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On Four-dimensional Generalized Complex Space
Forms

Richard S. Lemence

Abstract

F. bicerri and L. Vanhecke [8] proved that a $2n(n\geq 3)$-dimensional gener-
alized complex space is a real space form or a complex space form. In this
note, we shall show that this result is extendable to 4-dimensional case.

1 Introduction
Let (V, $g$) be an n-dimensional real vector space with positive definite inner product $g$

and denote by $\mathcal{R}(V)$ the subspace of $V^{*}\otimes V^{*}\otimes V^{*}\otimes V^{*}$ consisting of all tensors having
the same symmetries as the curvature tensor of a Riemannian manifold, including
the first Bianchi identity. F. Tricerri and L. Vanhecke [8] gave the complete and
irreducible decomposition of $\mathcal{R}(V)$ under the action of $\mathcal{U}(n)$ . They then applied
these algebraic results to the curvature tensors of almost Hermitian manifolds.

A $2n(n\geq 2)$ -dimensional almost Hermitian manifold $M=(M, J, g)$ is called a
genemlized complex space form if the curvature tensor $R$ takes the following form:

(1.1)
$R==\frac{\tau+3\tau^{*}}{\frac{16n(n+1)(2n+1)\tau-3\tau^{*}(\pi_{1}+}{8n(n-1)(n+1)}}\pi_{2}$

) $+-\pi_{2}$ )
$\pi_{1}+\frac{\frac{\tau-\tau^{*}}{16n(n-1)(2n-1)\tau^{*}}(3\pi_{1}-\tau}{8n(n-1)(n+1)}\pi_{2}$

for some smooth functions $\tau$ and $\tau^{*}$ and here

$\pi_{1}(x, y)z=g(y, z)x-g(x, z)y$

and
$\pi_{2}(x, y)z=g(Jy, z)Jx-g(Jx, z)Jy-2g(Jx, y)Jz$

for all $x,$ $y,$ $z\in T_{p}M,$ $p\in M$ .
The concept of generalized complex space form is a natural generalization of a

complex space form (i.e. K\"ahler manifold of constant holomorphic sectional curva-
ture) which has been introduced by F. Tricerri and L. Vanhecke [8]. They showed
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that an almost Hermitian manifold is a generalized complex space form if and only
if Einsteinian and $weakly*$-Einsteinian and Bochner flat, $i.e.,$ $B(R)=0$ and further
proved that a $2n(n\geq 3)$-dimensional generalized complex space is a real space form
or a complex space form.

In this paper, we shall show that the result of F. Ricerri and L. Vanhecke [8] is
partially extendable to 4-dimensional case under compactness hypothesis, namely,
we shall prove the following:

Theorem A. Let $M=(M, J, g)$ be a 4-dimensional generalized complex space form.
Then $M$ is locally a real space form or globally conformal $K\dot{a}hler$ manifold. In the
latter case, $(M, J, g^{*})$ with $g^{*}=(3\tau^{*}-\tau)^{\frac{2}{3}}g$ is a $K\dot{a}hler$ manifold, where $\tau$ and $\tau^{*}$

are the scalar curvature and $the*$ -scalar curvature of $M$ , respectively.

Theorem B. Let $M=(M, J, g)$ be a compact 4-dimensional generalized complex
space form. Then $M$ is a real space form of constant non-positive sectional curvature
or compact complex space form.

${\rm Re} mark$ . There is an example of 4-dimensional compact non-Hermitian, almost
Hermitian flat manifold (cf. [1]). Further, there does not exist 4-dimensional compact
Hermitian manifold of negative constant sectional curvature (cf. [5]). However, the
author does not know whether there exist a 4-dimensional compact non-Hermitian
almost Hermitian manifolds of negative constant sectional curvature or not.

2 Preliminaries
Let $M=(M, J, g)$ be a 2$n$-dimensional almost Hermitian manifold with the almost
complex structure $J$ and the metric $g$ . We denote by $\nabla,$ $R,$ $\rho$ and $\tau$ the Levi-
Civita connection, the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature tensor, respectively. We assume that the Riemannian curvature tensor $R$

is defined by

(2.1) $R(X, Y)Z=\nabla_{x}(\nabla_{Y}Z)-\nabla_{Y}(\nabla_{x}Z)-\nabla[X,Y]Z$

for $X,$ $Y$ and $Z\in \mathfrak{X}(M)(\mathfrak{X}(M)$ denotes Lie algebra of all smooth vector fields on
$M)$ . Further, we denote by $\rho^{*}$ and $\tau^{*}$ the $Ricci*$-tensor and $the*$-scalar curvature
of $M$ , respectively. The tensor $\rho^{*}$ is defined pointwisely by

(2.2) $\rho^{*}(x, y)=traoe(z\leftrightarrow R(Jz,x)Jy)$

$=-\sum_{i=1}^{2n}.R(x, e_{i}, Jy, Je_{i})$

$=-\frac{1}{2}\sum_{i=1}^{2\mathfrak{n}}R(x, Jy, \mathfrak{g}, Je_{i})$ ,
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for $x,$ $y,$ $z\in T_{p}M,$ $p\in M$ , where $R(x, y, z, w)=g(R(x, y)z,$ $w$ ) and $\{e_{i}\}$ is an
orthonormal basis of $T_{p}M$ . The $*$-scalar curvature of $M$ is defined by $\tau^{*}=$ trace
of $Q^{*}$ , where $Q^{*}$ is the Ricci $*-$ operator defined by $p^{*}(x, y)=g(Q^{*}x, y)$ , for $x$ ,
$y\in T_{p}M,$ $p\in M$ . We note that $\rho^{*}$ satisfies $\rho^{*}(Jx, Jy)=\rho^{*}(y, x)$ for $x,$ $y\in T_{p}M$ ,
$p\in M$ , but is not symmetric in general. An almost Hermitian manifold $M$ is called
a weakly $*$ -Einstein manifold if $\rho^{*}=\frac{\tau^{*}}{2n}g(dimM=2n)$ holds, and in addition,
if $\tau^{*}$ is constant-valued, then $M$ is called $*$ -Einstein manifold. There exist many
examples of weakly $*-$ Einstein but not $*-$ Einstein manifolds (cf. [9], [10] and
[11]).

Now we retum to 4-dimensional almost Hermitian manifold $M=(M, J, g)$ under
consideration. We denote $by\wedge^{2}M$ the real vector bundle of all the real 2-forms on
M. $The\wedge^{2}M$ inherits a natural inner product coming from the Riemannian metric
$g$ and we have the following orthogonal decomposition:

(2.3) $\wedge^{2}M=R\Omega\oplus LM\oplus\bigwedge_{0}^{1,1}M$

where $LM$ (resp. $\bigwedge_{0}^{1,1}M$) is the bundle of J-skew invariant (J-invariant) effective
2-forms on $M$ . We can identify the bundle $R\Omega\oplus LM$ (resp. $\bigwedge_{0}^{1,1}M$) with the
bundle $\bigwedge_{+}^{2}M$ (resp. $\bigwedge_{-}^{2}M$) of the self-dual (resp. anti-self dual) 2-forms on $M$ . The
bundle $LM$ is endowed with the complex structure (denoted also by $J$) given by
$(J\Phi)(X, Y)=-\Phi(JX, Y)$ , for any local section of $\Phi$ of $LM$ and any $X,$ $Y\in \mathfrak{X}(M)$ .
We note that the almost complex structure $J$ acts also on l-form $\sigma$ by $(J\sigma)=$

$-\sigma(JX)$ , for any $X\in \mathfrak{X}(M)$ . Corresponding to the decomposition (2.3), we may
set

(2.4) $\nabla\Omega=\alpha\otimes\Phi+\beta\otimes J\Phi$

for some local l-forms $\alpha$ and $\beta$ , where $\Phi,$ $ J\Phi$ is a local orthonormal basis of $LM$ .
It is well-known that the almost complex structure $J$ of $M$ is integrable if and only
if $(\nabla_{X}J)Y=(\nabla_{JX}J)JY$ holds for $X,$ $Y\in \mathfrak{X}(M)$ . So, $hom(2.4)$ , we see that $J$ is
integrable if and only if $\beta=J\alpha$ holds on a neighborhood of any point of $M$ . Since
the dim $M=4$ , we see that there does not exist effective 3-forms on $M$ and hence,
any 3-form $\eta$ is represented as $\eta=\sigma\wedge\Omega$ for some l-form $\sigma$ . Thus, we may set
especially

(2.5) $ d\Omega=\omega\wedge\Omega$

for some l-form $\omega$ on $M$ . The l-form $\omega$ is called the Lee form of $M$ , and is given by

(2.6) $\omega=-\delta\Omega oJ$.

Let $\{e_{i}\}=\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ be any (local) unitary basis of $T_{p}M(p\in M)$

and $\{e^{i}\}=\{e^{1}, e^{2}=Je^{1}, e^{3}, e^{4}=Je^{3}\}$ be the dual basis of $\{e_{i}\}$ . Then, the K\"ahler
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form $\Omega$ is represented by $\Omega=e^{1}\wedge e^{2}+e^{3}\wedge e^{4}$ . Further, we see that

$\{\Phi, J\Phi\}=$ { $\frac{1}{\sqrt{2}}$ ( $e^{1}\wedge e^{3}-e^{2}$ A $e^{4}$), $\frac{1}{\sqrt{2}}(e^{1}\wedge e^{4}+e^{2}\wedge e^{3})$ },

(2.7) $\{\psi_{1}, \psi_{2}, \psi_{3}\}=\{\frac{1}{\sqrt{2}}$ ( $e^{1}$ A $e^{2}-e^{3}\wedge e^{4}$), $\frac{1}{\sqrt{2}}(e^{1}\wedge e^{3}-e^{2}\wedge e^{4})$ ,

$\frac{1}{\sqrt{2}}$ ( $e^{1}\wedge e^{4}-e^{2}$ A $e^{3}$)}

are (locally) orthonormal bases of $LM$ and $\bigwedge_{0}^{1,1}M=\bigwedge_{-}^{2}M$ , respectively. In this
paper, for any (local) unitary basis $\{e_{i}\}$ of $T_{p}M$ at any point $p\in M$ , we shall adopt
the following notational convention:

$J_{ij}=g(Je_{i}, e_{j})$

(2.8) $\nabla_{i}J_{jk}=g((\nabla_{e}:J)e_{j}, e_{k}),$
$\ldots,$

$\nabla_{1}\neg J_{J^{\overline{k}}}\neg=g((\nabla_{Je_{i}}J)Je_{j}, Je_{k})$

$R_{jkl}=g(R(e_{i}, e_{j})e_{k},$ $e_{l}$ )
$,$ $\ldots,$

$R_{J^{\overline{k}\overline{l}}}^{R}=g(R(Je_{i}, Je_{j})Je_{k},$ $Je_{I}$),

and so on where the latin indices ranges over 1, 2, 3, 4. Following this notational
convention, from (2.6), we have

(2.9)
$\omega_{k}=\sum_{i,j}(\nabla_{i}J_{ij})J_{kj}$

.

3 Proofs of Theorem A and $B$

First we prove Theorem A.
Let $M=(M, J,g)$ be a 4-dimensional generalized complex space form. Then

(1.1) reduces to

(3.1) $R(x, y, z,w)=\frac{5\tau-3\tau^{*}}{48}\{g(y, z)g(x,w)-g(x, z)g(y,w)\}$

$+\frac{3\tau^{*}-\tau}{48}\{g(Jx, w)g(Jy,z)-g((Jy, w)g(Jx, z)$

$-2g(Jx, y)g(Jz, w)\}$

for $x,$ $y,$ $z,$ $w\in T_{p}M(p\in M)$ . First of all, $hom(3.1)$ , we may note that $M$

$pointwiseconsttho1omorphicsectiona1curvatureisEinstein(\rho--\frac{\tau}{4t}g)andweak1y*- Einstein(\rho^{*}=\frac{\tau}{\frac,24f}g))td,furtheraspace.of(3\tau^{*}+\tau).Now,$

$from(3l)$ ,
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we also get

(3.2) $(\nabla_{u}R)(x, y, z, w)$

$=-\frac{1}{16}u(\tau^{*})\{g(x, w)g(y, z)-g(y, w)g(x, z)$

$-g(Jx, w)g(Jy, z)+g(Jy, w)g(Jx, z)$

$+2g(Jx, y)g(Jz, w)\}+\frac{3\tau^{*}-\tau}{48}\{g(Jy, z)g((\nabla_{u}J)x, w)$

$+g(Jx, w)g((\nabla_{u}J)y)z)-g(Jx, z)g((\nabla_{u}J)y, w)$

$-g(Jy, w)g((\nabla_{u}J)x, z)-2g(Jx, y)g((\nabla_{u}J)z, w)$

$-2g(Jz, w)g((\nabla_{u}J)x, y)\}$

for $u,$ $x,$ $y,$ $z,$ $w\in T_{p}M(p\in M)$ .
Let $\{e_{i}\}$ be any unitary basis of $T_{p}M$ at any poiny $p\in M$ . Then, since $M$ is

Einstein, from (3.2), we get

(3.3) $0=(\nabla_{w}\rho)(y, z)-(\nabla_{z}\rho)(y, w)$

$=\sum_{i=1}^{4}(\nabla_{e_{i}}R)(e_{i},y, z, w)$

$=-\frac{1}{16}\{w(\tau^{*})g(y, z)-z(\tau^{*})g(y, w)+(Jw)(\tau^{*})g(Jy, z)$

$-(Jz)(\tau^{*})g(Jy, w)-2(Jy)(\tau^{*})g(Jz, w)\}$

$+\frac{3\tau^{*}-\tau}{48}\{-g((\nabla_{Jw}J)y, z)+g((\nabla_{Jz}J)y, w)$

$+(J\omega)(w)g(Jy, z)-(J\omega)(z)g(Jy, w)$

$-2(J\omega)(y)g(Jz, w)+2g((\nabla_{Jy}J)z, w)\}$

for $y,$ $z,$ $w\in T_{p}M(p\in M)$ .
By setting $w=e_{1},$ $y=z=e_{3}$ in (3.3) we get

(3.4) $e_{1}(3\tau^{*}-\tau)+3(3\tau^{*}-\tau)g((\nabla_{e_{4}}J)e_{1}, e_{3})=0$ .

Similarly, by setting $w=e_{1},$ $y=z=e_{4}$ in (3.3) we get

(3.5) $e_{1}(3\tau^{*}-\tau)-3(3\tau^{*}-\tau)g((\nabla_{e_{3}}J)e_{1}, e_{4})=0$ .

Further, we get the following:

(3.6) $e_{2}(3\tau^{*}-\tau)+3(3\tau^{*}-\tau)g((\nabla_{e_{4}}J)e_{2}, e_{3})=0$ ,

(3.7) $e_{2}(3\tau^{*}-\tau)-(3\tau^{*}-\tau)g((\nabla_{e_{3}}J)e_{2}, e_{4})=0$ ,

(3.8) $e_{3}(3\tau^{*}-\tau)-3(3\tau^{*}-\tau)g((\nabla_{e_{2}}J)e_{1}, e_{3})=0$ ,
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(3.9) $e_{3}(3\tau^{*}-\tau)+3(3\tau^{*}-\tau)g((\nabla_{e_{1}}J)e_{2}, e_{3})=0$ ,

(3.10) $e_{4}(3\tau^{*}-\tau)-3(3\tau^{*}-\tau)g((\nabla_{e_{2}}J)e_{1}, e_{4})=0$ ,

(3.11) $e_{4}(3\tau^{*}-\tau)+3(3\tau^{*}-\tau)g((\nabla_{e_{1}}J)e_{2}, e_{4})=0$ .

From $(3.4)\sim(3.11)$ , taking the account of (2.4) and (2.7), we have

(3.12) $(3\tau^{*}-\tau)(\beta-J\alpha)=0$ .

Let $M_{o}=$ {$p\in M|3\tau^{*}-\tau=0$ at $p$}. Since $M$ is Einstein, $M$ is real analytic as
Riemannian manifold. Thus, if the interior of $M_{o}$ is not empty, then $M$ is locally a
real space form of dimension 4 by (3.1). In the sequel, we assume that the interior
of $M_{o}$ is empty. Then we see that the complement $M_{o}^{\prime}$ of $M_{o}$ in $M$ is an open dense
subset of $M$ , and $\beta-J\alpha=0$ holds on a neighborhood of any point $M_{o}^{\prime}$ by virtue
(3.12). Thus, we see that $J$ is integrable. Therefore, we get $(\nabla_{X}J)Y=(\nabla_{JX}J)JY$

holds for any $X,$ $Y\in \mathfrak{X}(M)$ .
By direct calculation, we get

$g((\nabla_{e_{4}}J)e_{1}, e_{3})=-g((\nabla_{e_{4}}J)e_{2}, e_{4})=g((\nabla_{e_{4}}J)e_{4}, e_{2})$ ,
$g((\nabla_{\epsilon_{3}}J)e_{1}, e_{4})=g((\nabla_{e_{3}}J)e_{2}, e_{3})=-g((\nabla_{e_{3}}J)e_{3}, e_{2})$ ,

and hence

(3.13) $-g((\nabla_{e_{4}}J)e_{1}, e_{3})=g((\nabla_{e_{S}}J)e_{1}, e_{4})=-\frac{1}{2}\omega_{1}$

by virtue of (2.9). Similarly, we get

$-g((\nabla_{e_{4}}J)e_{2}, e_{3})=g((\nabla_{e_{3}}J)e_{2}, e_{4})=-\frac{1}{2}\omega_{2}$ ,

(3.14) $g((\nabla_{e_{2}}J)e_{1}, e_{3})=-g((\nabla_{e_{1}}J)e_{2}, e_{3})=-\frac{1}{2}\omega_{3}$ ,

$g((\nabla_{e_{2}}J)e_{1}, e_{4})=-g((\nabla_{e_{1}}J)e_{2}, e_{4})=-\frac{1}{2}\omega_{4}$ .

Thus, by $(3.4)\sim(3.11),$ $(3.13)$ and (3.14), we have finally the following differential
equation

(3.15) $d(3\tau^{*}-\tau)+\frac{3}{2}(3\tau^{*}-\tau)\omega=0$ .

By (3.15) and our hypothesis, we can immediately see that the function $ 3\tau^{*}-\tau$

vanishes nowhere on $M$ . Thus, taking the exterior derivative of equality (3.15), we
have further

(3.16) $d\omega=0$ on $M$
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Therefore, it follows from (3.16) that $M$ is locally conformal K\"ahler manifold.
Now, we consider a new Riemannian metric $g^{*}$ defined by $g^{*}=(3\tau^{*}-\tau)^{\frac{2}{3}}g$ .

Then, we see that $(M, J, g^{*})$ is a (real) 4-dimensional Hermitian manifold with the
corresponding K\"ahler form $\Omega^{*}=(3\tau^{*}-\tau)^{\frac{2}{3}}\Omega$ . By (2.5) and (3.15), we may easily
check that $d\Omega^{*}=0$ holds on $M$ , and hence, $(M, J, g)$ is a K\"ahler manifoId of real
dimension 4. This completes the proof of Theorem A.

Next, we shall prove Theorem B. From (3.1), taking account of the result by
Koda ([1], Prop. 4.1), we see that a 4-dimensional generalized complex space form
is a self-dual Einstein manifold. On one hand, it is well-known that a 4-dimensional
sphere does not admit almost complex structure. Therefore, we see that Theorem
$B$ follows immediately from the arguments in this section and the following result
([2] and [5])

Theorem C. Let $M=(M, J, g)$ be a compa $ct$ self-dual Einstein Hermitian surface.
Then $M$ is a compact complex space form.
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