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NON-SMOOTH GALOIS POINT ON A QUINTIC CURVE WITH
ONE SINGULAR POINT

TAKESHI TAKAHASHI

ABSTRACT. Let C be an irreducible plane quintic curve with only one singular
point P, which is a double point. Then, we consider a projection of C from P.
This projection induces an extension of rational function fields k(C)/k(P!). In
this paper, we give the defining equation of the curve C when the extension is
Galois.

1. INTRODUCTION

Let k£ be an algebraically closed field of characteristic zero, which we fix as the
ground field of our discussion. Let C be an irreducible (possibly singular) curve of
degree d in the projective plane P? = P?(k) and K = k(C) the rational function
field of C. For each point P € C, let 7p : C--- — [ be a projection from C to a line
! with the center P. This rational map induces the extension of fields K/k(l). The
structure of this extension does not depend on the choice of [, but on P, so that we
write Kp instead of k(1).

Definition 1. A point P € C is called a Galois point if the extension K/Kp is
Galois. In particular, a Galois point is called a non-smooth Galois point [resp. a
smooth Galois point] if it is singular. [resp. nonsingular.|

In the papers [5], [6] and [8], Yoshihara raised the following questions:

(1) When is the extension K/Kp Galois? Namely, when is the point P Galois?
(2) How many Galois points do there exist on C (or P2\C)?

(3) Let Lp be the Galois closure of K/Kp. What can we say about Lp?

(4) What is the Galois group Gal(Lp/Kp)?

(5) Determine intermediate fields between Kp and Lp.

These were treated in detail for nonsingular plane curves in papers [5], [6], [8]
and Miura’s paper [2]. Miura also studied these questions for singular plane quartic
curves in [1] and [3]. '

Let (X :Y : Z) be homogeneous coordinates on P? and (z,y) affine coordinates
such that z = X/Z and y = Y/Z. For a nonsingular plane curve, we have an answer
to Question (1) as follows.

Proposition 1 ([8], Proposition 5). Let C be a nonsingular plane curve of degree
d (d > 4). Then, the point P € C is Galois if and only if the defining equation
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of C can be expressed as a standard form y + h(z,y) by taking a suitable projective
transformation which moves P to (0,0), where h(z,y) is a form of degree d with
distinct factors.

If P is a Galois point of C, then an element o of the Galois group Gal(K/Kp)
induces a birational map C--- — C. In this paper, we use the same symbol
o € Gal(K/Kp) to denote this birational map, when there is no fear of confu-
sion. Moreover, if an element 0 € Gal(K/Kp) is the restriction of a projective
transformation of P2, then we say that o belongs to PGL(3,k), and denote by
o € PGL(3,k).

For singular plane curves, we have no good answer to Question (1). The reason
is that the following well-known assertion does not hold true for a singular plane
curve:

An automorphism of a nonsingular plane curve of degree d (d > 4) is
the restriction of some projective transformation of P%.

So, the question seems difficult. However, we have the following.

Proposition 2 ([4], Proposition 2). Let C be a plane curve of degree d and P
be a singular point of C with multiplicity mp. Suppose that P is a Galois point.
Then, the Galois group Gal(K/Kp) is contained in PGL(3,k) if and only if C is
projectively equivalent to the curve given by fm.(z,y) + fa(z,y) = 0, where fi(z,y)
is a homogeneous polynomial of z and y of degree i (i = mp or d).

There was no study on non-smooth Galois points. The purpose of this paper is to
show when the point P is Galois under the following assumption: the plane quintic
curve C has only one singular point P, which is a double point. This case is the
most simple one of Question (1) for non-smooth Galois points.

2. STATEMENT OF RESULTS

We use the same notation as is used in Section 1 and restrict ourselves to the case
where C is an irreducible quintic curve with only one singular point P, which is a
double point. We denote by g(C) the genus of a nonsingular model of a curve C.
Note that from the genus formula, g(C) = 0,1,2,3,4 or 5. Our main theorem is
stated as follows.

Theorem. Let C be an irreducible plane quintic curve. Suppose that C has only
one singular point P, which is a double point. Then we have the following.

(1) If g(C) = 0 or 3, then P cannot be a Galois point.
(2) Ifg(C) = 1, then P is a Galois point if and only if C is projectively equivalent
to the curve given by the equation

y? — 6zy (z + 2y) + 3z (3z® + 120%y + 10zy® — 3y°)
+ 3zy (62° + 21z%y + 19zy* + y®) = 0. (C1)



(3) Ifg(C) = 2, then P is a Galois point if and only if C is projectively equivalent
to the curve given by the equation

y? —54c* (1 + c)zy (z +y) + 243 (1 + )’z (z +y) (1 + ¢) ¥ + 3%z (z + v))
— 729 (1 + ¢)'zy (z + y) (= (1 + ¢) y? + 9z (z +y)) =0, (C2)

where c € k and c # 0,—1.
(4) Ifg(C) = 4, then P is a Galois point if and only if C is projectively equivalent
to the curve given by the equation

Y? + hs(z,y) = 0 or (C3)

y* + 3z%y + 3z* + hs(z,y) = 0, (C4)

where hs(z,y) is a form of degree five.
(5) Ifg(C) = 5, then P is a Galois point if and only if C is projectively equivalent
to the curve given by the equation

xy + hs(z,y) = 0, (C5)

where hs(z,y) is a form of dégree five.

Remark 1. Let p : C — C be the resolution of the singularity of C. Then, the
number of points p~*(P) is equal to one when the curve C is given by Equation (C3),
on the other hand, the number is two when the curve C is given by Equation (C1),
(C2), (C4) or (C5).

As a corollary of Theorem, we also see when the Galois group Gal(K/Kp) is
contained in PGL(3,k).

Corollary 1. With the same assumptions as in Theorem, suppose that P is a Galois
point. Then we have the following.
(1) If either
(a) g(C)=1,2 or
(b) g(C) = 4 and C is projectively equivalent to the curve given by Equa-
tion (C4),
then Gal(K/Kp) ¢ PGL(3,k).
(2) If either
(a) g(C) = 4 and C is projectively equivalent to the curve given by Equa-
tion (C3) or
(b) 9(C) =5,
then Gal(K/Kp) C PGL(3,k).

Let F = F(X,Y,Z) = 0 be the homogeneous defining equation of C and f =
f(z,y) = F(z,y,1) = 0 its dehomogenized equation. Moreover, we put f(z,y) =
Yfi(z,y), where f; = fi(z,y) is the homogeneous part of f of degree i. When
g(C) = 4 or 5, we have the easy criterion for the point P to be Galois, which is
similar to [8, Lemma 11] as follows.



Corollary 2. With the same assumptions as in Theorem, suppose that g(C) =
4 or 5. Let the coordinates of P be (0 : 0 : 1) by taking a suitable projective
transformation. Then P is a Galois point if and only if f3* = 3fsfs.

3. PROOFS

We use the following notations.

Notation 1.

o w:=(-1++-3)/2

e ~: the linearly equivalence of divisors

o |D|: the complete linear system associated with a divisor D

o Lc(D):={¢€k(C)|¢=0o0rdivi¢) + D >0}

o [(D): the dimension of Lc(D) as a k-vector space

o &;: the rational map corresponding to a linear system L

e Vo(L,D) :={¢p €k(C)| ¢ =0 or div(p)+D € L}, where L is a sub-linear
system of | D|

® (¢o, - ,¢n): the k-vector space generated by elements ¢g,- - , ¢

Notation 2. Under the assumptions that g(C) > 1 and P is a Galois point, we use
the following notation. Let p : C — C be the resolution of the singularity of C, and
we put { Py, P, } := p~1(P), where points P, and P, may be the same. Let Q be a
ramification point of mpop : C — | such that Q # P,, P,. We denote by L and M the
linear systems corresponding to the morphisms p and 7p o p, respectively. Namely,
we may write that p = @1, and mpop = ®pr. Here, we note that L C |3Q + P, + P;|
and M C LN|3Q|. Let T be the number min{n € N | [(rQ) = 3} and C; the
image of P : C — P?. Then we note that the degree of the map @, : C — C,
is equal to one. Indeed, from M C |7Q| and deg®) = 3, if deg ®D.q = 3 then
deg Co = 1, this contradicts that I(7Q) = 3. Let £ : Cy, — C, be the resolution of
szngularztzes of Co. We denote by N the linear system corresponding to the morphism
d, o0 (I)ITQI o€ : C, — C. Noting that £ o D : C — C, is an isomorphism, we
put D :=£"10®,0,(3Q+ P, + P,). Let.: Cy — P? be the composition of € and the
inclusion map Cy — P?, and 1*(z) and ¢*(y) the rational functions z ot and yo,
respectively. Let o be a generator of Gal(K/Kp), which is isomorphic to the cyclic
group of order three. If g(C) < 4, then we denote by TpC the tangent line to C at
P, and let (C,TpC)p be the intersection number of C and TpC at P.

Now, we note the following, which is clear.
Remark 2. The canonical divisor K of C is linearly equivalent to 6Q + (9(C) —
4)(P + B).

Let us prove Theorem examining the cases that g(C) = 0,1,2,3,4 and 5 sepa-
rately.



(1). The case g(C) = 0.
From [7, Proposition 3], we may assume that P = (0 : 0 : 1) and C is given by
the equation

(y — 2*)(y — 22 + ay® — ax®y + 229°) +4° = 0,
where a € k. Putting ¢t = z/y, we have that Kp = k(t) and K = Kp(z). Thus, we
obtain the minimal polynomial of z over Kp as follows:
5 283-2at*+1 (at2—2) t
T+ = z + T+
t(th+ -2t + a) “otta B+ -2ta

So, we have that the discriminant of this polynomial is

t ((4a® + 27) t* — 36atd + 8a%t? — 4t + 4a)
(t4 - 2t + a)* '

Ya(t) :=

From the extension degree of K/Kp is equal to three, we infer that the extension
K/Kp is Galois if and only if 1/44(t) € Kp = k(t). However, we obtain easily that
VYa(t) € k(t) for any a € k. Therefore, P cannot be a Galois point.

(2). The case g(C) = 1.

First, we can check easily that if C is given by Equation (C1), then the point

= (0:0:1) is Galois. Indeed, we have /% € Kp, where 1 is the discriminant of
the minimal polynomial of z € K = Kp(z) over Kp.

Next, suppose that P = (0 : 0 : 1) is a Galois point. Then, we note that
T = 3, P3¢ is an isomorphism, and Cj is a nonsingular cubic curve. The generator
o € Gal(K/Kp) C Aut(C) induces an automorphism of Cy, i.e., there is an injection
Gal(K/Kp) — Aut(Cp). (We use the same symbol o € Gal(K/Kp) to denote its
image.) Hence, we may assume that Cj is given by the equation y?> = 2% — 1 and
P30(Q) = (0 : 1:0). Moreover, we see that Gal(K/Kp) C PGL(3,k) and may
assume that

Q
Il
o o €
oo
==

Claim 1. We have that P, # P;.

Proof. Suppose the contrary. Then, from there are five infinitely near singular points
over P, we infer that (C,TpC)p # 3. Moreover, since ®,, is a Galois cover, we
have that (C,TpC)p # 4. So, we conclude that (C,TpC)p = 5. Hence, putting
P =P = Pg, we have that 0(<I>|3Q|(P’)) = ®;30/(P’). Thus, we obtain that
<I>|3Q|(P) : v/—1) or (0:1: —4/=1), so we may assume that ®j3q[(P’) =
(0:1: \/_) Then, we have that N C |D| and

Lay(D) = (1) (), S GO VDR




Note that mp o @ is given by the linear system corresponding to the k-vector space
(1,¢*(y)), we may put

@+ VT () + VDR
V() v (x)? ’
where A, B € k. Therefore, the defining equation of C (i.e., the image of ®y) is
computed as follows (see Remark 3).
2?2 +2v/—-1zy—9y?> -3v-1(A-1)Bz*+3(A+ 1) Bz%y
—3v—1 (A-1)Bz*® +3(A+1) Bay® + (—(A - 1) + V=1B%) 2°
+ (=2v=1(A - 1) (A+2) + B%) 2y + (=6 + 6A% + /=1 B%) 2°?
+(-2vV=1(A-2)(A+1)*+B%) 2%® + (1 + A)’zy* = 0

Here, we check that the number of infinitely near singular points over P = (0: 0: 1)
of this curve. Then, it is equal to two. However, since the quintic curve C has only
one singular point P with multiplicity two and g(C) = 1, the number of infinitely
near singular points over P must be equal to five. This is a contradiction. O

Noting that P, # P; and ®p(P,) = P (P,), let us put that P, = o(P,), Ps :=
o(P;) and P, = o(Ps), and let (a,b) be the affine coordinates of ®3o(F3). Then,
we obtain that

Ve (N,D) =(1,"(y), Ac*(z) + B

Cly)+b sy) +b
"1 () —wa’ () — w?a

LCo(D) = <1’ L*(y)) L*(SC)

Hence, we may put

).

(y)+b c(y) +b
() —wa  *(z) —wla

Vao(N, D) = (1,0 (y), A" () + B ),

where A, B € k. Therefore, the defining equation of C is computed (see Remark 3)
as

b%z? — 2bzy + y* — 3a?bBz® + 3a*(B + w — wB)zr%y + 3wa®b(1 — B)z?
—3A(1+ B)s*y — 3A(1 + B)zy® — 3(1 + B) (—a — Ab — wa + waB) z%y?
+ 3 (Ab — ab® + 3aB + AbB + 2ab’B — wab” + wab®B?) «*
+ (— 3abA? — b?A® + b® — 94’ AB — 3bB — 6bB?* — 3b°B? + b’ B® — 3wbaA®
+ 3wbB + 3wabA?B + 3wb®B — 3wbB? — 3wb®B?)z®
+ (3aA? +2A% + b* — 3B — 6B% — 36’ B® + v’ B® + 3waA® + 3wB
— 3waA?B + 3wb’B — 3wB? — 3wb2Bz)x4y

+ ( — A% —b—3abA?—b2A%—9a2AB —3bB —3bB? —bB? — 3wabA®+ 3wa,bA2B) z3y?
+(—-1+ 3aA? + 2bA% — 3B — 3B? — B3 + 3waA? — 3waAzB):L'2y3 — Azyt =0.

Here, considering the blowing-ups at five infinitely near singular points over P, we
conclude that a3 = 4, b> = 3, A = —2wb/3a? and B = w?. So, we may assume that



a= /4 and b=+/3. By taking the inverse image of the projective transformation

V3/12 0 0
1/4 1/2 0

4/(3(1 + \/——3)\3/52) o -1/(30+ \/:‘3:)\3/52)
we obtain Equation (C1).

(8). The case g(C) = 2.

We can check easily that if C' is given by Equation (C2), then the point P = (0 :
0:1) is Galois.

Suppose that P = (0:0: 1) is a Galois point.

Claim 2. We have that P, # P;.

Proof. Suppose the contrary. Then, by an argument similar to that in the proof
of Claim 1, we see that (C,TpC)p = 5. So, putting P’ := P, = P,, we infer
that 3Q) ~ 3P’. Hence, we have that Kz ~ 2P, so [(2P') = [(K5) = 2. From
the Riemann-Roch theorem, we infer that [(3P’) = 2. Therefore we have that
|3P'| = |2P'|. However, we see that M = [3Q| = |3P’'| and deg®s; = 3, this
contradicts that deg @’3pl| = deg (I>I2P'| = 2. O

Since ®p(P1) = ®p(P2), we may put that P, = o(Py), Ps := o(P,) and P, =
o(P;). Noting that 7 = 4, from 0*|4Q| = |4Q)|, we infer that the birational map
@49 000 @le : Cp- -+ — Cp belongs to PGL(3,k). From Proposition 1, we may
assume that @40((Q) = (0:0: 1) and Cy is given by the equation y + f4(z,y) =0,
where f4(z,y) is a form of degree four. Then, because g(C) = g(Cp) = 2, C, has one
double point. Hence, by taking a suitable projective transformation, we may assume
that Cy is given by the equation y + z?(z + y)(z + ay) = 0, where a € k. Here,
we claim that P; is a Weierstrass point, so P, and P, are also Weierstrass points.
Indeed, noting that 3Q ~ P+ P+ P3 and [(K5—2P;) = [(6Q—2P, —2P,—2P;) =1,
from the Riemann-Roch theorem, we infer that [(2P;) = 2. Because of this, we may
put ®j40/(Ps) = (va : 1: ay/a), where a € k such that a® = —(y/a + 1)2. Then, we
obtain that

v(z) (@) (=) = Var(y)) o)) - \/ab*(y)))
) c@(war(z)-1) 7 e (y)(wrPoer(z) —1) 7

Lg, (D) = (1

So, noting that N C |D|, we may put

(@) @) (@) - var(y) | e(@)(e(@) - \/Eb*(y))%

Vel D) =0 G A war@ 1) T r@)Rar(e) - 1)



where A € k. Therefore, the defining equation of C is computed (see Remark 3) as

(V=T +b%) 22 + 2( = 1+ vV=16%)zy — ¢* + 36*( — 1 + V=1b%) (A — w + wA) %y
— 364 (A — w+wA)zy? + 362 (V=T + %) (1 + A) (w(4 — 1) — 1)z’y
—36%(A(— 2+ 2v=18° + 3b°%) + 2( — 1V=1b%) (1 + w) + 2(w — V—=1bw) A*) z%°
+3°(1+w+ A—wA?)zy’ — (1+ A)° (- 1+ V=16%)°z%y
—3(1 = V=1t*) (= 1+ V=16 + A( = 3+ 3V—=10° + (- 1 + V—1b%) A?

— (— 1 +w)b6 + A( —3+4+3/=18 + (2 +w)b6)))x3y2
+3(1 - V=13 + (1 = V-10*) A3 + A(3 = 3vV/=10* + (= 1 + w)?d°)

— A2(=34+3V=I + (2+w)b%)) 2% + (14 A)’zyt =0,

where b € k such that b° = a and b* = —/=1(y/a+1). Considering the blowing-ups
of this curve at four infinitely near singular points over P, we conclude that A = w?.
Letting ¢ = —/—1 8% and taking the inverse image of the projective transformation

1/(vV=1(1+¢) 0 0
v—-1 V-1 0 :
0 0 —2/(9(—vV=T+V3)(V=1c)*3c*(1 + ¢)?)

we obtain Equation (C2).

(4). The case g(C) = 3.

Then first, we infer that L = |3Q + P, + P2| from I(3Q + P, + P,) = 3 and
L C |3Q + P, + P;|. On the other hand, we note that {(P, + P,) = 1. Indeed,
if (P, + P;) = 2 then we infer that ®p1p, = Tr © ®3g+p+p,, Where g is a
projection of C from some point R € P?. However, we have that deg ®j30+p,+p, =1
and deg ®|p, +p,| = 2, this contradicts that degmg > 3. Next, we see that P, + P ~
o*(Py + P,), because we have that 6Q — P, — P, ~ Kz ~ 0*Ks ~ 6Q — o*(P, + P,).
Hence, we obtain that P, + P, = o*(P; + P2). Thus, we conclude that L = ¢*L and
the birational map &, 00 0®;': C--- — C belongs to PGL(3, k). Therefore, from
Proposition 2, we may assume that C is given by the equation y? + fs(z,y) = 0,
where f5(z,y) is a form of degree five. However, the genus of a nonsingular model
of this curve is equal to four. This contradicts that g(C) = 3.

(5). The case g(C) = 4.

We can check easily that if C is given by Equation (C3) or (C4), then the point
P=(0:0:1) is Galois.

Next, suppose that the point P is Galois. Then, we infer that L = |3Q + P, + P,|
from L C |3Q + P, + Pz| and I(3Q + P, + P,) = 3. Now, we assume that P, = P;.
Then, by an argument similar to that in the proof of Claim 1, we conclude that
(C,TpC)p = 5, and P, = P, = o(P,) = o(P,;). Thus, we see that c*L = L,
and therefore we conclude that Gal(K/Kp) C PGL(3,k). From Proposition 2, by
taking a suitable projective transformation, we obtain Equation (C3). Next, let us
assume that P, # P,. Then, since ®(P,) = ®)(P2), we may put that P, = o(P,),



P3 := o(P;) and P, = o(P;). Noting that 7 = 5, since ¢*|5Q)| = |5Q)|, the birational
map <I>|5Q|ooo<1>lgé?| : Co -+ — Cp belongs to PGL(3, k). From Proposition 2, we may
assume that ®50/(Q) = (0: 0: 1) and Cj is given by the equation z? + f5(z,y) = 0,
where f5(z,y) is a form of degree five. Moreover, by taking a suitable projective

transformation, we may assume that ®5;(Ps) = (1 : 0 : 1). Then, we have that
Pi5q|(P1) = (w:0:1) and Ppsq|(P2) = (w?: 0: 1), hence, we conclude that

(y) v(z) -1
VCo(N) D) <1’l/*(.'23'), L*(y) )
Therefore, we obtain Equation (C4) (see Remark 3).
(6). The case g(C) = 5.

We can check easily that if C is given by Equation (C5), then the point P = (0 :
0:1) is Galois. , »

Suppose that the point P is Galois. By an argument similar to that in (4) the
case g(C) = 3, we conclude that 0*L = L and the birational map &1 0 g o 7" :
C ... — C belongs to PGL(3, k). Therefore, from Proposition 2, by taking a suitable
projective transformation, C is given by Equation (C5). Now we complete the proof
of Theorem.

Remark 3. In the previous proof, we can compute the defining equation of C' from
Ve, (N, D) as follows. Let us assume that

Vo (N, D) = (1, 1(c"(2),¢"(y)), $2(¢"(2), " ())),
and Cy C P? is given by the equation g(z,y) = 0. Then, we put that (Y/X) =
é1(t*(x),*(y)) and (Z/X) = ¢2(¢*(z),¢*(y)), and we have that g(t*(z),t*(y)) = 0.

Here, we eliminate *(x) and (*(y) from these equations by elimination theory |9,
Chapter XI|. Thus, we obtain the defining equation of C.

Corollary 1 and 2 is obvious from Theorem.
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