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When does the equallty of a generalized Selberg inequality hold?

Takayuki Furuta

ABSTRACT. The original Selberg inequality is very useful result in the

prime number theory. We shall give an extended Selberg type inequality

and also we shall scrutinize the conditions under which the equality of

this inequality holds.

1. Statement of the results. An operator means a bounded linear

operator on a Hilbert space and also $N(S)$ means the kernel of an
operator S.

Theorem 1. If $x_{1},$ $x_{2},$ $\ldots$ . ,
$x_{n}$ and $x$ are nonzero vectors in a Hilbert

space $H$ , then

(I) $n\Sigma$

$\underline{|(x,x_{1})|^{2}}\leq$
$\Vert x||^{2}$

$1=1_{\sum_{=J1}^{n}|(x_{1},x_{J})|}$

The equality in $(I_{1})$ holds iff $x=$ $Lna_{1}x_{1}$ for some complex scalars
$1=1$

$a_{1},$ $a_{2},$ $\ldots$ . , $a_{n}$ such that for arbitrary 1\dagger $J$ , $(x_{1} , x_{J})=0$ or 1 $a_{1}|=|a_{J}|$

with $(a_{i}x_{1} , a_{J}x_{J})\geq 0$ .

Theorem 2. For any operator $T$ on a Hilbert space $H$ and nonzero

vectors $x_{1},$ $x_{2},$ $\ldots.,$ $x_{n}\not\in N(T^{*})$

(I) $\sum_{1=1}^{n}\frac{|(Tx,x_{1})|^{2}}{\Sigma|(|T^{*}|^{2(1-a)}x_{i},x_{j})|n}\leq(|T|^{2a_{XX)}}$,

$J=1$

holds for any vector $x\not\subset N(T)$ and for any real number $a$ with $0\leq a\leq 1$ .
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(1) $0<a<1$ . The ea uali ty in $(I_{2})$ holds 1ff Tx $=\sum_{1=1}^{n}a_{1}|T^{k}|^{2(1-a)}x_{1}$

$n$

(equivalently $|T|^{2\alpha}x=$ $\Sigma$ a $T^{k}x_{1}$ ) for some complex scalars
$1=1$ 1

$a_{1}$
, $a_{2},$ $\ldots$ . , $a_{n}$ such that for arbitrary $1\dagger J,$ $(|T^{2}|^{2(1-a)}x_{1}, x_{J})=0$

or $|a_{1}|=|a_{J}|$ wlth $(a_{1}|T^{l}|^{2(1-\alpha)}x_{1}, a_{J}x_{J})$ $\geq 0$ .
(ii) $a=1$ . The eauality in $(I_{2})$ holds iff Tx $=1=Za_{1}x_{i}n_{1}$ for some complex

scalars $a_{1},$ $a_{2},$ . . . ,
$a_{n}$ such that for arbitrary $i\dagger J$ , $(x_{1},x_{J})=0$

or $|a_{i}|=|a_{J}|$ with $(a_{1}x_{i} , a_{J}x_{J})$ ) $0$ .
(iii) $a=0$ . The equality in $(I_{2})$ holds ifr $x=$ $l\ln\sum_{=}a_{1}T^{\prime}x_{1}$ for some complex

scalars $a_{1},$ $a_{2},$ . . . , $a_{n}$ such that for arbltrary $1\#J$ ,

$(T^{P}x_{1},T^{\prime}x_{J})=0$ or $|a_{1}|=|a_{J}|$ with $(a_{1}T^{\iota}x_{1}, a_{J}T^{*}x_{J})\geq 0$ .

Remark 1. In Theorem 1, the following $(C_{1})$ and $(C_{2})$ are sufficient

conditions for the eouality in $(I_{1})$ ;

(C) $x\Leftarrow 1=\Gamma a_{1}x_{1}n_{1}$ for some complex scalars $a_{1},a_{2},$ $\ldots$ . , $a_{n}$ such that

$(x_{1}, x_{J})=0$ for all $1$ } $J$ ,

$(c_{2})$ $x=1=1fa_{i^{X}i}$ for some complex scalars $a_{1}$
, $a_{2},$ $\ldots$ . ,

$a_{n}$ such that $|a_{1}|$

is a constant for all 1 and $(a_{1}x_{1} , a_{J}x_{J})\geq 0$ for all 1 and J.

It is easily seen that $(C_{1})$ and $(C_{2})$ are not always necessary conditions

for the eouality in $(I_{1})$ as follows. Take $x_{1}$
, $x_{2}$ and $x_{3}$ such that

$x_{1}=$ $(1, 0 , 0)$ , $x_{2}=(0,1 , 0)$ and $x_{3}=(1 , 0 , 1)$ . Put $x=1\cdot x_{1}+2\cdot X_{2}+1\cdot x_{3}$ .
This case is neither $(C_{1})$ nor $(C_{2})$ , but the equality in $(I_{1})$ surely

holds. So to speak, the necessary and sufficient condition for the

eauality in $(I_{1})$ of Theorem 1 is “mixed type“ of $(C_{1})$ and $(C_{2})$ .

–26 –



2. Proofs of re sults.

Proof of Theorem 1. (I1) in Theorem 1 has shown by Selberg [1, \S 2,

$\mathfrak{v}$ . $14$ ] and recently by K. Kubo and F. Kubo [3] using dlagonal matrlx which

dominates a positive semidefinite matrix. Here we scrutinlze the conditions

under which the eouality in $(I_{1})$ holds.

$ 0\leq$
$\Vert x-l\ln\sum_{=}a_{1^{X}i}N^{2}=$

$||x||^{2}-$
$2{\rm Re}_{l}\sum_{=}n_{1}\overline{a_{1}}(x, x_{1})$ $+i,J\Sigma a_{1}\overline{a_{J}}(x_{1} , x_{J})$

$n$

$\leq$ $||x||^{2}-$ 2Re $\Sigma n$

$\overline{a_{1}}(x, x_{1})$ $+1/2$ $\Sigma n(|a_{1}\mathfrak{l}^{2}+ |a_{J}1^{2})|(x_{i} , x_{J})|$

$1=1$ $1,J$

$=$ $!|x\Vert^{2}-$ 2Re $l\ln\sum_{=}\overline{a_{i}}(x, x_{1})$ $+l\ln\sum_{=}\{|a_{1}1_{y}^{2}\sum_{=}n_{1}|(x_{1} , x_{J})|\}$ ,

then we put $a_{1}=$
$(x , x_{1})/$ $\Sigma n|(x_{1} , x_{J})|$ , so we have the desired result $(I_{1})$ .

$J=1$

The eauality in $(I_{1})$ holds iff the following (1) and (2) ,

(1) $x=\sum_{=l}a_{1^{X}1}n_{1}$

(2) $l,jn\Sigma a_{i}\overline{a_{J}}(x_{1}, x_{J})$ $=1/2\sum_{1,J}^{n}(|a_{i}|^{2}+ |a_{J}|^{2})|(x_{1}, x_{J})|$ .

The condition (2) ls equivalent to the following (3)

(3) $\Sigma n$

2Re $\{a_{i}\overline{a_{J}}(x_{1} , x_{J})\}$ $=$ $\Sigma n(|a_{1}\mathfrak{l}^{2}+ |a_{J}|^{2})|(x_{1}, x_{J})|$ .
1 $J$ 1, $J$

On the other hand, the following inequality (4) ls always valid for all

1 and $J$ ,

(4) 2Re $\{(a_{1}x_{1} , a_{J}x_{J})\}$ $\leq$ $2|a_{i}||a_{j}||(x_{1} , x_{J})|$ $\leq$ $(|a_{1}|^{2}+ |a_{J}|^{2})|(x_{1} , x_{J})|$

so (3) is equivalent to the following (5) or (6) for arbltrary 1 and $J$

because comparing (3) with (4)

(5) $(x_{1} , x_{J})$
$=$ $0$ for 1\dagger $J$

(6) $(a_{1}x_{1}, a_{J}x_{J})$
$=$ $|(a_{1}x_{1}, a_{J}x_{J})|$ and $|a_{1}|=|a_{J}|$ .

Whence the proof of Theorem 1 is complete.
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Proof of Theorem 2.

In case $a=1$ or $0$ , the result is obvious by Theorem 1, so we have only

to consider the case $0<a<1$ . Let $T=U|T|$ be the polar decomposition

of $T$ where $U$ means the partial isometry and $|T|=(T^{\prime}T)^{1/2}$ with

$N(U)=N(|TI)=N(T)$ . We state the following obvlous but important

relation in order to show a proof of Theorem 2;

$(\#)$ $N(S^{Q})=N(S)$ for any positive operator $S$ and for any positlve number $q$ .

Also we state the following well known result (7) [cf. [2]]

(7) I $T^{k}|^{q}=U|T|^{q}U^{S}$ for any positive number Q.

In Theorem 1 we replace $x$ by I $T|^{\alpha}x$ and also $x_{1}$ by $|T|^{\beta}U^{x}x_{1}$ for all

$i=1,2,$ $\ldots.$ . , $n$ where $ 8=1-\alpha$ .

$(|T|^{8}U^{*}x_{1} , |T|^{8}U^{*}x_{J})$ $=$ $(U|T|^{2\beta}U^{*}x_{1} , x_{J})$ $=$ $(|T^{\prime}|^{28}x_{1} , x_{J})$ by (7) and

$x_{1}$
,

$x_{2}$
, . . . . . , $x_{n}\not\in N(|T^{u}|^{\beta})$ $=N( |T^{S}|)$ $=N(T^{*})$ by $(*)$ , so we have $(I_{2})$ by

(I) in Theorem 1. In this case,

$|T|^{a}x=l\ln\sum_{=}a_{i}|T|^{8}U^{*}x_{i}$ irf $|T|^{2\alpha}x=1=La_{1}n_{1}|T|U^{*}x_{1}\Leftarrow\sum_{=11}a_{1}T^{*}x_{1}n$

by $(^{*})$ for $|T|$ , on the other hand

$|T|^{a}x=\sum_{i=1}^{n}a_{i}|T|^{8}U^{*}x_{1}$
$i$ff $|T|x=$ $|T|^{\alpha+\beta}x=i1\sum_{=}^{n}a_{1}|T|^{28}U^{*}x_{i}$

$n$

by $(\#)$ for 1 $T|$ , eouivalently $U|T|x=$ $\Sigma a_{1}U|T|^{2\beta}U^{*}x_{i}$ by $N(U)=N(|T|)$ ,
$1=1$

iff TX $=$ $Za_{1}n|T^{*}|^{2\beta}x_{i}$ by (7).
$i=1$

Whence the proof of (i) is complete.
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Pemark 2. Selberg ineauallty reduces to the Bessel one and the

equallty in thls Bessel one is just Parseval identlty, and $(C_{1})$ is

necessary and sufflclent condition for this Parseval one, that is, the

cases of the equality $\ln$ Selberg ineauality are more than the case (C)

for Parseval identity and this ls natural and agreeable, because Selberg

ineouality is an extension of Bessel one.

Also in the following inequality $(**)$ in case $0<\alpha<1$ ,

$(**)$ $|(Tx, y)|^{2}\leq$ $(|T|^{2\alpha}x, x)(|T^{*}|^{2(1-\alpha)}y, y)$ ,

the equality in $(**)$ holds lff $|T|^{2\alpha}x$ and $T^{*}y$ are linearly dependent iff

Tx and 1 $T^{*}|^{2(1-a)}y$ are linearly dependent [2], and the case of equality

in Theorem 2 reduces to this result and this is natural and agreeable

because Theorem 2 is Selberg type extension of inequality $(**)$ .

After reading the first version of our manuscript, Professor F. Kubo

has kindly informed us that $(I_{2})$ in Theorem 2 has been obtained

independently by them.

The author expresses his sincere thanks to Professor F. Hiai for

his nice comment after reading the first version. Also the author is

very grateful to the referee his careful reading the first version.
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