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Isomorphism classes of quasiperiodic
tilings by the projection method

Kazushi KOMATSU and Kuniko SAKAMOTO

ABSTRACT. Let 7(Wp) be the space of quasiperiodic tilings by the projec-
tion method in terms of R% = E @ EL with a lattice L and the orthogonal
projection 7 : R* — E. We will consider the case that L = Z¢ or (E, L)
which corresponds to an exceptional folding of Coxeter groups. We deter-
mine when two tilings in 7(Wp) belong to the same isomorphism class if
w|L is injective. As its application we have uncountably many isomorphism
classes of quasiperiodic tilings by the projection method.

1. Introduction

First, we will prepare several basic definitions. A tiling 7" of the space R?
is a countable family of closed sets called tiles: T' = {11, T3, ...} such that
UR,T; =RP and Int 7; NInt T; = ¢ if ¢ # j. An isomorphism of tilings is
bijection between families of tiles that is induced by isometry of the space RP.
An aperiodic tiling is one that admits no translation isomorphisms to itself.
A tiling satisfies the local isomorphism property if for each bounded patch
of the tiling there exists a positive real number r such that a translation of
its patch appears in any ball of radius ». An quasiperiodic tiling is defined
to be an aperiodic tiling with the local isomorphism property.

In 1981 de Bruijn [2], [3] introduced the projection method to construct
quasiperiodic tilings such as Penrose tilings. The projection method was ex-
tended to the higher dimensional hypercubic lattices [5] and to more general
lattices [6]. To construct tilings by the projection method, the hypercubic
lattices are most frequently used. Furthermore some famous tilings are ob-
tained from root lattices (cf. [1}). We recall the definitions of tilings by the
projection method (cf. [5],[6],[9],[12]). Let L be a lattice in R Let E be a p-
dimensional subspace of R, and E* its orthogonal complement with respect
to the standard inner product. Let 7 : R* — E be the orthogonal projection
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onto E, and 7t : R* — E* the orthogonal projection onto E*. Let V(0) be
the Voronoi cell in 0 of L. We put W = #+(V(0)), which is called a window
for the projection. W, is defined as the subset of W which consists of points
s in W such that OW N (s + 7+(L)) is empty. For any z € R? such that
m(z) € Wy we define A(z) by A(z) = 7((W x E)N(z+ L)). Let V(z) denote
the Voronoi tiling induced by A(x), which consists of the Voronoi cells of
A(z). For a vertex v in V(z) we define S(v) by S(v) = J{P € V(z)|v € P}.
The tiling T'(z) given by the projection method is defined as the collection
of tiles Conv (S(v) N A(z)), where Conv (B) denotes the convex hull of a set
B. Note that A(z) is the set of the vertices of T'(z). T(Wp) is defined to be
the space {T'(z)|r € R® such that w(z) € Wy} with a topology defined by a
tiling metric (see for example [20]).

Let H be a folding of a Coxeter group G. If H is a non-crystallographic
group, the folding is called exceptional. We have the settings of the root
lattice L and the subspace E of projection method corresponding to an ex-
ceptional folding of a Coxeter group when G is A4, By, Fy, Dg or Fg-type and
each folding H is Io(m) (m = 5,8,12), H; or Hy-type (see [15],(16],[17]). It
is known that H acts on W as isometries (for example see [8],[9]).

In this paper we consider the case that that L = Z% or the above case
that (E, L) corresponds to an exceptional folding.

We define an equivalence relation s ~ ¢t on Wy by the following: s ~ ¢
(s,t € W) if there exists sg, s1, ... , Sk € Wy such that sy = s, s, =t and for
any ¢ (1 =0,1,...k) s;_; — s; € (L) or there exists isometry g : W — W
such that g(s;_ 1) = s; (g € H in the case of projection method correspondmg
to an exceptional folding).

For any z € R® such that m(z) € W), we see that T'(z) is the transla-
tion of T(w(z)) by m(z). Then each isomorphism classes in 7 (W) can be
represented by T'(s) for some s € Wj.

One of the purpose of this paper is to show the following theorem:

THEOREM. For s,t € Wy, let T(s), T(t) be quasiperiodic tilings by the
projection method in terms of R* = E®E* with a lattice L and an orthogonal
projection m : R* — E. Assume that L = Z% and 7|L is injective, or that
(E,L) corresponds to an exceptional folding. Then T(s) is isomorphic to
T'(t) if and only if s ~ t.

In the case that (E, L) corresponds to an exceptional folding, It is known
that w|L is injective ([15],{16],[17]). Two tilings are said to belong to the

—120—



same local isomorphism class if every bounded patch that appears in one
of them also appears in the other. Note that all tilings belong to a single
local isomorphism class if 7 is injective. We define a map p : Wy — T (E) by
p(s) = T(s). Note that p is continuous, and that p induces a homeomorphism
from W,/ ~ to the space of isomorphism classes of 7 (Wy) by the Theorem
if 7 is injective.-

In [4] Danzer and Dolbilin show that there are uncountably many equiv-
alence classes up to translation of quasiperiodic tilings obtained from a finite
system of prototiles and local matching rules. In [18] Oger show the same
result by applying finite Model theory.

As an application of the Theorem we give the simple proof of a similar
result in the case of quasiperiodic tilings obtained by the projection method.

COROLLARY. Assume that L = Z* or that (E, L) corresponds to an excep-
tional folding. There are uncountably many isomorphism classes of quasiperi-
odic tilings by the projection method, in terms of R* = E ® E*+ with a lattice
L, which are contained in a single local isomorphism class.

When L = Z% we have another variation of the projection method
(see [11},[13],{14],[19]) to construct quasiperiodic tilings as Penrose tilings
by rhomb tiles. In this variation we can also prove the similar theorems and
Corollary by slightly modifying the proof in the section 2 and 3.

2. Proof of Theorem

In order to prove the Theorem it suffices to show the following proposition:

- PROPOSITION. Fors,t € Wy, let T(s), T(t) be quasiperiodic tilings obatined
by the projection method in terms of R = E @ E* with a lattice L and the
orthogonal projection w : R* — E. Then,

(1)s —t € 7(L) if and only if T(s) is a translation of T(t).

(2) In the case that L = Z°, if there exists isometry g : W — W such that
g(s) =t, then T(s) is isomorphic to T'(t).

(3) In the case that L = Z°, if T(s) is isomorphic to T(t), then s ~ t.

(4) In terms of (E, L) corresponding to an exceptional folding, if there exists
g9 € H such that g(s) =t, T(s) is isomorphic to T(t).

—121—



(5) In terms of (E,L) corresponding to an exceptional folding, if T(s) is
isomorphic to T'(t) by the underlying isometry ¢ and $(0) = 0, then ¢ belongs
to H.

PROOF OF PROPOSITION

(1) A tiling obtained by projection method always satisfies the local iso-
morphism property. A tiling obtained by the projection method is aperiodic
if and only if 7+|L is injective by the aperiodic criterion([7] in the case that
L = Z%,[12] L is an integral lattice). We define f, : W N (s+n+(L)) — A(s)
by fs = (w|s + L) o (w*|W N (s + n1(L)))~!. Because nt|L and nt|L are
injective, f, is bijective.

If T(s) = T(t), then A(s) = A(t). We have a bijection f; o f, : WN(s+
7i(L)) — WN(t+n+(L)). By the definition of f; and f,, we see that f; o f,
is a translation map by a vector £ — s. Due to [21] 71 (L) is dense if and only
if 7|L is injective. Then, we get that W N (s +7+(L)), W N (¢ + w+(L)) are
dense in W. The assumption that s ## ¢ implies the contradiction, and we
get that s = t. Hence we obtain that T'(s) = T'(¢) if and only if s = ¢.

If T(s) is a translation of T'(t), then A(s) = v + A(¢) for some v € 7(L).
We take u € L such that v = 7(u). Then we see that (E x W) N (s + L)
=v+(ExW)N(t+L) = (ExW)N(t+v+L) = (ExW)N(t—n+(u)+L). By
the definition of the projection method in §1, we get that T'(s) = T(t—nt(u)).
By the mentioned above s = t — 71(u), and we obtain that s —t € 7+(L).

If s—temt(L), then we see that (Ex W)N(s+ L) =(ExW)N(t+
7t(u)+ L) = n(u)+(ExW)N(t+ L) for u € L such that s —¢ = w1 (u). By
the definition of the projection method in §1, we see that A(s) = w(u)+ A(?),
and obtain that T'(s) is a translation of T'(¢). The proof of Proposition (1)
is completed.

(2) Assume that there exists an isometry g : W — W such that g(s) = ¢.
Since L = Z% is self-dual, the Voronoi cell V(0) in 0 of L coincides with
a translation of A = {3°% , r:e;/0 < 7; < 1}, where {ei|i = 1,2,---,d} is
the standard basis of L = Z%. Since W = n+(V(0)) and g is an isometry,
gWn(s+xnt(L))) c Wn(t+nt(L)). We define a bijection ¢ : A(s) — A(t)
by ¥ = frog|(WN (s +m(L))) o ;7.

We will show that 9 : A(s) = A(t) is an isometry. We define F : (E X
WYN(s+L) > (ExW)N(E+L) by F= (@ |(ExW)N({E+ L)) Logl(Wn
(s+mH(L))) o (7t|(E x W) N (s+ L)). Then we see that F(s+ >0 cie;) =
t+ 31, cugle:), g(e:) € {es | i =1,2,---,d} and g(e&:) # g(e;) if § # j.
When lattice vectors in Z* have the same combinations of coefficients for a
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basis {e;}, the lengths of those lattice vectors are the same. Hence we get
that F' is an isometry. Because F' = ¢ X g and ¢ is an isometry, ¥ is also an
isometry. Note that 1) extend to the isometry from F to E. Hence, T'(s) is
isomorphic to 7T'(t). The proof of Proposition (2) is completed.

(3) If T'(s) is isomorphic to 7'(t) by an isomorphism induced by the isom-
etry ¢ : E — E, then we have a bijection ¢ : A(s) — A(t). We take a vertex
u of T'(s) and a vertex v of T'(t) such that ¢(u) = v. We define a bijection
R:Wn( +75(L) - Wn({ +7n4(L)) by ¥ = filopo f,. We put
s’ = f7}(u) and ¥ = f;!(v), and see that h'(s') =¢'.

We will show that A’ is an isometry. We define G : (E x W)N(s'+ L) —
(ExW)N{H'+L)by G = (rs|(ExW)N({'+L)) topo(n|(ExW)N(s'+L)).
Then we see that G(s + S0, Bie;) = t + 3o, Bip(e:), d(e:) € {eli =
1,2,--- ,d} and ¢(e;) # ¢(e;) if i # 5. When lattice vectors in Z* have the
same combinations of coefficients for a basis {e;}, the lengths of those lattice
vectors are the same. Hence we get that G is an isometry. Because G = ¢ X h
and ¢ is an isometry, A’ is also an isometry. Due to [21] w+(L) is dense if
and only if 7|L is injective. Then, we get that W N (s + w1(L)) is dense in
W, and that k' can extend to the isometry h : W — W such that h(s’) =t

‘Because T'(s) is translation of T'(s’) and T'(t) is translation of T'(t'), we see
that s — s',t —t' € (L) by Proposition (1) which has been proven above.
Hence we get that s ~ ¢t. The proof of Proposition (3) is completed.

(4) H actson (ExW)NL, E and W as isometries (see [8], [9] for example).
By the similar argument to the proof of Proposition (2), we can prove that
T(s) is isomorphic to T'(t) if there exists g € H such that g(s) =t.

(5) Due to ([10],{15],{17],[18]) we recall the following results that are nec-
essary for our proofs:

Let ¥ be a root system of G that satisties the crystallographic condition.
Then there exists a decomposition ¥ = ¥, [[ X, and an inflation map T :
R? — R*® such that the following two conditions:

m(X,) is a root system of H,
T(Z,) =X,
m(T(z)) = an(z) for Vz € R,
where o = V3 if Fy-type, a = /2 if By-type, a = %‘—/—5 if A4, Dg, Eg-type.

If T'(s) is isomorphic to T(t) by a underlying isometry ¢ : E — E and
#(0) = 0, then we have an isometry @|A(s) : A(s) — A(t). Hence the results
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quoted above imply that ¢ € H.
3. Proof of Corollary

Wy is obtained by removing countably many (d — p — 1)-dimensional
polytopes from W. So, W, is an uncountable set. Since the isometry group
of a (d — p)-dimensional polytope W is finite, each equivalence class for ~
is a countable set. Hence Wy/ ~ is an uncountable set. By Theorem we
obtain Corollary in the case that L = Z* and «|L is injective or that (E, L)
corresponds to an exceptional folding. The rest of proof of Corollary is the
case that L = Z% and 7|L is not injective. Due to [21] there exist subspaces
V1 and V; which satisfy the following:

E+=Vie,
7t (Vi ® E)NL) =V, Nwt(L) is a discrete lattice in the subspace V1,
7t((Vo® E)N L) = Vo Nt (L) is dense in the nontrivial subspace V5.

Since 7|L is not injective, 7+ (L) is not dense. So, the subspace V; is
nontrivial. We write the closure of W N (s + 7+ (L)) by C(s). Then we see
that C(s) is a union of ¢-dimensional polytopes, where ¢ = dim V,. Note that
for any t € C(s) NW,, every tiling T'(t) belongs to a single local isomorphism
class (see [7],[11]). We can take sp € Wy which satisfies that C(sp) N W, is
an uncountable set. We consider the set [sq] which consists of ¢t € C(so) N W)
such that T'(t) is isomorphic to T'(sp). Since w|(E x W)N(s+ L)) is injective
due to ([14],[19]), we can prove that [so] is a countable set by the similar
argument to the proof of Proposition (3). Hence we have uncountably many
isomorphism classes of quasiperiodic tilings by the projection method. q.e.d.
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