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ON A CLASS OF UNIVALENT FUNCTIONS RELATED WITH
RUSCHEWEYH DERIVATIVE
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ABSTRACT

We introduce a class K*(a,n) using the nth Ruscheweyh deriva-
tive D"f and jnvestigate some of its important properties. We
show that K*(a,n) is a subclass of univalent functions, and we
note that this class generalizes several known subclasses of uni-
valent functions.
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1. INTRODUCTION

Let A denote the class of functions f:f(z) =z + I a .z
k=2 ~,
which are analytic in the unit disc E = {z:]|z|<1}. By S,K,S and

C, denote the subclasses of A which are univalent, close-to-convex,

k

starlike and convex in E respectively. Let P be the class of
functions p, analytic in E with p(0)=1 and satisfying Re p(z)>0,zeE.

The Hadamard product or convolution of two functions f, geA
is denoted by f*q. Let

n

p"f = —2Z

* f, n ¢ N = {0,1,2,3,0-.}
(1-2) °

n+l

which implies that

p"f = {z(zn'lf)(n)} / nl, n eNj

D"f is called the nth Ruscheweyh derivative. Using this concept,
Ahuja [1] has defined the class Rn. A function feA is said to be
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in the class R, if, and only if,

2(0f(2))"

D"f(z)
for zeE. It is clear that R0 = S* and R1 = C. It is known [1]
that Rn+f:;Rn for each n ¢ No which implies that f ¢ Rn is
*
starlike in E. Also f ¢ R implies that D"f ¢ s .

We now define the following.

DEFINITION 1.1

Let feA. Then f ¢ Kn, ne NO if, and only if, there exists a
function g ¢ Rn such that, for z ¢ E

z(D"f(2))" _p

D"g(z)

*
We note that Kos K and Kls C , the class of quasi-convex univalent
functions, see [4].

The class K, has been studied, in some details, in [6]. It
has been shown that Kn+1c;Kn for each n ¢ No and hence f ¢ Kn is

a close-to-convex univalent function. 1In fact f € Kn if, and only
. n
1f, D f € K-

DEFINITION 1.2

*
Let « >0, n ¢ N0 and f ¢ A, Then f ¢ K (a,n) if, and only
if, there exists a function g ¢ Rn such that, for z ¢ E,

{(1-0) zgo:f(z))' . a(z(D:f(z))')'] P (1.1)
D g(z) (D7g)'

We note that

(i) Kk7(0,0)-= K

* *
(i1) X (1,0) = K , a subclass of close-to-convex functions

*
defined and studied in [5], and K (0,n) = Kn’ ne No'
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*
‘Also the class K (a,0) has been discussed in some details in [6].

2. MAIN RESULTS

THEOREM 2.1
*
Let f € K (a,n), n € Nys» a > 0. Then f is close-to-convex

and . hence univalent.

PROOF

Since f ¢ K*(a,n), there exists a function g ¢ Rn such that,
for z ¢ E, (1.1) holds. Since D"g € S*, we obtain the result
immediately by a lemma due to Chichra [2, p.38, Lemma 1]. In fact,
we have only to take N(z) = z(D"f(z))' and D(z) = D"g(z) in the
lemma. This completes the proof.

THEOREM 2.2

* *
For 0 < B < a, K (a,n)cK (8,n).

PROOF

For 8 = 0, the proof is immediate from theorem 2.1. Therefore
*
we let g > 0and f ¢ K (a,n). Then, by theorem 2.1, there exist

two functions Py and Pye P such that

(1-q) 200°F(2))" | (2(D"f(2))")"

= p,(z),
D"g(2) (0"g(z2))" 1
and
2(D"f(2))' _ - h R .
——EHEZ;;—— pz(z), where g e R
Hence
n ) n 1y
(1-8) ’-(gnf:Z;) ‘g “23{?;;) =8 p(2) + (1 - Bp,(2). (2.1)
g(z g(z

From the convexity of the class P, it follows that the right hand
side of (2.1) belongs to P and this gives us the required result.
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THEOREM 2.3

Let f: f(z) =z + = akzk € K*(a,n).
k=2
Then
la, | <« clre o .
2 (1+a)(1+n)
PROOF

*
Since f ¢ K (a,n), we can write

(1-a) z(D"f(z))'(D"g(2))'+a[z(D"F(2))* J'(D"g(2)) = p(2)(D"9(z))(D"g(2))".
where p ¢ P and g ¢ Rn'

Let D"g(z) =z+ . b
k=2

kzk and p(z) =1+ ¢ ckzk.
k=1

So

®  k(k+n-1)! _k ® k-1
(1-a) [z + = -—L—(—-—%— z'][1+ £ kbz
+ afz + p Ken-nl X[z + z by 2]
Kep nl(k-1)! “k k=2 K

® k ® k ® k
=1+ £ ¢z ]J[z+ = bz Jl + £ kbz ].
[ k=1 K k=2 K I k=2 K )

2

Thus, equating the coefficient of z“ on both sides, we have

(1-a) [2b,+ 2(n+1)a,] + a(b,+ 4(n+1)a,) = c + 3b,

or 2(n+1)(1+a)a2 = (1+a)b2+ ¢

%
Now, since D"g ¢ S , |b2| < 2 and also |c1| < 2, see [2]. Hence

(2 + o
lay| < Tﬁ?TT(T%dI .

Using theorem 2.3, we have the following covering theorem.
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THEOREM 2.4

*
Let f € K (a,n). If B is the boundary of the image of E

: : (1+0)(1+n)
under f, then every point of B has a distance of at least 543 2n(1-0)

from the origin.

PROOF

cf(z

Let f(z) #c, c # 0. Then fl(z) = of z

) is univalent in E.

let f(z) =z+ © a zk, then
k=2 K

cf(z)

C_-F.rz_)_= zZ + (a2+ %)22"' eeccccoey

and since fle S, it follows that
1
|a2+ EJ <2

(1ta)(1+n)

or el > +3a2n(1+a) °

and this proves our result.

THEOREM 2.5

*
Let f ¢ K (a,n). Then there exist two functions F1 and
*
er K (1,n) such that

(1-a) Fl(z) + of (z) = F2(Z).

PROOF

*
Since feK (a,n), there exists a g ¢ R, such that

(1-q) 207F(2))" | (z(0"F(z))")"

= p(z), p eP.
D"g(z) (D"g(2))" )
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From theorem 2.1, we know that

n ( ) '
Z(D fz ) = pl(z)s ple P.

D"g(z)
Hence
(1-a) py(2) (0"9(2))" + a2(D"F(2))')" = p(2)(D"9(2))'.  (2.2)

*
Since g ¢ Rn’ there exist two functions Fl’ er K (1,n) such that

p1(2)(D"g(2))* = (2(D"F (2))*)* and p(2)(D"g(2))" = (2(D"Fp(2))")"
Thus, from (2.2), we obtain

(1-a)(2(D"F;(2))")" + a(2(D"F(2))*)" = (2(D"F,(2))")"

or equivalently

(1-a) DnFl(z) + o D"f(2) = D"Fz(z)

and this gives us the required result.

THEOREM 2.6

* *
Let f ¢ K (0,n). Then f e K (1,n) for |z| < rg= 2 - 3 .

PROOF

Consider the function ¢ defined as

¢(z) is convex for |z| < ro = 2-/3. Let f ¢ K*(O,n) with

n '
respect to g ¢ Rn. Then Zigﬁiiill— =p eP.
D"g(2z)
Now
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(z(d"f(z))")' _ z[(e* D"F)']
(0"g(z))" (¢ * D"g)

Y Yl zgn"f)'

s * g

n

- $*pDg
p* g
Since g e R, so D"g ¢ s*. Also ¢ is convex for |z| < ro = 2 -3
and p € P. Hence, by using a result due to Ruscheweyh and Shiel-
Small [7], we conclude that f ¢ F*(l,n) for |z] < Fo= 2-73.
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