{J}\}$

and $\mathfrak{D}(\zeta)$ is the orthogonal complement of $\mathbb{R}\xi\oplus \mathfrak{D}_{0}(\xi)$ in $T_{p}\overline{M}$ . Analogous to the complex
case we now get

Proposition 2. Let $Af$ be a connected $su$bmanifold of M. Then $M$ is curvature-
adapted if and only if $M$ satisfies one of the following two conditions:

(a) $M$ is a quaternion $ic$ submanifold of $\overline{M}$ ;
$(b)$ there exists a k-dimensional $(k\in\{1,2,3\})$ subbundle $\mathfrak{J}0$ of 3 such that the endo-

morphisms in $Jo$ map normal spaces of $M$ into tangent spaces of $M$ and for every
unit normal vector $\xi$ of $M$ the $sh$ape operator $A_{\zeta}m$aps the space $\{J(|J\in \mathfrak{J}_{0}\}$

into itself.

Combined with Corollary 1 this yields

Corollary 3. A $su$bmanifold $M$ of $\overline{M}$ is curvature-adapted if and only if the $sh$ape
operator $A$ ofevery (sufficiently small) tube about $Mm$aps $\mathfrak{D}$ into itself (or equivalently,
$\mathfrak{D}_{0}$ into itself).

In [3] the first author classified all curvature-adapted real hypersurfaces in the quater-
nionic projective space $\mathbb{H}P^{n}$ , endowed with the Fubini-Study metric of constant quater-
nionic sectional $curvature+4$ , that is, all real hypersurfaces with the property $A\mathfrak{D}\subset \mathfrak{D}$ .
Using this classification we shall now ded $u$ce a complete classification of all curvature-
adapted submanifolds in $\mathbb{H}P^{\mathfrak{n}}$ .

Theorem 4. A connected $subm$anifol$dM$ in $\mathbb{H}P^{n}(n\geq 2)$ is curvature-adapted if and
only if it is congruent to an open part of one of the following submanifolds in $EP^{n}$ :

(I) the k-dimensional tot $aJ1J^{r}$ geodcsic quaternion $ic$ projective $su$bspace $EP^{k},$ $ k\in$

$\{0, \ldots,n-1\}$ ;
(II) the $n- din\iota eIlsion_{\dot{c}}$} $1$ tota1 $ly$ geodcsic $COI$nplex projecti $vesu$bspace $\mathbb{C}P^{\mathfrak{n}}$ ;
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(III) $Q^{\mathfrak{n}-1}$ $:=$ { $[z+vj]|z,$ $v\in \mathbb{C}’+1$ Hermitian orthonormal};
(IV) a tube of some radius $ r\in$ ] $0,$ $\pi/2$ [ abou $tHP^{k}$ for some $k\in\{0, \ldots, n-1\}$ ;
(V) a tube of som $e$ radius $ r\in$ ] $0,$ $\pi/4$ [ abo $ut\mathbb{C}P^{\mathfrak{n}}$ .

Remarks
1. In the definition of $Q^{n-1}$ we have identified $H^{\mathfrak{n}+\iota}$ with $\mathbb{C}^{n+1}+\mathbb{C}^{\mathfrak{n}+1}j$ . The brackets

denote projective $co$ordinates. $Q^{\mathfrak{n}-1}$ is a $(4n-3)$-dimensional submanifold of II $P^{\mathfrak{n}}$

and diffeomorphic to $SU(n+1)/SU(2)xSU(n-1)$ (see [14]).
2. The focal set of $EP^{k}$ is a suitably embedded $(n-k-1)$-dimensional totally geodesic

quaternionic projective subspace of $EP^{\mathfrak{n}}$ . So the tube of radius $r$ about H$P^{k}$ can
also be considered as a tube of radius $\pi/2-r$ about $HP^{n-k-1}$ . Similarly, the focal
set of $\mathbb{C}P^{n}$ in $HP^{\mathfrak{n}}$ is $Q^{\mathfrak{n}-1}$ . Thus the tube of radius $r$ about $\mathbb{C}P^{\mathfrak{n}}$ is just the tube
of radius $\pi/4-r$ about $Q^{n-1}$ .

Proof. For $a$ connected real hypersurface $M$ in $HP^{\mathfrak{n}}$ it has been proved in [3] that $M$

is curvature-adapted if and only if it is congruent to an open part of one of the model
spaces (IV) and (V). As all these model spaces are tubes, it suffices by means of the
above results to determine their focal sets. First we consider the tubes about $HP^{k}$ .
An entirely analogous argumentation to the complex analogue studied in [7, p. 493]
shows that the focal set of such a tube is the disjoint union of $HP^{k}$ and a suitably
embedded $(n-k-1)$-dimensional totally geodesic quaternionic projective subspace
$HP^{\mathfrak{n}-k-1}$ . Moreover, the tube of radius $ r\in$ ] $0,$ $\pi/2$ [ about II $P^{k}$ is the tube of radius
$\pi/2-r$ about this Il $P^{\mathfrak{n}-k-1}$ . Hence the model spaces (IV) give us the totally geodesic
quaternionic projective subspaces as further curvature-adapted submanifolds in $HP$“.
Next, we consider the tubes about $CP^{\mathfrak{n}}$ . It follows from the results in [14, pp. 362-364]
that the focal set of a tube about $\mathbb{C}P^{\mathfrak{n}}$ is the disjoint union of $\mathbb{C}P^{\mathfrak{n}}$ and $Q^{\mathfrak{n}-1}$ and that
the tube of radius $ f\in$ ] $0,$ $\pi/4$ [ about $\mathbb{C}P^{\mathfrak{n}}$ is the tube of radius $\pi/4-r$ about $Q^{\mathfrak{n}-1}$ .
According to Theorem 3 the spaces $\mathbb{C}P^{n}$ and $Q^{n-1}$ are also curvature-adapted. Finally,
from Corollary 1 we see that there are no further curvature-adapted submanifolds in
$EP^{\mathfrak{n}}$ of codimension greater than two. $\square $

In quaternionic hyperbolic space $HH^{\mathfrak{n}}$ we know of the following examples of curva-
ture-adapted submanifolds:
- the k-dimensional totally geodesic quaternionic hyperbolic subspace $HH^{k},$ $k\in\{0,$

$\ldots$ ,
$n-1\}$ , and the tubes about it;

- the n-dimensional totally geodesic complex hyperbolic subspace and the tubes about
it;

- the horospheres in $\mathbb{H}H^{\prime 1}$ .
Concerning this and further remarks on the problem of curvature-adapted real hyper-
surfaces in $HH^{n}$ we refer to [3].
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