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On Four-dimensional Generalized Complex Space
Forms

Richard S. Lemence

Abstract

F. Tricerri and L. Vanhecke [8] proved that a 2n (n > 3)-dimensional gener-
alized complex space is a real space form or a complex space form. In this
note, we shall show that this result is extendable to 4-dimensional case.

1 Introduction

Let (V, g) be an n-dimensional real vector space with positive definite inner product g
and denote by R(V') the subspace of V*®V*®V*®V™* consisting of all tensors having
the same symmetries as the curvature tensor of a Riemannian manifold, including
the first Bianchi identity. F. Tricerri and L. Vanhecke [8] gave the complete and
irreducible decomposition of R(V) under the action of U(n). They then applied
these algebraic results to the curvature tensors of almost Hermitian manifolds.

A 2n (n > 2) - dimensional almost Hermitian manifold M = (M, J, g) is called a
generalized complex space form if the curvature tensor R takes the following form:
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for some smooth functions 7 and 7* and here
m(z,y)z = g(y, 2)z — 9(=, 2)y

and
mo(z,y)z = g(Jy, 2)Jz — g(Jz, 2)Jy — 29(Jz,y)J2
forallz,y, z€eT,M,pe M.

The concept of generalized complex space form is a natural generalization of a
complex space form (i.e. Kahler manifold of constant holomorphic sectional curva-
ture) which has been introduced by F. Tricerri and L. Vanhecke [8]. They showed
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that an almost Hermitian manifold is a generalized complex space form if and only
if Einsteinian and weakly *- Einsteinian and Bochner flat,i.e., B(R) = 0 and further
proved that a 2n (n > 3)-dimensional generalized complex space is a real space form
or a complex space form.

In this paper, we shall show that the result of F. Tricerri and L. Vanhecke [8] is
partially extendable to 4-dimensional case under compactness hypothesis, namely,
we shall prove the following:

Theorem A. Let M = (M, J, g) be a 4-dimensional generalized complez space form.
Then M is locally a real space form or globally conformal Kahler manifold. In the
latter case, (M, J,g*) with g* = (3r* — 7)3g is a Kahler manifold, where r and 7
are the scalar curvature and the x-scalar curvature of M, respectively.

Theorem B. Let M = (M, J,g) be a compact 4-dimensional generalized complex
space form. Then M is a real space form of constant non-positive sectional curvature
or compact complez space form.

Remark. There is an example of 4-dimensional compact non-Hermitian, almost
Hermitian flat manifold (cf. [1]). Further, there does not exist 4-dimensional compact
Hermitian manifold of negative constant sectional curvature (cf. [5]). However, the
author does not know whether there exist a 4-dimensional compact non-Hermitian
almost Hermitian manifolds of negative constant sectional curvature or not.

2 Preliminaries

Let M = (M, J, g) be a 2n-dimensional almost Hermitian manifold with the almost
complex structure J and the metric g We denote by V, R, p and 7 the Levi-
Civita connection, the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature tensor, respectively. We assume that the Riemannian curvature tensor R

is defined by
(21) R(X, Y)Z = Vx(VYZ) - Vy(VXZ) - V[X,y]Z

for X, Y and Z € X(M) (X(M) denotes Lie algebra of all smooth vector fields on
M). Further, we denote by p* and 7* the Ricci *-tensor and the *-scalar curvature
of M, respectively. The tensor p* is defined pointwisely by

(2.2) p*(z,y) = trace(z — R(Jz,z)Jy)
2n

= —ZR("B7 €i, Jya Jei)

i=1.

1 2n
=-3 ZR(a:, Jy, e, Jes),

=1
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for z, y, z € T,M, p € M, where R(z,y,z,w) = g(R(z,y)z,w) and {e;} is an
orthonormal basis of T,M. The x-scalar curvature of M is defined by 7* = trace
of Q*, where Q* is the Ricci * - operator defined by p*(z,y) = g(Q*z,y), for z,
y € T,M, p € M. We note that p* satisfies p*(Jz, Jy) = p*(y,z) for z, y € T,M,
p € M, but is not symmetric in general. An almost Hermitian manifold M is called
a weakly *-Finstein manifold if p* = Zg (dimM = 2n) holds, and in addition,
if 7* is constant-valued, then M is called *-FEinstein manifold. There exist many
examples of weakly * - Einstein but not * - Einstein manifolds (cf. [9], [10] and
[11)).

Now we return to 4-dimensional almost Hermitian manifold M = (M, J, g) under
consideration. We denote by A2M the real vector bundle of all the real 2-forms on
M. The A?M inherits a natural inner product coming from the Riemannian metric
g and we have the following orthogonal decomposition:

(2.3) ANM=RQSLMdN'M

where LM (resp. Ay’ M) is the bundle of J-skew invariant (J-invariant) effective
2-forms on M. We can identify the bundle R2 @ LM (resp. Ay'M) with the
bundle A2 M (resp. A2 M) of the self-dual (resp. anti-self dual) 2-forms on M. The
bundle LM is endowed with the complex structure (denoted also by J) given by
(J®)(X,Y) = —®(JX,Y), for any local section of & of LM and any X,Y € X(M).
We note that the almost complex structure J acts also on 1-form ¢ by (Jo) =
—o(JX), for any X € X(M). Corresponding to the decomposition (2.3), we may
set

(2.4) VR=a@®+4JP

for some local 1-forms o and 8, where ®, J® is a local orthonormal basis of LM.
It is well-known that the almost complex structure J of M is integrable if and only
if (VxJ)Y = (VyxJ)JY holds for X,Y € X(M). So, from (2.4), we see that J is
integrable if and only if 8 = Ja holds on a neighborhood of any point of M. Since
the dim M = 4, we see that there does not exist effective 3-forms on M and hence,
any 3-form 7 is represented as 7 = o A {2 for some 1-form o. Thus, we may set
especially

(2.5) dR=wA 2
for some 1-form w on M. The 1-form w is called the Lee form of M, and is given by
(2.6) w=—4820J.

Let {e;} = {e1,es = Jei1, e3,e4 = Jes} be any (local) unitary basis of T,M(p € M)
and {e'} = {e!,e? = Je!, e, e* = Je3} be the dual basis of {e;}. Then, the Kahler
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form {2 is represented by 2 = e! A €% + €3 A e*. Further, we see that
1 1
®,J0} = {—=(e' ned —e? Aet), —=(e} Aet + €% A ed)},
(2,70} = (- ) 75 )}
1 1
2.7 , Yo, ={—=('Ae?—e*net), =(e! Aed —e® A e?),
%(e1 Aet —e2 ned)}

are (locally) orthonormal bases of LM and AJ'M = A2 M, respectively. In this
paper, for any (local) unitary basis {e;} of T,M at any point p € M, we shall adopt
the following notational convention:
Jij = g(Jei, €5) |
(2.8) Vidik = 9((Ve; J)e€j5 €k)s -y Vidzi = 9((Vie, J) T e, Je)
Rijri = g(R(ei, €j)ex, &), ..., Rgpr = g(R(Jei, Jej)Jex, Jey),

and so on where the latin indices ranges over 1,2,3,4. Following this notational
convention, from (2.6), we have

(2.9) W = Z(ViJij)ka-
1,J

3 Proofs of Theorem A and B

First we prove Theorem A.
Let M = (M, J,g) be a 4 - dimensional generalized complex space form. Then
(1.1) reduces to

X oy, 2)9(z,w) — 9(@, 2)g (v, w))
+3T* _ T{g(Jz, w)g(Jy, z) — 9((Jy, w)g(Jz, 2)
—2g9(Jz,y)g(Jz,w)}

48
for z, y, 2, w € T,M(p € M). First of all, from (3.1), we may note that M
is Einstein(p = 7g) and weakly *-Einstein (p* = ?g); and, further a space of
pointwise constant holomorphic sectional curvature 5;(37* + 7). Now, from (3.1),

(3.1) R(z,y,z,w) = 5
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we also get
(3.2) (VuR)(z,y, 2, w)

= ——l%u('r*){g(x, w)g(y, z) — 9(y, w)g(z, 2)

—"g(J.Z', w)g(Jy7 Z) + g(']y7 w)g(J.'c, Z)

+20(J2,1)9(72,w)} + T {g(Iy, 2)9(Vud)a, w)

+9(Jz, w)g((Vud)y, 2) — g(Jz, 2)9((VuJ)y, w)
—9(Jy, w)g((VuJ)z, 2) — 29(Jx,y)g((VuJ)2, w)
—29(Jz,w)g((Vud)z,y)}

for u,z,y,2,w € T,M(p € M).

Let {e;} be any unitary basis of T,M at any poiny p € M. Then, since M is
Einstein, from (3.2), we get

(33) 0= (pr)(y’z) - (Vzp)(ya w)

= Z(Ve,.R)(e,-, Y, 2, W)

=1

= — ()9, 2) = 279y, w) + ()79, )
~(J2)(r)g(Jy, w) — 2(Ty)(7")9(J 2, w)}
0V}, 2) + 9(Vou s )
+HIL) @)y, 2) — (J) eIy, v)
~2(J0) ()97 w) + 29((V 57, )

for y,z,w € T,M(p € M).
By setting w = e;, y = 2 = e3 in (3.3) we get

(3.4) e1(37" — 1) + 337" — 1)g9((Ve,J)e1,€3) = 0.

Similarly, by setting w = e;, y = z = e4 in (3.3) we get
(3.5) e1(37* —7) = 3(37* = 7)9((Ves J)er, e4) = 0.

Further, we get the following:

(3.6) e(37* — 1) +3(37* — 17)g9((Ve,J)e2, e3) =0,
(3.7) e2(37" —7) — (37" — 7)9((Ves €2, €5) =0,
(3.8) e3(37* — 1) — 3(37* ‘-— 7)9((Ve,J)ey,e3) =0,
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(3.9) e3(37" — 1) + 3(37" — 7)9((Ve, J)e2, €3) = 0,
(3.10) es(37* — 1) = 3(37* — 7)9((Ve, J)er, 4) = 0,

(3.11) es(37* — 1)+ 3(37* — 7)g((Ve,J)es, €4) = 0.
From (3.4)~(3.11), taking the account of (2.4) and (2.7), we have
(3.12) B —1)(B—Ja) =0.

Let M, = {p € M|37* — 7 = 0 at p}. Since M is Einstein, M is real analytic as
Riemannian manifold. Thus, if the interior of M, is not empty, then M is locally a
real space form of dimension 4 by (3.1). In the sequel, we assume that the interior
of M, is empty. Then we see that the complement M, of M, in M is an open dense
subset of M, and 8 — Ja = 0 holds on a neighborhood of any point M, by virtue
(3.12). Thus, we see that J is integrable. Therefore, we get (VxJ)Y = (V xJ)JY
holds for any X,Y € X(M).

By direct calculation, we get

g((veu])ela 63) = —g((V“J)ez, 34) = g((ve4J)e41 62),
g((vcs‘])eh 64) = g((ves'])e27 63) = —g((ve3J)63, 62)7

and hence

1
(3.13) —g((VeJ)er, e3) = g((VesJ)e1, €4) = —3w1
by virtue of (2.9). Similarly, we get

1
_'g((Vg4J)62, e3) = g((VCSJ)e27 84) = —§w2’
1

(3.14) 9((Ve,J)er, e3) = —9((Ve, J)ez, €3) = —50-)3,

1
g((vez‘])el7e4) = —g((VelJ)ez, 64) = -—_2.-w4_

Thus, by (3.4)~(3.11), (3.13) and (3.14), we have finally the following differential
equation

(3.15) d(3r* - 1)+ 2(31'* — 7w =0.

By (3.15) and our hypothesis, we can immediately see that the function 37* — 1
vanishes nowhere on M. Thus, taking the exterior derivative of equality (3.15), we
have further

(3.16) dv=0on M
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Therefore, it follows from (3.16) that M is locally conformal Kéghler manifold.

Now, we consider a new Riemannian metric ¢g* defined by ¢* = (37* — T)§ g.
Then, we see that (M, J, g*) is a (real) 4-dimensional Hermitian manifold with the
corresponding Kahler form 2* = (37* — 7)342. By (2.5) and (3.15), we may easily
check that df2* = 0 holds on M, and hence, (M, J, g) is a Kdhler manifold of real
dimension 4. This completes the proof of Theorem A.

Next, we shall prove Theorem B. From (3.1), taking account of the result by
Koda ( [1], Prop. 4.1), we see that a 4-dimensional generalized complex space form
is a self-dual Einstein manifold. On one hand, it is well-known that a 4-dimensional
sphere does not admit almost complex structure. Therefore, we see that Theorem
B follows immediately from the arguments in this section and the following result
([2] and [5)

Theorem C. Let M = (M, J, g) be a compact self-dual Einstein Hermitian surface.
Then M is a compact complex space form.
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