Nihonkai Math. J. Vol.2(1991),169-175

ON A CLASS OF UNIVALENT FUNCTIONS RELATED WITH RUSCHEWEYH DERIVATIVE

KHALIDA INAYAT NOOR

ABSTRACT

We introduce a class $K^*(\alpha,n)$ using the nth Ruscheweyh derivative D^n f and investigate some of its important properties. We show that $K^*(\alpha,n)$ is a subclass of univalent functions, and we note that this class generalizes several known subclasses of univalent functions.

<u>Key Words and Phrases</u>: Univalent, Close-to-convex, Ruscheweyh derivative, Convolution.

1980 AMS (MOS) Subject Classification. 30C45, 30A32.

1. INTRODUCTION

Let A denote the class of functions $f:f(z)=z+\sum\limits_{k=2}^{\infty}a_kz^k$ which are analytic in the unit disc $E=\{z:|z|<1\}$. By S,K,S* and C, denote the subclasses of A which are univalent, close-to-convex, starlike and convex in E respectively. Let P be the class of functions p, analytic in E with p(0)=1 and satisfying Re p(z)>0,z \in E.

The Hadamard product or convolution of two functions f, $g \in A$ is denoted by f*q. Let

$$D^{n}f = \frac{z}{(1-z)^{n+1}} * f, n \in N_{0} = \{0,1,2,3,...\}$$

which implies that

$$D^{n}f = \{z(z^{n-1}f)^{(n)}\} / n!, n \in N_{0}$$

 D^n f is called the nth Ruscheweyh derivative. Using this concept, Ahuja [1] has defined the class R_n . A function $f \in A$ is said to be

in the class R_n if, and only if,

$$\frac{z(D^{n}f(z))'}{D^{n}f(z)} \in P$$

for $z \in E$. It is clear that $R_0 \equiv S^*$ and $R_1 \equiv C$. It is known [1] that $R_{n+1} \subseteq R_n$ for each $n \in N_0$ which implies that $f \in R_n$ is starlike in E. Also $f \in R_n$ implies that $D^n f \in S^*$.

We now define the following.

DEFINITION 1.1

Let feA. Then f ϵ K , n ϵ N o if, and only if, there exists a function g ϵ R such that, for z ϵ E

$$\frac{z(D^{n}f(z))^{i}}{D^{n}g(z)} \in P.$$

We note that $K_0 \equiv K$ and $K_1 \equiv C^*$, the class of quasi-convex univalent functions, see [4].

The class K_n has been studied, in some details, in [6]. It has been shown that $K_{n+1} \subset K_n$ for each $n \in N_0$ and hence $f \in K_n$ is a close-to-convex univalent function. In fact $f \in K_n$ if, and only if, $D^n f \in K$.

DEFINITION 1.2

Let $\alpha>0$, $n\in N_0$ and $f\in A$. Then $f\in K^*(\alpha,n)$ if, and only if, there exists a function $g\in R_n$ such that, for $z\in E$,

$$\{(1-\alpha) \frac{z(D^{n}f(z))'}{D^{n}q(z)} + \frac{\alpha(z(D^{n}f(z))')'}{(D^{n}q)'}\} \in P.$$
 (1.1)

We note that

- (i) $K^*(0,0) \cdot \equiv K$
- (ii) $K^*(1,0) \equiv K^*$, a subclass of close-to-convex functions defined and studied in [5], and $K^*(0,n) \equiv K_n$, $n \in N_0$.

Also the class $K^*(\alpha,0)$ has been discussed in some details in [6].

2. MAIN RESULTS

THEOREM 2.1

Let $f \in K^*(\alpha,n)$, $n \in N_0$, $\alpha > 0$. Then f is close-to-convex and hence univalent.

PROOF

Since $f \in K^*(\alpha,n)$, there exists a function $g \in R_n$ such that, for $z \in E$, (1.1) holds. Since $D^n g \in S^*$, we obtain the result immediately by a lemma due to Chichra [2, p.38, Lemma 1]. In fact, we have only to take $N(z) = z(D^n f(z))'$ and $D(z) = D^n g(z)$ in the lemma. This completes the proof.

THEOREM 2.2

For
$$0 < \beta < \alpha$$
, $K^*(\alpha,n) \subset K^*(\beta,n)$.

PROOF

For $\beta=0$, the proof is immediate from theorem 2.1. Therefore we let $\beta>0$ and f ϵ K $^{\star}(\alpha,n)$. Then, by theorem 2.1, there exist two functions p_1 and $p_2\epsilon$ P such that

$$(1-\alpha) \frac{z(D^{n}f(z))'}{D^{n}g(z)} + \alpha \frac{(z(D^{n}f(z))')'}{(D^{n}g(z))'} = p_{1}(z),$$

and

$$\frac{z(D^n f(z))^i}{D^n g(z)} = p_2(z), \quad \text{where } g \in R_n.$$

Hence

$$(1-\beta) \frac{z(D^{n}f(z))'}{D^{n}g(z)} + \beta \frac{(z(D^{n}f(z))')'}{(D^{n}g(z))'} = \frac{\beta}{\alpha} p_{1}(z) + (1-\frac{\beta}{\alpha})p_{2}(z). (2.1)$$

From the convexity of the class P, it follows that the right hand side of (2.1) belongs to P and this gives us the required result.

THEOREM 2.3

Let
$$f: f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in K^*(\alpha,n)$$
.

Then

$$|a_2| < \frac{2+\alpha}{(1+\alpha)(1+n)}.$$

PROOF

Since $f \in K^*(\alpha,n)$, we can write

$$(1-\alpha) \ z(D^n f(z))'(D^n g(z))' + \alpha [z(D^n f(z))']'(D^n g(z)) = p(z)(D^n g(z))(D^n g(z))',$$
 where p ϵ P and g ϵ R_n.

Let
$$D^n g(z) = z + \sum_{k=2}^{\infty} b_k z^k$$
 and $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$.

So

$$(1-\alpha) \left[z + \sum_{k=2}^{\infty} \frac{k(k+n-1)!}{n!(k-1)!} z^{k}\right] \left[1 + \sum_{k=2}^{\infty} k b_{k} z^{k-1}\right]$$

$$+ \alpha \left[z + \sum_{k=2}^{\infty} \frac{k^{2}(k+n-1)!}{n!(k-1)!} a_{k} z^{k}\right] \left[z + \sum_{k=2}^{\infty} b_{k} z^{k}\right]$$

$$= \left[1 + \sum_{k=1}^{\infty} c_{k} z^{k}\right] \left[z + \sum_{k=2}^{\infty} b_{k} z^{k}\right] \left[1 + \sum_{k=2}^{\infty} k b_{k} z^{k}\right].$$

Thus, equating the coefficient of z^2 on both sides, we have

$$(1-\alpha)[2b_2 + 2(n+1)a_2] + \alpha(b_2 + 4(n+1)a_2) = c_1 + 3b_2$$

or
$$2(n+1)(1+\alpha)a_2 = (1+\alpha)b_2 + c_1$$

Now, since $D^n g \in S^*$, $|b_2| < 2$ and also $|c_1| < 2$, see [2]. Hence

$$|a_2| < \frac{(2+\alpha)}{(n+1)(1+\alpha)}.$$

Using theorem 2.3, we have the following covering theorem.

THEOREM 2.4

Let $f \in K^*(\alpha,n)$. If B is the boundary of the image of E under f, then every point of B has a distance of at least $\frac{(1+\alpha)(1+n)}{4+3\alpha+2n(1-\alpha)}$ from the origin.

PROOF

Let $f(z) \neq c$, $c \neq 0$. Then $f_1(z) = \frac{cf(z)}{c-f(z)}$ is univalent in E. Let $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, then

$$\frac{cf(z)}{c-f(z)} = z + (a_2 + \frac{1}{c})z^2 + \dots$$

and since $f_1 \epsilon S$, it follows that

$$|a_2 + \frac{1}{c}| < 2$$

or

$$|c| > \frac{(1+\alpha)(1+n)}{4+3\alpha+2n(1+\alpha)}$$
,

and this proves our result.

THEOREM 2.5

Let f $_{\epsilon}$ K $^{\star}(_{\alpha},n)$. Then there exist two functions F $_{1}$ and F $_{2}^{\epsilon}$ K $^{\star}(1,n)$ such that

$$(1-\alpha) F_1(z) + \alpha f(z) = F_2(z)$$
.

PROOF

Since $f_{\varepsilon}K^{*}(\alpha,n)$, there exists a g ε R_n such that

$$(1-\alpha) \frac{z(D^n f(z))'}{D^n g(z)} + \alpha \frac{(z(D^n f(z))')'}{(D^n g(z))'} = p(z), p \in P.$$

From theorem 2.1, we know that

$$\frac{z(D^{n}f(z))'}{D^{n}g(z)} = p_{1}(z), \quad p_{1} \in P.$$

Hence

$$(1-\alpha) p_1(z) (D^n g(z))' + \alpha(z(D^n f(z))')' = p(z)(D^n g(z))'. \qquad (2.2)$$

Since $g \in R_n$, there exist two functions F_1 , $F_2 \in K^*(1,n)$ such that $p_1(z)(D^ng(z))' = (z(D^nF_1(z))')'$ and $p(z)(D^ng(z))' = (z(D^nF_2(z))')'$

Thus, from (2.2), we obtain

$$(1-\alpha)(z(D^nF_1(z))')' + \alpha(z(D^nf(z))')' = (z(D^nF_2(z))')'$$

or equivalently

$$(1-\alpha) D^n F_1(z) + \alpha D^n f(z) = D^n F_2(z)$$

and this gives us the required result.

THEOREM 2.6

Let $f \in K^*(0,n)$. Then $f \in K^*(1,n)$ for $|z| < r_0 = 2 - \sqrt{3}$.

PROOF

Consider the function ϕ defined as

$$\phi(z) = \frac{z}{(1-z)^2} = \sum_{k=1}^{\infty} k z^k.$$

 $\phi(z)$ is convex for $|z| < r_0 = 2 - \sqrt{3}$. Let $f \in K^*(0,n)$ with respect to $g \in R_n$. Then $\frac{z(D^n f(z))^i}{D^n g(z)} = p \in P$.

Now

$$\frac{(z(D^n f(z))')'}{(D^n g(z))'} = \frac{z[(\phi * D^n f)']}{(\phi * D^n g)}$$
$$= \frac{\phi * z(D^n f)'}{\phi * D^n g}$$
$$= \frac{\phi * p D^n g}{\phi * D^n g}.$$

Since $g \in R_n$, so $D^n g \in S^*$. Also ϕ is convex for $|z| < r_0 = 2 - \sqrt{3}$ and $p \in P$. Hence, by using a result due to Ruscheweyh and Shiel-Small [7], we conclude that $f \in F^*(1,n)$ for $|z| < r_0 = 2 - \sqrt{3}$.

ACKNOWLEDGEMENT. The author would like to thank the referee for his useful comments and suggestions.

REFERENCES

- 1. O. Ahuja, Integral operators of certain univalent functions, Int. J. Math. and Math. Sci. 4(1985), 653-662.
- 2. P.N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62(1977), 37-43.
- 3. A.W. Goodman, Univalent Functions, Vol. I, II. Mariner Publishing Company, Florida, 1983.
- 4. K.I. Noor and D.K. Thomas, On quasi-convex univalent functions, Int. J. Math. and Math. Sci., 3(1980), 255-266.
- K.I. Noor and N. Al-Dihan, A subclass of close-to-convex functions, Punj. Univ. J. Math. 14-15(1981/82), 183-192.
- 6. K.I. Noor, On certain classes of close-to-convex functions, Int. J. Math. and Math. Sci. 15(1992), to appear.
- 7. St. Ruscheweyh and T. Shiel-Small, Hadamard product of schlicht functions and the Polya-Schoenberg conjecture, Comm. Math. Helv. 48(1973), 119-135.

Received September 2, 1991

Mathematics Department College of Science, P.O. Box 2455 King Saud University Riyadh 11451, Saudi Arabia