GROWTH SEQUENCES FOR FLAT DIFFEOMORPHISMS OF THE INTERVAL

NOBUYA WATANABE

1. Introduction and statement of results

Let f be a C^1 -diffeomorphism of the interval [0;1]. We define a growth sequence for f by

$$\Gamma_n(f) = \exp||\log Df^n|| = \max(||Df^n||, ||Df^{-n}||),$$

where f^n is nth iteration of f and $||Df^n|| = \max_{x \in [0;1]} |Df^n(x)|$.

Let Fix(f) be the set of fixed points of f. In the case f is of class C^r , for $x \in \text{Fix}(f)$ x is called r-flat if Df(x) = 1 and $D^n f(x) = 0$ for $2 \le n \le [r]$. f is called r-flat if every $x \in \text{Fix}(x)$ is r-flat.

In this paper, we answer the question raised in the paper by L. Polterovich and M. Sodin [2]. We show:

Theorem 1. Let f be a 2-flat diffeomorphism of the interval. Then,

$$\lim_{n\to\infty}\frac{\Gamma_n(f)}{n^2}=0.$$

Theorem 2. There exists an ∞ -flat diffeomorphism f of the interval such that for every $\alpha < 2$,

$$\limsup_{n\to\infty}\frac{\Gamma_n(f)}{n^\alpha}=\infty.$$

Independently, A. Borichev shows similar results [1].

2. PROOF OF THEOREM 1

The argument in Proof of Theorem 1 is a slight modification of its in [2]. The following is useful.

Lemma 3. (Denjoy) Let f be a C^2 -diffeommorphism of [0;1]. If $J \in [0;1]$ is a closed interval such that $\operatorname{Int}(J) \cap f(\operatorname{Int}(J)) = \emptyset$ then there exists a positive constant C depending on f such that for every $n \in \mathbb{N}$ and every $x, y \in J$

$$\frac{1}{C} \le \frac{Df^n(x)}{Df^n(y)} \le C.$$

Lemma 4. (Growth lemma, [2]) Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that for each $n\geq 1$

$$2a_n - a_{n-1} - a_{n+1} \le Ce^{-a_n}, \quad C > 0,$$

and $a_0 = 0$. Then either for each $n \geq 0$

$$a_n \le 2\log\left(n\sqrt{\frac{C}{2}} + 1\right), \text{ or } \lim_{n\to\infty} \frac{a_n}{n} > 0.$$

By the following lemma estimations can be done in neighbourhoods of Fix(f).

Lemma 5. Let U be a neighbourhood of Fix(f). There exists $N \in \mathbb{N}$ such that if $n \geq N$ and $Df^n(x) \geq 1$, then $x \in U$.

Proof. Let $x \in [0;1] - U$ and J(x) = [x; f(x)]. Then $m = \min_x |J(x)| > 0$ and $M_n = \max_x |f^n(J(x))| \to 0$ as $n \to \infty$.

On the other hand by Lemma 3,

$$Df^n(x) \le C \frac{|f^n(J(x))|}{|J(x)|} \le C \frac{M_n}{m}.$$

For $n \geq 0$ put

$$a_n = \max_{x \in [0;1]} \log Df^n(x), \ a_n^- = \max_{x \in [0;1]} \log Df^{-n}(x).$$

We consider for a_n . For a_n^- the argument is the same.

Lemma 6. For any $\varepsilon > 0$, there exist $N \in \mathbb{N}$ such that if $n \geq N$ then the sequence a_n satisfies inequality

$$2a_n - a_{n-1} - a_{n+1} \le \varepsilon e^{-a_n}.$$

Proof. Let δ be any positive number and U_{δ} be a neibourhood of Fix(f) which has the property that if $x \in U_{\delta}$ then $|Df(x) - 1| \leq \delta$ and $D^2f(x) \leq \delta$. By Lemma 5, there exists $N \in \mathbb{N}$ such that if $n \geq N$ and $a_n = \log Df^n(x_0)$ then $x_0 \in U_{\delta}$. Put $x_j = f^j(x_0)$. Then, for $n \geq N$ by Lemma 3 we have

$$2a_{n} - a_{n-1} - a_{n+1} \leq 2\log Df^{n}(x_{0}) - \log Df^{n-1}(x_{1}) - \log Df^{n+1}(x_{-1})$$

$$= \log Df(x_{0}) - \log Df(x_{-1}) = D\log Df(y_{1})(x_{0} - x_{-1}) = \frac{D^{2}f(y_{1})}{Df(y_{1})}(x_{0} - x_{-1})$$

$$\leq \frac{\delta}{1 - \delta}|x_{0} - x_{-1}| \leq \frac{\delta}{1 - \delta} \frac{|x_{0} - x_{-1}|}{|x_{n} - x_{n-1}|} = \frac{\delta}{1 - \delta} \frac{1}{Df^{n}(y_{2})}$$

$$\leq \frac{\delta C}{1 - \delta} \frac{1}{Df^{n}(x_{0})} \leq \frac{C\delta}{1 - \delta} e^{-a_{n}},$$

where $y_1, y_2 \in [x_{-1}; x_0]$.

For $\varepsilon > 0$, N is in Lemma 6. Put $b_n = a_{n+N} - a_N$. Then, $b_0 = 0$ and for $n \ge 1$ b_n satisfies

$$2b_n - b_{n-1} - b_{n+1} = 2a_{N+n} - a_{N+n-1} - a_{N+n+1} \le \varepsilon e^{-a_{N+n}} = \varepsilon e^{-a_N} e^{-b_n}$$

In the case that Df(x) = 1 for every $x \in Fix(f)$, second case in Lemma 4 does not occur. So

$$||Df^{n+N}|| = \exp(a_{n+N}) = \exp(b_n + a_N) \le \left((n+N)\sqrt{\frac{\varepsilon}{2}} - N\sqrt{\frac{\varepsilon}{2}} + \sqrt{a_N}\right)^2.$$

Hence,

$$0 \le \lim_{n \to \infty} \frac{\|Df^n\|}{n^2} = \lim_{n \to \infty} \frac{\exp(a_{n+N})}{(n+N)^2} \le \frac{\varepsilon}{2}.$$

Since ε is arbitrarily small positive number, we have

$$\lim_{n\to\infty}\frac{\|Df^n\|}{n^2}=0.$$

3. Proof of Theorem 2

We work on the neibourhood of 0 in [0; 1]. We construct a ∞ -flat diffeomorphism f near 0 with $\text{Fix}(f) = \{0\}$ as the time-one map of the flow generated by a C^{∞} -vector field Z near 0 with $D^n Z(0) = 0$ for every $n \in \mathbb{N}$.

Firstly we consider C^{∞} -vector field;

$$X(x) = \frac{1}{2}(1 - \cos\frac{1}{x})\exp\left(-\frac{1}{x}\right), \ X(0) = 0.$$

Set $a_k = \frac{1}{2\pi k}$, $k \in \mathbb{N}$, then

$$X(a_k) = 0$$
, $DX(a_k) = 0$, $D^2X(a_k) = \frac{1}{2}(2\pi k)^4 \exp(-2\pi k)$.

Set $\varepsilon_k = D^2 X(a_k)$. We can take a positive number of the form $b_k = \frac{1}{2\pi k - M}$ such that for $x \in [a_k; b_k]$

$$\frac{1}{2}\varepsilon_k \le D^2 X(x) \le 2\varepsilon_k.$$

Notice that M can be chosen independently with k.

Then we have for $x \in [a_k; b_k]$

$$\frac{1}{4}\varepsilon_k(x-a_k)^2 \le X(x) \le \varepsilon_k(x-a_k)^2.$$

Set

$$Y_k^-(x) = \frac{1}{4} \varepsilon_k (x - a_k)^2, \ Y_k^+(x) = \varepsilon_k (x - a_k)^2.$$

Let $\phi_t(x)$, $\phi_t^-(x)$ and $\phi_t^+(x)$ be flows generated by X, Y_k^- and Y_k^+ respectively. Then we have

$$D\phi_t^-(x) = (1 + \frac{1}{4}\varepsilon_k(b_k - a_k)t)^2 \ge \frac{1}{16}\varepsilon_k^2(b_k - a_k)^2t^2.$$

We define $s_k, t_k, u_k > 0$ and $c_k \in [a_k; b_k]$ by

$$\frac{1}{16}\varepsilon_k^2(b_k-a_k)^2\log s_k=4,\ b_k=\phi_{s_k}^-(c_k),\ b_k=\phi_{t_k}(c_k),\ b_k=\phi_{u_k}^+(c_k).$$

Since $Y_k^-(x) \leq X(x) \leq Y_k^+(x)$ on $[a_k; b_k]$ we have $u_k \leq t_k \leq s_k$. Notice that $s_k, u_k, t_k \to \infty$ as $k \to \infty$.

Then we have

$$D\phi_{t_k}(c_k) = \frac{X(b_k)}{X(c_k)} \ge \frac{Y^-(b_k)}{Y^+(c_k)} = \frac{1}{4} \frac{Y^-(b_k)}{Y^-(c_k)} = \frac{1}{4} D\phi_{s_k}^-(c_k) \ge \frac{s_k^2}{\log s_k} \ge \frac{t_k^2}{\log t_k},$$

and since $\varepsilon_k \to 0$, $(b_k - a_k)s_k \to \infty$ as $k \to \infty$ for sufficiently large k,

$$c_k - a_k = \phi_{-s_k}^-(b_k) - a_k = \frac{b_k - a_k}{1 + \varepsilon_k (b_k - a_k) s_k}$$

$$\geq \frac{1}{s_k} = \exp\left(\frac{-64}{\varepsilon_k^2 (b_k - a_k)^2}\right) \geq \exp(-\exp(4\pi k)).$$

We set

$$X^+(x) = \exp\left(-\exp\left(rac{3}{x}
ight)
ight), \,\, Z(x) = X(x) + X^+(x).$$

Then for sufficiently large k, we have $X(c_k) \geq X^+(c_k)$.

Let $\psi_t(x)$ be a flow generated by Z and w_k the positive number satisfying $\psi_{w_k}(c_k) = b_k$. Obviously $w_k \leq t_k$.

We have

$$D\psi_{w_k}(c_k) \ge \frac{1}{2} \frac{X(b_k)}{X(c_k)} = \frac{1}{2} D\phi_{t_k}(c_k) \ge \frac{1}{2} \frac{t_k^2}{\log t_k} \ge \frac{1}{2} \frac{w_k^2}{\log w_k}.$$

Notice that $w_k \to \infty$ as $k \to \infty$.

So $f = \psi_1$ satisfies the desired properties.

References

- [1] A. Borichev, Distortion growth for iterations of diffeomorphisms of the interval, Geometrical and Functional Analysis, to appear.
- [2] L. Polterovich and M. Sodin, A growth gap for diffeomorphisms of the interval, Journal d'Analyse Math. 92 (2004), 191-209.

Waseda University, School of Commerce, 1-6-1 Nishiwaseda Shinjuku-ku, Tokyo, Japan

Recieved 12 July, 2004 Revised 31 August, 2004