An example of a totally geodesic foliation which is perpendicular to a certain non-singular Killing field on an arbitrary three-dimensional Lorentzian lens space

Ken Yokumoto

Abstract

We construct a totally geodesic foliation which is perpendicular to a certain non-singular Killing field on an arbitrary three-dimensional Lorentzian lens space.

Keywords: Lorentzian manifolds, totally geodesic foliations, Killing fields 2000 Mathematics Subject Classification: Primary 57R30; Secondary 53C50

1 Introduction

Totally geodesic foliations on Lorentzian manifolds are studied by several authors ([BMT], [CR], [M], [Y1], [Y2], [Y3], [Z2], [Z3], [Z4]).

An example of a codimension-1 totally geodesic foliation containing spacelike, timelike, and lightlike leaves appeared first in [Y1], and it was obtained as $\ker g(X,\cdot)$, where X is a non-singular Killing field for a Lorentzian metric g on the 2-torus T^2 . So it seemed a "typical" example of a codimension-1 totally geodesic foliation. These typical examples, i.e., codimension-1 totally geodesic foliations perpendicular to non-singular Killing fields, were treated and classified in [Y3].

In [Y2], we constructed Lorentzian geodesible foliations of closed 3-manifolds having Heegaard splittings of genus one, i.e., lens spaces L(p,q) of type (p,q), the 3-sphere $S^3 \cong L(1,0)$, and $S^2 \times S^1 \cong L(0,1)$. Here a Lorentzian geodesible foliation means a totally geodesic foliation for some, in general incomplete, Lorentzian metric. However, the constructed example of a totally geodesic foliation $\mathcal F$ was not a typical example, that is, $\mathcal F$ was not obtained as $\ker g(X,\cdot)$ for some non-singular Killing field X. So the natural question concerning the existence problem of typical examples arises. More precisely, we have

Question 1 Can we give a non-singular Killing field X for some Lorentzian metric of a 3-manifold such that the distribution $\ker g(X,\cdot)$ is completely integrable?

A natural idea to solve Question 1 is using a non-singular Killing field X of a Riemannian manifold (M, g) such that $\ker g(X, \cdot)$ is completely integrable. In this setting, we can solve Question 1 by the following theorem.

Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then X is a Killing field for some Riemannian metric on M if and only if X is a timelike Killing field for some Lorentzian metric on M. Moreover we can choose the exchange between the Riemannian metric and the Lorentzian metric so that the orthogonal distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting codimension-1 totally geodesic foliations perpendicular to non-singular Killing fields. However L(p,q) except $L(0,1) \cong S^2 \times S^1$ does not admit a codimension-1 totally geodesic foliation by [BH]. So we need another idea to construct examples on L(p,q). Fortunately a careful usage of the tricks stated in [Y2] works well on L(p,q). Hence we have the following.

Theorem 5 Let L(p,q) denote a 3-dimensional lens space of type (p,q). (we allow (p,q)=(0,1),(1,0).) Then there exists a Lorentzian metric g on L(p,q) and a non-singular Killing field X for g such that the distribution $\ker g(X,\cdot)$ is completely integrable.

In Section 4, we consider 3-manifolds admitting totally geodesic foliations perpendicular to non-singular Killing fields. If a totally geodesic foliation contains more than one kind of leaves among spacelike, timelike, and lightlike leaves, we have the following.

Theorem 10 Let (M,g) be a Lorentzian manifold and X a non-singular Killing field for g such that the distribution $\ker g(X,\cdot)$ is completely integrable. Denote the foliation defined by $\ker g(X,\cdot)$ by \mathcal{F} . Assume that \mathcal{F} contains more than one kind of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered space.

2 Killing fields for Riemannian metrics and Lorentzian metrics

In this section, we refer to relations between non-singular Killing fields for Riemannian metrics and those for Lorentzian metrics.

First we consider a modification of a Riemannian metric into a certain Lorentzian metric as follows.

Proposition 2 Let (M,g) be a Riemannian manifold and X a non-singular Killing field for g. Assume that there exists a constant k > 0 such that $g(X_x, X_x) > 1/k$ for all $x \in M$. Then $h = g - kg(X, \cdot) \otimes g(X, \cdot)$ is a Lorentzian metric on M and X is a Killing field for h. Furthermore the orthogonal complement of X with respect to g is perpendicular to X with respect to h.

Proof. It is easy to prove that h is a Lorentzian metric on M. So it is sufficient to prove that $\mathcal{L}_X(g(X,\cdot))=0$. Put $\omega=g(X,\cdot)$. By straight computation, we have $(\mathcal{L}_X\omega)(Y)=X(g(X,Y))-g(X,[X,Y])$. If $Y\in\Gamma(\ker g(X,\cdot))$, then we have g(X,Y)=0 and $[X,Y]\in\Gamma(\ker g(X,\cdot))$, since the distribution $\ker g(X,\cdot)$ is preserved by the flow generated by X by [Y3]. If Y=X, then we have X(g(X,Y))=0 and [X,Y]=0. Therefore we have $\mathcal{L}_X\omega=0$. This proves the proposition.

Second we consider a kind of a converse of Proposition 2. We can prove it in the same way as above.

Proposition 3 Let (M,h) be a Lorentzian manifold and X a non-singular Killing field. Assume that X is timelike and there exists a constant k > 0 such that $h(X_x, X_x) < -1/k$ for all $x \in M$. Then $g = h + kh(X, \cdot) \otimes h(X, \cdot)$ is a Riemannian metric and X is a Killing field for g. Furthermore the orthogonal complement of X with respect to h is perpendicular to X with respect to g.

By putting Proposition 2 and 3 together, we have the following.

Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then X is a Killing field for some Riemannian metric on M if and only if X is a timelike Killing field for some Lorentzian metric on M. Moreover we can choose the exchange between the Riemannian metric and the Lorentzian metric so that the orthogonal distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting codimension-1 totally geodesic foliations perpendicular to non-singular Killing fields, for example, a surface bundle over S^1 whose monodromy is isotopic to a periodic map [CG].

3 A construction of a totally geodesic foliation which is perpendicular to a certain non-singular Killing field

In this section, we prove the following.

Theorem 5 Let L(p,q) denote a 3-dimensional lens space of type (p,q). (we allow (p,q)=(0,1),(1,0).) Then there exists a Lorentzian metric g on L(p,q) and a non-singular Killing field X for g such that the distribution $\ker g(X,\cdot)$ is completely integrable.

The proof of this theorem is essentially similar to the proof in [Y2].

Proof of Theorem 5. If p = 0, that is, $L(0, 1) \cong S^2 \times S^1$, the Lorentzian metric $ds^2|_{S^2} - dt^2$ and the Killing field $\partial/\partial t$ satisfy the desired conditions. Hereafter we assume that $p \neq 0$.

Let V_i denote an oriented $D^2 \times S^1$, and let m_i (resp. l_i) be a meridian (resp. longitude) in V_i (i = 1, 2). Put

$$A=\left(egin{array}{cc} q & r \ p & s \end{array}
ight), \; p,q,r,s\in {f Z}, \; qs-pr=-1.$$

Let $f: \partial V_2 \to \partial V_1$ be the orientation reversing diffeomorphism defined by

$$f:\left(egin{array}{c} heta_2 \ t_2 \end{array}
ight)\mapsto A\left(egin{array}{c} heta_2 \ t_2 \end{array}
ight),$$

where $(\theta_2, t_2) \in \partial V_2$ denotes the coordinate defined by

$$(\theta_2, t_2) \mapsto (\cos \theta_2, \sin \theta_2, t_2) \in \partial V_2.$$

Note that $V_1 \bigcup_f V_2$ is diffeomorphic to the lens space L(p,q) of type (p,q). Let E denote the negative eigenvalue of A, that is,

$$E = (q + s - \sqrt{(q - s)^2 + 4pr})/2,$$

and put

$$R = (q - s - \sqrt{(q - s)^2 + 4pr})/2p.$$

Step 1. We can construct a Lorentzian metric g_i on V_i and a non-singular Killing field X_i for g_i which are suitable for us as follows.

Lemma 6 There exist a Lorentzian metric g_i on V_i , a non-singular Killing field X_i for g_i and a codimension-1 Reeb foliation \mathcal{F}_i on V_i which satisfy the following conditions.

- (1) The foliation \mathcal{F}_i is obtained as $\ker g(X_i, \cdot)$.
- (2) (Note that $\partial V_i \in \mathcal{F}_i$ is lightlike by the result of [Y2].) The linear foliation defined by the lightlike vectors on the boundary leaf $\partial V_i \in \mathcal{F}_i$ is equal to the eigenspace corresponding to the negative eigenvalue of A.
- (3) The metric g_i satisfies the assumptions of Proposition 3.6 in [Y2].
- (4) The gluing map f is an "isometry" from $(\partial V_2, g_2|_{\partial V_2})$ to $(\partial V_1, g_1|_{\partial V_1})$, that is,

$$f^*(g_1|_{\partial V_1}) = g_2|_{\partial V_2}.$$

(5) The gluing map f maps $X_2|_{\partial V_2}$ to $X_1|_{\partial V_1}$.

Proof. Let (x, y, t) be coordinates of $D^2 \times \mathbf{R}$, where (x, y) and (t) are the canonical coordinates of \mathbf{R}^2 and \mathbf{R} , respectively. Define the diffeomorphism $\varphi : D^2 \times \mathbf{R} \to D^2 \times \mathbf{R}$ by

$$(x, y, t) \mapsto (x\cos(Rt) + y\sin(Rt), -x\sin(Rt) + y\cos(Rt), t).$$

Consider φ^*g_0 , where g_0 is the Lorentzian metric on $D^2 \times \mathbf{R}$ in Example 3.5 in [Y2]. By straight computation, φ^*g_0 is given by

$$\begin{pmatrix} \frac{G'_{11}}{2(a^2-2)(x^2+y^2)^2} & \frac{G'_{12}}{2(a^2-2)(x^2+y^2)^2} & \frac{ax}{\sqrt{x^2+y^2}} + \frac{a^2Ry}{2(x^2+y^2)} \\ \frac{G'_{12}}{2(a^2-2)(x^2+y^2)^2} & \frac{G'_{22}}{2(a^2-2)(x^2+y^2)^2} & \frac{ay}{\sqrt{x^2+y^2}} - \frac{a^2Rx}{2(x^2+y^2)} \\ \frac{ax}{\sqrt{x^2+y^2}} + \frac{a^2Ry}{2(x^2+y^2)} & \frac{ay}{\sqrt{x^2+y^2}} - \frac{a^2Rx}{2(x^2+y^2)} & \frac{a^2R^2}{2} + a^2 - 1 \end{pmatrix},$$

$$G'_{11} = 2(a^2 - 1)(x^2 + y^2)x^2 + a^2(a^2 - 2)y^2,$$

$$G'_{12} = 2(a^2 - 1)(x^2 + y^2)xy - a^2(a^2 - 2)xy,$$

$$G'_{22} = 2(a^2 - 1)(x^2 + y^2)y^2 + a^2(a^2 - 2)x^2.$$

Define the vector field X_1 by

$$R\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial t}.$$

Since $\varphi_* X_1 = \partial/\partial t$, the vector field X_1 is a non-singular Killing field for $\varphi^* g_0$. The distribution defined by $\ker \varphi^* g_0(X_1, \cdot)$ is completely integrable. Since the metric $\varphi^* g_0$ on $D^2 \times \mathbf{R}$ is invariant by $\partial/\partial t$, it defines the metric on $D^2 \times \mathbf{R}/2\pi \mathbf{Z}$.

Let V_1 and V_2 be two copies of an oriented $D^2 \times S^1$. Let (x_i, y_i, t_i) denote the coordinate of $V_i = D^2 \times S^1$ (i = 1, 2). Put

$$g_1 = \varphi^* g_0, \ X_1 = R \left(x_1 \frac{\partial}{\partial y_1} - y_1 \frac{\partial}{\partial x_1} \right) + \frac{\partial}{\partial t_1} \text{ on } V_1,$$
 $g_2 = \frac{1}{E^2} \varphi^* g_0, \ X_2 = \frac{1}{E} \left(R \left(x_2 \frac{\partial}{\partial y_2} - y_2 \frac{\partial}{\partial x_2} \right) + \frac{\partial}{\partial t_2} \right) \text{ on } V_2.$

These g_i , X_i satisfy conditions (1), (2), and (5). We will see that they satisfy conditions (3) and (4) in Step 2.

We change coordinates from $(x_i, y_i, t_i) \in V_i$ to (r_i, θ_i, t_i) , where $x_i = r_i \cos \theta_i$ and $y_i = r_i \sin \theta_i$. The metric g_1 is represented by

$$\left(egin{array}{ccc} (a^2-1)/(a^2-2) & 0 & a \ 0 & a^2/2 & -a^2R/2 \ a & -a^2R/2 & a^2R^2/2+a^2-1 \end{array}
ight),$$

with respect to (r_1, θ_1, t_1) . Define the collar neighborhood by

$$h_i: \partial V_i \times [0, \varepsilon] \to V_i, \quad (\theta_i, t_i, u_i) \mapsto (1 - u_i, \theta_i, t_i).$$

Recall that the gluing map $f: \partial V_2 \cong \mathbf{R}^2/2\pi \mathbf{Z}^2 \to \partial V_1 \cong \mathbf{R}^2/2\pi \mathbf{Z}^2$ is defined by

$$f: \left(\begin{array}{c} \theta_2 \\ t_2 \end{array} \right) \mapsto \left(\begin{array}{cc} q & r \\ p & s \end{array} \right) \left(\begin{array}{c} \theta_2 \\ t_2 \end{array} \right).$$

Step 2. Denote coordinates of $\partial V_1 \times [0,1]$ by (θ,t,u) , where $\theta = \theta_1$ and $t = t_1$. Consider the glued manifold $V_1 \cup_{\mathrm{id}} (\partial V_1 \times [0,1]) \cup_f V_2$.

We prove a lemma similar to Lemma 3.8 in [Y2].

Lemma 7 There exists a Lorentzian metric g' on $\partial V_1 \times [0,1]$ which is the extension of the metric $g_1 \cup g_2$ restricted on $\partial V_1 \times \{0\}$ to the metric $g_1 \cup g_2$ on $\partial V_1 \times \{1\}$ and satisfies the following conditions:

- (1) All the components of g' with respect to (θ, t, u) depend on only $u \in [0, 1]$.
- (2) The foliation $\{\partial V_1 \times \{*\}\}$ is perpendicular to a non-singular lightlike Killing field for g', hence, the foliation $\{\partial V_1 \times \{*\}\}$ is totally geodesic with respect to g'.

Proof. Recall that

$$g_1 = \left(egin{array}{ccc} (a^2-1)/(a^2-2) & 0 & a \ 0 & a^2/2 & -a^2R/2 \ a & -a^2R/2 & a^2R^2/2+a^2-1 \end{array}
ight),$$

where the right hand side is the matrix of components of g_1 with respect to $(r_1, \theta_1, t_1) \in V_1$. When we use the collar coordinates $(\theta_1, t_1, u_1) \in \partial V_1 \times [0, 1]$, we have another expression of g_1 as

$$g_1 = \left(egin{array}{ccc} a^2/2 & -a^2R/2 & 0 \ -a^2R/2 & a^2R^2/2 + a^2 - 1 & -a \ 0 & -a & (a^2-1)(a^2-2) \end{array}
ight).$$

By restricting g_1 on $\partial V_1 \times \{0\} \subset \partial V_1 \times [0, \varepsilon]$, we have

$$g_1 = \left(egin{array}{ccc} 1/2 & -R/2 & 0 \ -R/2 & R^2/2 & -1 \ 0 & -1 & 0 \end{array}
ight).$$

Hence the metric on $\partial V_1 \times \{0\} \subset \partial V_1 \times [0,1]$ is represented by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & -R/2 & 0 \\ -R/2 & R^2/2 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & -R/2 & 0 \\ -R/2 & R^2/2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

with respect to the coordinates $(\theta, t, u) \in \partial V_1 \times [0, 1]$. Since $X_1 = R \partial/\partial \theta_1 + \partial/\partial t_1$ on V_1 , we have

$$X_1 = R \frac{\partial}{\partial \theta} + \frac{\partial}{\partial t}$$

on $\partial V_1 \times \{0\} \subset \partial V_1 \times [0,1]$. Note that the inverse map $f^{-1}: \partial V_1 \times \{1\} \to \partial V_2$ is represented by

$$\left(\begin{array}{cc} -s & r \\ p & -q \end{array}\right)$$
,

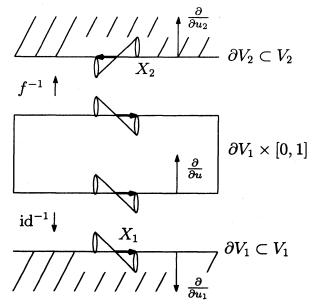


Figure: f and id

and

$$g_2 = rac{1}{E^2} \left(egin{array}{ccc} a^2/2 & -a^2R/2 & 0 \ -a^2R/2 & a^2R^2/2 + a^2 - 1 & -a \ 0 & -a & (a^2-1)/(a^2-2) \end{array}
ight)$$

with respect to the collar coordinates $(\theta_2, t_2, u_2) \in \partial V_2 \times [0, \varepsilon]$. These expressions imply that

$$\begin{pmatrix} -s & p & 0 \\ r & -q & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \frac{1}{E^2} \begin{pmatrix} 1/2 & -R/2 & 0 \\ -R/2 & R^2/2 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} -s & r & 0 \\ p & -q & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{E^2} \begin{pmatrix} (s+pR)^2/2 & -(s+pR)(r+qR)/2 & -p \\ -(s+pR)(r+qR)/2 & (r+qR)^2/2 & q \\ -p & q & 0 \end{pmatrix}$$

on $\partial V_1 \times \{1\} \subset \partial V_1 \times [0,1]$ with respect to $(\theta, t, u) \in \partial V_1 \times [0,1]$ (Figure). By the definitions of R and E, we have

$$(s+pR)/E = 1, (r+qR)/E = R.$$

By substituting these, g_2 is expressed as

$$g_2 = \left(egin{array}{ccc} 1/2 & -R/2 & -p/E^2 \ -R/2 & R^2/2 & q/E^2 \ -p/E^2 & q/E^2 & 0 \end{array}
ight),$$

with respect to $(\theta, t, u) \in \partial V_1 \times [0, 1]$. By the definition of X_2 , we have $f_*X_2 =$ $R \partial/\partial\theta + \partial/\partial t$. Define the Lorentzian metric g' by

$$g'|_{(\theta,t,u)} = \left(egin{array}{ccc} 1/2 & -R/2 & -up/E^2 \ -R/2 & R^2/2 & uq/E^2 + (1-u) \ -up/E^2 & uq/E^2 + (1-u) & 0 \end{array}
ight)$$

with respect to (θ, t, u) . By the straight computation, we have that

$$\det g' = -\frac{1}{2} \left\{ \left(\frac{q-Rp}{E^2} \right) u + (1-u) \right\}^2.$$

Let E' denote the positive eigenvalue of A, that is,

$$E' = (q + s + \sqrt{(q - s)^2 + 4pr})/2.$$

We have that q - Rp = E'. Since EE' = -1, we have $E'/E^2 = (E')^3 > 0$. Therefore $\det g' < 0$ for all $u \in [0, 1]$.

Note that manifolds $\partial V_1 \times \{u\}$ is lightlike. Since all the components of g' with respect to (θ, t, u) depend on only u and all the components of $R\partial/\partial\theta + \partial/\partial t$ are constant, the vector field $R \partial/\partial\theta + \partial/\partial t$ is a non-singular Killing field for q'. The distribution $\ker g'(R\partial/\partial\theta + \partial/\partial t, \cdot)$ is equal to $\operatorname{Span}\{\partial/\partial\theta, \partial/\partial t\}$, hence it defines the foliation $\{\partial V_1 \times \{*\}\}\$. This proves Lemma 7.

We change the parameter u of each component of g' to w(u), where w is Step 3. a function which satisfies the following:

- (1) the function $w:[0,1]\to [0,1]$ is a C^∞ monotone increasing function. (2) $\frac{d^n}{ds^n}w(0)=\frac{d^n}{ds^n}w(1)=0$ for all integer n>0.

We denote a new metric by the same symbol g'.

Put

$$g = \left\{egin{array}{ll} g_1 & ext{on} & V_1, \ g' & ext{on} & \partial V_1 imes [0,1], \ g_2 & ext{on} & V_2. \end{array}
ight.$$

Note that g is a C^{∞} Lorentzian metric on $V_1 \cup_{\mathrm{id}} (\partial V_1 \times [0,1]) \cup_f V_2$ by Proposition 3.6 in [Y2]. We define the vector field X by

$$X = \left\{ egin{array}{lll} X_1 & ext{on} & V_1, \ R\,\partial/\partial heta + \partial/\partial t & ext{on} & \partial V_1 imes [0,1], \ X_2 & ext{on} & V_2. \end{array}
ight.$$

Note that X is a smooth non-singular Killing field for g and the distribution $\ker g(X,\cdot)$ is completely integrable. This completes the proof.

Remark 8 We wanted to construct a totally geodesic foliation perpendicular to a Killing field on $V_1 \bigcup_{id} (\partial V_1 \times [0,1]) \bigcup_f V_2$. So we cannot rotate the one-dimensional lightlike subfoliation \mathcal{L} on the lightlike totally geodesic foliation $\{\partial V_1 \times \{*\}\}$. Hence \mathcal{L} must coincide with an eigenspace of the matrix A. If we use the negative eigenvalue of A, the directions of the lightcones on ∂V_2 and the Killing field X_2 are reversed by the gluing map f (see Figure). So we can use the only one model $(\varphi^* g_0, \varphi^* \partial / \partial t)$. If we use the positive eigenvalue of A, the directions of the lightcones and X_2 are preserved by f. So we must use two models. This is the reason why we use the negative eigenvalue of A.

4 Manifolds admitting totally geodesic foliations perpendicular to Killing fields

In this section, we consider 3-manifolds admitting totally geodesic foliations perpendicular to Killing fields.

First we quote Zeghib's theorem concerning Killing fields on Lorentzian 3-manifolds.

Theorem 9 ([Z1] Theorem 0) Let (M, <, >) be a compact Lorentz 3-manifold and ϕ^t an isometric flow on it, which is not equicontinuous (a flow ϕ^t is equicontinuous iff the closure of $\{\phi^t\}$ in Homeo M is compact). Then exactly one of the following two possibilities can occur:

- i) The flow is (everywhere) spacelike and Anosov.
- ii) The flow is (everywhere) lightlike and preserves a complete Lorentz metric of constant negative curvature on M.

By using the above theorem, we have the following.

Theorem 10 Let (M,g) be a Lorentzian manifold and X a non-singular Killing field for g such that the distribution $\ker g(X,\cdot)$ is completely integrable. Denote the foliation defined by $\ker g(X,\cdot)$ by \mathcal{F} . Assume that \mathcal{F} contains more than one kind of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered space.

Proof. Let ϕ^t denote the one-parameter group generated by X. Since X is a non-singular Killing field, each orbit of X is spacelike, timelike, or lightlike. By the assumption that \mathcal{F} contains more than one kind of leaves, there exist two orbits of X such that they have distinct types each other. By Zeghib's theorem, the closure $\operatorname{Cl}\{\phi^t\}$ in Homeo M is compact. Since $\{\phi^t\}$ is abelian, so is $\operatorname{Cl}\{\phi^t\}$. Hence $\operatorname{Cl}\{\phi^t\}$ is a torus \mathbf{T} of some dimension. Take a compact one-parameter subgroup $\{a^t\}$ sufficiently near $\{\phi^t\}$ in $\operatorname{Cl}\{\phi^t\}$ so that $\{a^t\}$ defines a locally free action on M. Therefore M is a Seifert fibered space.

References

- [BH] R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, 33(1983), 225–235
- [BMT] C. Boubel, P. Mounoud, and C. Tarquini, Foliations admitting a transverse connection; applications in dimension three, preprint
- [CG] Y. Carrière and E. Ghys, Feuilletages totalement géodésiques, An. Acad. Brasil. Ciênc. 53(1981), 427–432.
- [CR] Y. Carrière and L. Rozoy, Complétude des Métriques Lorentziennes de T² et Difféomorphismes du Cercle, Bol. Soc. Bras. Mat. 25(1994), 223–235
- [ON] B. O'Neill, Semi-Riemannian geometry, Academic press 1983
- [M] P. Mounoud, Complétude et flots nul-géodésibles en géométrie lorentzienne, Bull. Soc. Math. France 132(2004), 463-475
- [Y1] K. Yokumoto, Mutual exclusiveness among spacelike, timelike, and light-like leaves in totally geodesic foliations of lightlike complete Lorentzian two-dimensional tori, Hokkaido Math. J. 31(2002), 643–663
- [Y2] K. Yokumoto, Examples of Lorentzian geodesible foliations of closed threemanifolds having Heegaard splittings of genus one, Tôhoku Math. J. 56(2004), 423-443
- [Y3] K. Yokumoto, On totally geodesic foliations perpendicular to Killing fields, to appear in Hokkaido Math. J.
- [Z1] A. Zeghib, Killing fields in compact Lorentz 3-manifolds, J. Diff. Geom. 43(1996), 859–894
- [Z2] A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. Part I: Foundations of Lorentz dynamics, GAFA 9(1999), 775–822
- [Z3] A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. Part II: Geometry of analytic Lorentz manifolds with large isometry groups, GAFA 9(1999), 823-854
- [Z4] A. Zeghib, Geodesic foliations in Lorentz 3-manifolds, Comm. Math. Helv. 74(1999), 1-21

Division of Mathematics Graduate School of Science Hokkaido University Sapporo 060-0810, JAPAN

E-mail: yoku@math.sci.hokudai.ac.jp

Received 4 March, 2005 Revised 26 May, 2005