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An example of a totally geodesic foliation which is
perpendicular to a certain non-singular Killing field
on an arbitrary three-dimensional Lorentzian lens
space
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Abstract

We construct a totally geodesic foliation which is perpendicular to a certain
non-singular Killing field on an arbitrary three-dimensional Lorentzian lens
space.
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1 Introduction

Totally geodesic foliations on Lorentzian manifolds are studied by several authors
([BMT], [CR], [M], [Y1], [Y2], [Y3], [22], [Z3], [Z4]).

An example of a codimension-1 totally geodesic foliation containing spacelike,
timelike, and lightlike leaves appeared first in [Y1], and it was obtained as ker g(X, -),
where X is a non-singular Killing field for a Lorentzian metric g on the 2-torus
T?. So it seemed a “typical” example of a codimension-1 totally geodesic foliation.
These typical examples, i.e., codimension-1 totally geodesic foliations perpendicular
to non-singular Killing fields, were treated and classified in [Y3].

In [Y2], we constructed Lorentzian geodesible foliations of closed 3-manifolds
having Heegaard splittings of genus one, i.e., lens spaces L(p, q) of type (p, q), the
3-sphere 5% = [(1,0), and S? x S* 2 L(0,1). Here a Lorentzian geodesible foliation
means a totally geodesic foliation for some, in general incomplete, Lorentzian metric.
However, the constructed example of a totally geodesic foliation F was not a typical
example, that is, 7 was not obtained as ker g(X, -) for some non-singular Killing field
X. So the natural question concerning the existence problem of typical examples
arises. More precisely, we have

Question 1 Can we give a non-singular Killing field X for some Lorentzian metric
of a 3-manifold such that the distribution ker g(X,-) is completely integrable?



A natural idea to solve Question 1 is using a non-singular Killing field X of a
Riemannian manifold (M, g) such that ker g(X,-) is completely integrable. In this
setting, we can solve Question 1 by the following theorem.

Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then
X is a Killing field for some Riemannian metric on M if and only if X is a timelike
Killing field for some Lorentzian metric on M. Moreover we can choose the exchange
between the Riemannian metric and the Lorentzian metric so that the orthogonal
distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting
codimension-1 totally geodesic foliations perpendicular to non-singular Killing fields.
However L(p, q) except L(0,1) = S? x S? does not admit a codimension-1 totally
geodesic foliation by [BH]. So we need another idea to construct examples on L(p, q).
Fortunately a careful usage of the tricks stated in [Y2] works well on L(p, q). Hence
we have the following.

Theorem 5 Let L(p, q) denote a 3-dimensional lens space of type (p,q). (we allow
(p,q9) = (0,1),(1,0).) Then there exists a Lorentzian metric g on L(p,q) and a
non-singular Killing field X for g such that the distribution ker g(X, -) is completely
integrable.

In Section 4, we consider 3-manifolds admitting totally geodesic foliations per-
pendicular to non-singular Killing fields. If a totally geodesic foliation contains more
than one kind of leaves among spacelike, timelike, and lightlike leaves, we have the
following.

Theorem 10 Let (M, g) be a Lorentzian manifold and X a non-singular Killing
field for g such that the distribution ker g(X,-) is completely integrable. Denote the
foliation defined by ker g(X,-) by F. Assume that F contains more than one kind
of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered
space.

2 Killing fields for Riemannian metrics and
Lorentzian metrics

In this section, we refer to relations between non-singular Killing fields for Rie-
mannian metrics and those for Lorentzian metrics.

First we consider a modification of a Riemannian metric into a certain Lorentzian
metric as follows.

Proposition 2 Let (M, g) be a Riemannian manifold and X a non-singular Killing
field for g. Assume that there exists a constant k > 0 such that g(X,, X;) > 1/k for
allz € M. Then h = g — kg(X, ) ® g(X,-) is a Lorentzian metric on M and X is
a Killing field for h. Furthermore the orthogonal complement of X with respect to
g ts perpendicular to X with respect to h.



Proof. It is easy to prove that A is a Lorentzian metric on M. So it is sufficient
to prove that Lx(g(X,-)) = 0. Put w = g(X,-). By straight computation, we
have (Lxw)(Y) = X(g9(X,Y)) — g(X,[X,Y]). If Y € I'(kerg(X,-)), then we have
g(X,Y) = 0 and [X,Y] € I'(kerg(X,)), since the distribution ker g(X,-) is pre-
served by the flow generated by X by [Y3]. If Y = X, then we have X (g(X,Y)) =0
and [X,Y] = 0. Therefore we have Lxw = 0. This proves the proposition. O

Second we consider a kind of a converse of Proposition 2. We can prove it in the
same way as above.

Proposition 3 Let (M, h) be a Lorentzian manifold and X a non-singular Killing
field. Assume that X is timelike and there exists a constant k > 0 such that
h(Xz,X:) < —1/k for allz € M. Then g = h+kh(X, ) ® h(X,") is a Riemannian
metric and X is a Killing field for g. Furthermore the orthogonal complement of X
with respect to h is perpendicular to X with respect to g.

By putting Proposition 2 and 3 together, we have the following,.

Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then X
is a Killing field for some Riemannian metric on M if and only if X is a timelike
Killing field for some Lorentzian metric on M. Moreover we can choose the exchange
between the Riemannian metric and the Lorentzian metric so that the orthogonal
distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting
codimension-1 totally geodesic foliations perpendicular to non-singular Killing fields,
for example, a surface bundle over S! whose monodromy is isotopic to a periodic
map [CG].

3 A construction of a totally geodesic foliation
which is perpendicular to a certain non-singular

Killing field

In this section, we prove the following.

Theorem 5 Let L(p,q) denote a 3-dimensional lens space of type (p,q). (we allow
(p,q) = (0,1),(1,0).) Then there exists a Lorentzian metric g on L(p,q) and a
non-singular Killing field X for g such that the distribution ker g(X, ) is completely
integrable.

The proof of this theorem is essentially similar to the proof in [Y2].

Proof of Theorem 5. If p =0, that is, L(0,1) 2 §2 x S, the Lorentzian metric
ds?|s2 — dt? and the Killing field 8/t satisfy the desired conditions. Hereafter we
assume that p # 0.



Let V; denote an oriented D? x S!, and let m; (resp. ;) be a meridian (resp.
longitude) in V; (i = 1,2). Put

_(ar o= —1
A—(p S),p,q,r,SGZ,qs pr .

Let f : 0V, — OV, be the orientation reversing diffeomorphism defined by
| 62 )
r(%)=a(%);
where (6, t;) € 0V, denotes the coordinate defined by
(02, tg) —> (COS 02, sin 02, tz) S a%

Note that V1 |J, V; is diffeomorphic to the lens space L(p,q) of type (p,q). Let E
denote the negative eigenvalue of A, that is,

E=(q+s— /(g 5)*+4pr)/2,

and put

R=(q~s— (g~ 5)2+4pr)/2p.

Step 1. We can construct a Lorentzian metric g; on V; and a non-singular Killing
field X; for g; which are suitable for us as follows.

Lemma 6 There exist a Lorentzian metric g; on V;, a non-singular Killing field
X; for g; and a codimension-1 Reeb foliation F; on V; which satisfy the following
conditions.

(1) The foliation F; is obtained as ker g(X;,-).

(2) (Note that 8V; € F; is lightlike by the result of [Y2].) The linear foliation defined
by the lightlike vectors on the boundary leaf OV; € F; is equal to the eigenspace
corresponding to the negative eigenvalue of A.

(3) The metric g; satisfies the assumptions of Proposition 3.6 in [Y2)].

(4) The gluing map f is an “isometry” from (0Vz, g2lav,) to (OV4, g1|av;), that is,

f*(91|8V1) = g2|3V2'
(5) The gluing map f maps Xs|av, to Xilav,-

Proof. Let (z,y,t) be coordinates of D x R, where (z,y) and (t) are the canonical
coordinates of R? and R, respectively. Define the diffeomorphism ¢ : D? x R —
D? x R by

(z,y,t) = (z cos(Rt) + ysin(Rt), —z sin(Rt) + y cos(Rt), t).



Consider ¢*go, where gy is the Lorentzian metric on D? x R in Example 3.5 in [Y2].
By straight computation, ¢*g is given by

Glll Gfl? axr + aQRy
20 =2)(z"+y?)° 2@ -7+ al+yE AP+
Gl Gy ay _ _ a’Rz
DG WY Vg W) |
2
ar a’Ry a a’Rz a’R? |
+ y ___ _a'Rs ~1
Vai+2 22 +yY) iy 207+ 2+

o= 2(a®—1)(2® + )z + a?(a® - 2)y?,
12 = 2(a®-1)(c® +y*)zy — a*(a® — 2)ay,
o = 2(a®—1)(z®>+ )+ a*(a® - 2)z?.
Define the vector field X; by
0 0 0

Since ¢, X; = 0/0t, the vector field X; is a non-singular Killing field for ¢*gy. The
distribution defined by ker ¢*go(Xi,-) is completely integrable. Since the metric
¢*go on D? x R is invariant by 8/8%, it defines the metric on D? x R/2nZ.
Let V1 and V; be two copies of an oriented D? x S*. Let (z;,v;,t;) denote the
coordinate of V; = D? x S! (i =1,2). Put
0 0

* 0
91 = ¥ Yo, XI—R(wla—y;—me—l)-f-aTlonVl,

1, 1 ) ) o
gs = E(P do, X2 = -E— (R (1‘25?!—2 —’yza—m) + c')_t2_> on V'g

These g;, X; satisfy conditions (1), (2), and (5). We will see that they satisfy
conditions (3) and (4) in Step 2. O

We change coordinates from (z;, yi,t;) € V; to (ri,6;,t;), where z; = r; cos§; and
Yi; = r;sinf;. The metric g; is represented by

(a® - 1)/(a? - 2) 0 a
0 a?/2 —a?R/2 ,
a —a’R/2 a’R%?/2+a® -1
with respect to (r1,6:,t1). Define the collar neighborhood by
hi : BVQ X [0, E] — V;;, (Hi,t,',u,-) —> (1 - u,-,0.i,ti).
Recall that the gluing map f : 0V, & R?/27Z% — 0V; = R?/27Z? is defined by

()=o) (%)



Step 2. Denote coordinates of V) x [0,1] by (6,t,u), where § = 6, and t = t;.
Consider the glued manifold V; Uyg (8V; x [0, 1]) Uy V.

We prove a lemma similar to Lemma 3.8 in [Y?2].

Lemma 7 There ezists a Lorentzian metric ¢ on 0V; x [0, 1] which is the extension
of the metric g1 U go restricted on 8V; x {0} to the metric g1 U gz on V4 x {1} and
satisfies the following conditions:

(1) All the components of g’ with respect to (0,t,u) depend on only u €
[0, 1].

(2) The foliation {0V; x {*}} is perpendicular to a non-singular lightlike
Killing field for ¢, hence, the foliation {0V; x {*}} is totally geodesic
with respect to ¢'.

Proof. Recall that

(a2 —1)/(a®2 - 2) 0 a
a = 0 a?/2 —a’R/2 ,
a —a’R/2 a’R?/2+a®—1

where the right hand side is the matrix of components of g; with respect to (r1,6;,%1) €
Vi. When we use the collar coordinates (6;,%1,u;) € 9V, x [0, 1], we have another
expression of g; as

a?/2 —a’R/2 0
g1=| —a’R/2 a’R%?/2+a% -1 —a :
0 —a (a2 —1)(a® - 2)
By restricting g, on 8V; x {0} € oV} x [0,¢€], we have
1/2 —-R/2 0
a1 = —R/2 R2/2 -1 .
0 -1 0
Hence the metric on 0V; x {0} C 0V; x [0, 1] is represented by

(1 0 0 ) ( 1/2 -R/2 0 10 0 1/2 —-R/2 0
01 0 —R/2 R?/2 —1)(01 O)=(—R/2 R%/2 1)
0 0 -1 0 -1 0 00 -1 0 1 o0

with respect to the coordinates (6,¢,u) € 0V; x [0,1]. Since X; = R8/86, + 8/0t;
on V;, we have

8 o
x,=r2 , 9
1=R5+ 5

on 8V; x {0} C 0V; x [0,1]. Note that the inverse map f~!: 0V} x {1} = 8V, is

p q ’



oV; x [0,1]
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Figure : f and id

and
1 a?/2 —a’R/2 0
9=z —a’R/2 a’R%*/2+a%?—1 —a
0 —a (a® - 1)/(a? - 2)

with respect to the collar coordinates (0,,%;,u3) € AV, x [0,€]. These expressions
imply that

-s p O 1 1/2 —-R/2 0 -s r 0
r —q 0 & —-R/2 R?/2 -1 p —q 0
0 0 1 0 -1 0 0 0 1

1 (s+pR)?/2 —(s+pR)(r +qR)/2 —p
=5 | ~(s+PR)(r+qR)/2 (r+qR)?/2 g
—p q

on 0V} x {1} C 0V x [0,1] with respect to (8,t,u) € 8V; x [0, 1] (Figure). By the
definitions of R and FE, we have

(s+pR)/E=1, (r+¢R)/E=R.
By substituting these, g, is expressed as

1/2 —-R/2 —p/E?
gs = ( —-R/2 R2/2 q/E? ) )
~p/E® q/E? 0



with respect to (6,t,u) € 0V; x [0,1]. By the definition of X,, we have f,X, =
RO/00 + 0/0t. Define the Lorentzian metric g’ by

1/2 —R/2 —up/E?
glotw = ( —R/2 R?/2 ug/E* + (1 -u)
—up/E? uq/E%*+ (1 —u) 0

with respect to (6,t,u). By the straight computation, we have that

detg’=—%{(q;;fp)u-i—(l—u)}z.

Let E’ denote the positive eigenvalue of A, that is,

=(g+5++/(g—5)* + 4pr)/2.

We have that ¢ — Rp = E’. Since EE’ = —1, we have E'/E? = (E’)3 > 0. Therefore
det g’ < 0 for all u € [0, 1].

Note that manifolds 0V; x {u} is lightlike. Since all the components of ¢’ with
respect to (6,t,u) depend on only u and all the components of R9/86 + 0/0t are
constant, the vector field R9/06 + 0/8t is a non-singular Killing field for ¢’. The
distribution ker g'(R9/00 + 0/, -) is equal to Span{d/d6,8/6t}, hence it defines
the foliation {0V; x {*}}. This proves Lemma. 7. a

Step 3. We change the parameter u of each component of ¢’ to w(u), where w is
a function which satisfies the following;:

(1) the function w : [0, 1] — [0, 1] is a C*® monotone increasing function.
(2) Lw(0) = L w(1) =0 for all integer n > 0.

We denote a new metric by the same symbol ¢'.

Put
()1 on ‘/1)
9=4{ ¢ on 8Vixo1],

g2 on V.

Note that g is a C*° Lorentzian metric on V; Uy (8V; X [0, 1]) Us V5 by Proposition
3.6 in [Y2]. We define the vector field X by

X1 on Vi,
X ={ RO/09+8/8t on 8V; x [0,1],
X, on V.

Note that X is a smooth non-singular Killing field for g and the distribution ker 9(X,-)
is completely integrable. This completes the proof. (W



Remark 8 We wanted to construct a totally geodesic foliation perpendicular to a
Killing field on V1 J;4(V1 % [0,1]) U, V2. So we cannot rotate the one-dimensional
lightlike subfoliation £ on the lightlike totally geodesic foliation {0V; x {*}}. Hence
L must coincide with an eigenspace of the matrix A. If we use the negative eigenvalue
of A, the directions of the lightcones on 8V; and the Killing field X, are reversed by
the gluing map f (see Figure). So we can use the only one model (¢*go, p*0/0t).
If we use the positive eigenvalue of A, the directions of the lightcones and X, are
preserved by f. So we must use two models. This is the reason why we use the
negative eigenvalue of A.

4 Manifolds admitting totally geodesic foliations
perpendicular to Killing fields

In this section, we consider 3-manifolds admitting totally geodesic foliations per-

pendicular to Killing fields.
First we quote Zeghib’s theorem concerning Killing fields on Lorentzian 3-manifolds.

Theorem 9 ([Z1] Theorem 0) Let (M,<,>) be a compact Lorentz 3-manifold
and ¢ an isometric flow on it, which is not equicontinuous (a flow @ is equicon-
tinuous iff the closure of {¢*} in Homeo M is compact). Then ezactly one of the
following two possibilities can occur:

1) The flow is (everywhere) spacelike and Anosov.

11) The flow is (everywhere) lightlike and preserves a complete Lorentz metric of
constant negative curvature on M.

By using the above theorem, we have the following.

Theorem 10 Let (M, g) be a Lorentzian manifold and X a non-singular Killing
field for g such that the distribution ker g(X, ) is completely integrable. Denote the
foliation defined by ker g(X,-) by F. Assume that F contains more than one kind
of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered
space.

Proof. Let ¢' denote the one-parameter group generated by X. Since X is a
non-singular Killing field, each orbit of X is spacelike, timelike, or lightlike. By the
assumption that F contains more than one kind of leaves, there exist two orbits of
X such that they have distinct types each other. By Zeghib’s theorem, the closure
Cl{¢'} in Homeo M is compact. Since {¢*} is abelian, so is C1{¢*}. Hence Cl{¢‘}
is a torus T of some dimension. Take a compact one-parameter subgroup {a’}
sufficiently near -{¢*} in Cl{¢'} so that {a’} defines a locally free action on M.
Therefore M is a Seifert fibered space. O
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