Commutators of Orthogonal Projections

Qihui Li

Abstract

In this note we prove that a bounded linear operator T on a complex separable Hilbert space \mathcal{H} is a commutator of projections if and only if $T^{*}=$ $-T,\|T\| \leq \frac{1}{2}$ and T is unitarily equivalent to T^{*} :

Key Words and Phrases: generic pairs of projections, orthogonal projections, spectrum.
2000 MR Classification: 47B47, 47B15.

1 Introduction

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. A operator C in $\mathcal{B}(\mathcal{H})$ is said to be a commutator of operators if $C=A B-B A$ for some $A, B \in \mathcal{B}(\mathcal{H})$. In [6], some elementary properties for an operator to be a commutator were considered and related results have been studied by several authors(cf.[1, 2, 4]). Very recently, Drnovesk et al in [3] considered a characterization of commutators of idempotents in an algebra. In this note, we consider the commutator of orthogonal projections. We intensify the results in [3] for self adjoint idempotent in a $*$ - algebra. We prove that an operator T is a commutator of orthogonal projections if and only if $T^{*}=-T,\|T\| \leq \frac{1}{2}$ and T is unitarily equivalent to T^{*}.

We next recall some notations and terminologies . For $A \in \mathcal{B}(\mathcal{H}), R(A), N(A)$, $\sigma(A), r(A)$ and $\sigma_{p}(A)$ denote the range, the null space, the spectrum, the spectrum radius and the point spectrum of A, respectively. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $(A x, x) \geq 0$ for all $x \in \mathcal{H}$ and A is an idempotent if $A^{2}=A$. An orthogonal projection is a positive idempotent. A pair (P, Q) of projections means two orthogonal projections P and Q in $\mathcal{B}(\mathcal{H}) . \mathbb{N}$ and \mathbb{R} denote the positive integer and real number, respectively. For a closed subspace M of $\mathcal{H}, \operatorname{dim} M$ denotes the dimension of it. Let $\left\{A_{i}\right\}$ be a net in $\mathcal{B}(\mathcal{H}), A_{i} \rightarrow A$ (SOT) means $\left\{A_{i}\right\}$ convergent to an operator A in $\mathcal{B}(\mathcal{H})$ in strong operator topology.

2 Main results

At first, we recall the following well-known result.

[^0]Lemma 1. Let \mathcal{H} have a orthogonal sum decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and let $A \in B(\mathcal{H})$ be an operator with the following operator matrix form

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{1}\\
A_{21} & A_{22}
\end{array}\right)
$$

Then A is positive if and only if $A_{i i}$ is a positive operator on \mathcal{H}_{i} for $i=1,2$, and $A_{21}^{*}=A_{12}=A_{11}^{\frac{1}{2}} D A_{22}^{\frac{1}{2}}$ for a contraction D from \mathcal{H}_{2} into \mathcal{H}_{1}.

Definition 2.([5]) Let P and Q are two projections in $\mathcal{B}(\mathcal{H})$. If P and Q have no common eigenvalues, then (P, Q) is called a generic pair.

Note that (P, Q) is a generic pair if and only if

$$
R(P) \cap R(Q)=R(P) \cap N(Q)=N(P) \cap R(Q)=N(P) \cap N(Q)=\{0\}
$$

It is clear that (P, Q) is a generic pair of projections if and only if so are $(I-P, Q)$, $(I-P, I-Q)$, and $(P, I-Q)$, where I denotes the identity on \mathcal{H}. For convenience, we do not distinguish the identities acting on different spaces and denote them by I. If P and Q are two projections on \mathcal{H}, then by Lemma 1 , they have the following operator matrix forms

$$
P=\left(\begin{array}{ll}
I & 0 \tag{2}\\
0 & 0
\end{array}\right) \text { and } Q=\left(\begin{array}{cc}
Q_{11} & Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}} \\
Q_{22}^{\frac{1}{2}} D^{*} Q_{11}^{\frac{1}{2}} & Q_{22}
\end{array}\right)
$$

corresponding to the space decomposition $\mathcal{H}=R(P) \oplus R(P)^{\perp}$.
Lemma 3. If (P, Q) is a generic pair such that P and Q have the operator matrix forms as (2), then
(1) Q_{11} and Q_{22} are positive operators on $R(P)$ and $N(P)$, respectively;
(2) 0 and 1 are not in $\sigma_{p}\left(Q_{i i}\right)$ for $i=1,2$ and consequently $Q_{11}, Q_{22}, I-Q_{11}$ and $I-Q_{22}$ are injective.;
(3) D is a unitary operator from $N(P)$ onto $R(P)$ and is uniquely determined by (P, Q);
(4) $Q_{11}=D\left(I-Q_{22}\right) D^{*}$ and $Q_{22}=D^{*}\left(I-Q_{11}\right) D$;
(5) $\operatorname{dim} R(P)=\operatorname{dim} N(P)$.

Proof. (1) This follows from Lemma 1.
(2) For the space decomposition $\mathcal{H}=\mathcal{R}(P) \oplus \mathcal{R}(P)^{\perp}, P$ and Q have operator matrix forms as (2). Since the pair (P, Q) of projections is generic, it is easy to show that both 0 and 1 are not in $\sigma_{p}\left(Q_{i i}\right)$ for $i=1,2$. Consequently $Q_{11}, Q_{22}, 1-Q_{11}$ and $1-Q_{22}$ are injective.
(3) Q is a projection, so

$$
\left(\begin{array}{cc}
Q_{11} & Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}} \\
Q_{22}^{\frac{1}{2}} D^{*} Q_{11}^{\frac{1}{2}} & Q_{22}
\end{array}\right)=\left(\begin{array}{cc}
Q_{11}^{2}+Q_{11}^{\frac{1}{2}} D Q_{22} D^{*} Q_{11}^{\frac{1}{2}} & Q_{11}^{\frac{3}{2}} D Q_{22}^{\frac{1}{2}}+Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{3}{2}} \\
Q_{22}^{\frac{1}{2}} D^{*} Q_{11}^{\frac{3}{2}}+Q_{22}^{\frac{3}{2}} D^{*} Q_{11}^{\frac{1}{2}} & Q_{22}^{2}+Q_{11}^{\frac{1}{2}} D^{*} Q_{11} D Q_{22}^{\frac{1}{2}}
\end{array}\right) .
$$

Comparing the entries of matrices in two side of the above equation, we have

$$
\left\{\begin{array}{l}
Q_{11}=Q_{11}^{2}+Q_{11}^{\frac{1}{2}} D Q_{22} D^{*} Q_{11}^{\frac{1}{2}} \\
Q_{22}=Q_{22}^{2}+Q_{11}^{\frac{1}{2}} D^{*} Q_{11} D Q_{22}^{\frac{1}{2}} \\
Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}}=Q_{11}^{\frac{3}{2}} D Q_{22}^{\frac{1}{2}}+Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{3}{2}}
\end{array}\right.
$$

Considering that Q_{11} and Q_{22} are injective, hence

$$
\left\{\begin{array}{l}
I_{1}=Q_{11}+D Q_{22} D^{*}, \tag{3}\\
I_{2}=Q_{22}+D^{*} Q_{11} D \\
D=Q_{11} D+D Q_{22}
\end{array}\right.
$$

where I_{1} and I_{2} are identities on $\mathcal{R}(P)$ and $\mathcal{N}(P)$, respectively. From the first equation of (3), we obtain that $I_{1}-Q_{11}=D Q_{22} D^{*}$. Note that $I_{1}-Q_{11}$ is injective since that 1 is not in $\sigma_{p}\left(Q_{11}\right)$, then both D and D^{*} are injective. Substituting the first equation of (3) into the third equation of (3), $D=\left(I_{1}-D Q_{22} D^{*}\right) D+D Q_{22}$, so $D Q_{22}\left(D^{*} D-I_{2}\right)=0$. Note that both D and Q_{22} are injective, then

$$
\begin{equation*}
D^{*} D=I_{2} \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
D D^{*}=I_{1} . \tag{5}
\end{equation*}
$$

Combining (4) with (5), D is a unitary operator from $\mathcal{N}(P)$ onto $\mathcal{R}(P)$.
(4) By the second equation of (3) and (4), $Q_{22}=D^{*}\left(I_{1}-Q_{11}\right) D$. Similarly, $Q_{11}=D(I-Q 22) D^{*}$, then the conclusion holds.
(5) This follows from the fact that D is unitary from $\mathcal{N}(P)$ onto $\mathcal{R}(P)$.

The proof is completed.
Assume that P and Q are two orthogonal projections on \mathcal{H}. Put $\mathcal{H}_{1}=R(P) \cap$ $R(Q), \mathcal{H}_{2}=R(P) \cap N(Q), \mathcal{H}_{3}=N(P) \cap R(Q), \mathcal{H}_{4}=N(P) \cap N(Q)$. It is easy to see that $\mathcal{H}_{i}(i=1,2,3,4)$ is a reducing subspace of P and Q, and $\mathcal{H}_{i} \perp \mathcal{H}_{j}, i \neq j$. Set $\mathcal{H}_{5}=\mathcal{H} \ominus\left(\oplus_{i=1}^{4} \mathcal{H}_{i}\right)$, then $\mathcal{H}=\oplus_{i=1}^{5} \mathcal{H}_{i}$ and so P and Q have the following operator matrix form

$$
\left(\begin{array}{lllll}
I & & & & \tag{6}\\
& I & & & \\
& & 0 & & \\
& & & 0 & \\
& & & & P_{0}
\end{array}\right) \text { and }\left(\begin{array}{lllll}
I & & & & \\
& 0 & & & \\
& & I & & \\
& & & 0 & \\
& & & & Q_{0}
\end{array}\right)
$$

corresponding to the space decomposition $\mathcal{H}=\oplus_{i=1}^{5} \mathcal{H}_{i}$, where the missed entries are all 0 .

Clearly, $\left(P_{0}, Q_{0}\right)$ is a pair of generic orthogonal projections on \mathcal{H}_{5}. So P_{0} and Q_{0} have the forms in (2).

The following lemma might be known, but we cannot find the reference. Here we give an elementary proof.

Lemma 4. If T is a commutator of a pair of orthogonal projections, then
(1) T is normal and $\|T\| \leq 1 / 2$.
(2) $\sigma(T) \subseteq\{i b: b \in \mathbb{R}$ and $|b| \leq 1 / 2\}$.
(3) T is unitarily equivalent to T^{*}.

Proof. (1)Assume that $T=P Q-Q P$ where P and Q are orthogonal projections. Since $T^{*}=Q P-P Q=-(P Q-Q P)=-T$, we have T is normal. If P and Q have the forms in (6), then by Lemma 3(4), we have

$$
\begin{aligned}
& \begin{aligned}
\|P Q-Q P\| & =\left\|\left(\begin{array}{ccccc}
0 & & & & \\
& 0 & & & \\
& & 0 & & \\
& & & 0 & \\
& & & 0 & Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}} \\
& & & -Q_{22}^{\frac{1}{2}} D^{*} Q_{11}^{\frac{1}{2}} & 0
\end{array}\right)\right\| \\
& =\left\|Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}}\right\|=\left\|Q_{11}^{\frac{1}{2}} D Q_{22} D^{*} Q_{11}^{\frac{1}{2}}\right\|^{\frac{1}{2}}
\end{aligned} \\
& =\left\|Q_{11}^{\frac{1}{2}}\left(1-Q_{11}\right) Q_{11}^{\frac{1}{2}}\right\|^{\frac{1}{2}} \quad \text { by } Q_{22}=D^{*}\left(1-Q_{11}\right) D \\
& =\left\|Q_{11}\left(1-Q_{11}\right)\right\|^{\frac{1}{2}} \text {. }
\end{aligned}
$$

Since Q_{11} is a positive operator, applying functional calculus, we have $\| Q_{11}(1-$ $\left.Q_{11}\right) \| \leq \sup \left\{|\lambda(1-\lambda)|: \lambda \in \sigma\left(Q_{11}\right)\right\} \leq \frac{1}{4}$. Hence $\|T\| \leq \frac{1}{2}$.
(2) Noting that $(i T)^{*}=-i T^{*}=i T$, then $\sigma(T) \subseteq\{i b: b \in \mathbb{R}$ and $|b| \leq 1 / 2\}$.
(3) Let $U=2 P-1$. Then $U^{*}=U$ and $U U=1$. Hence U is a self-adjoint unitary operator. Meanwhile $U T+T U=0$, thus $T^{*}=-T=U T U$.

The proof is completed.
Theorem 5. T is a commutator of a pair of orthogonal projections if and only if $T^{*}=-T,\|T\| \leq \frac{1}{2}$ and T is unitarily equivalent to T^{*}.

Proof. Necessity. By the proof of Lemma 4, it is clear.
Sufficiency. By the assumption, we have $\sigma(T) \subseteq\{i b: b \in \mathbb{R}$ and $|b| \leq 1 / 2\}$. Let E be the spectral measure of T, and let $C_{1}=\left\{i b: b \in \mathbb{R}^{+}-\{0\}\right\}, C_{2}=$ $\left\{i b: b \in \mathbb{R}^{-}-\{0\}\right\}$. Then $\mathcal{H}=E\left(C_{1}\right) \mathcal{H} \oplus E\left(C_{2}\right) \mathcal{H} \oplus E(0) \mathcal{H}$. Put $A=\int_{C_{1}} \lambda d E_{\lambda}$, $B=\int_{C_{2}} \lambda d E_{\lambda}$. Then both A and B are injective operators. By assumption, there
is a unitary operator U such that $T^{*}=U T U^{*}$. Then according to this spatial decomposition we have

$$
T=\left(\begin{array}{lll}
A & & \\
& B & \\
& & 0
\end{array}\right), T^{*}=\left(\begin{array}{ccc}
-A & & \\
& -B & \\
& & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{lll}
U_{11} & U_{12} & U_{13} \tag{7}\\
U_{21} & U_{22} & U_{23} \\
U_{31} & U_{32} & U_{33}
\end{array}\right)\left(\begin{array}{lll}
A & & \\
& B & \\
& & 0
\end{array}\right)=\left(\begin{array}{ccc}
-A & & \\
& -B & \\
& & 0
\end{array}\right)\left(\begin{array}{lll}
U_{11} & U_{12} & U_{13} \\
U_{21} & U_{22} & U_{23} \\
U_{31} & U_{32} & U_{33}
\end{array}\right) .
$$

Since both A and B are injective, it follows that all of U_{31}, U_{32}, U_{13} and U_{23} are 0 . We next prove that both U_{11} and U_{22} are also 0 .

If 0 is an isolated point of $\sigma(T)$, then both A and B are invertible operators. So by $U_{11} A=-A U_{11}, U_{22} B=-B U_{22}$, we have $U_{11}=U_{22}=0$.

Otherwise, if 0 is not an isolated point of $\sigma(T)$. Put $C_{11}^{n}=\{i b: b \in[1 / n, \infty)\}$, $C_{12}^{n}=\{i b: b \in(0,1 / n)\}, C_{21}^{n}=\{i b: b \in(-\infty,-1 / n]\}$ and $C_{22}^{n}=\{i b: b \in$ $(-1 / n, 0)\}$. Let $A_{n}=\int_{C_{11}^{n}} \lambda d E_{\lambda}, B_{n}=\int_{C_{21}^{n}} \lambda d E_{\lambda}$ and $C_{n}=\int_{C_{12}^{n} \cup\{0\} \cup C_{22}^{n}} \lambda d E_{\lambda}$. Then $\mathcal{H}=E\left(C_{11}^{n}\right) \mathcal{H} \oplus E\left(C_{21}^{n}\right) \mathcal{H} \oplus E\left(C_{12}^{n} \cup\{0\} \cup C_{22}^{n}\right) \mathcal{H}$, and

$$
\left(\begin{array}{lll}
U_{11}^{n} & U_{12}^{n} & U_{13}^{n} \\
U_{21}^{n} & U_{22}^{n} & U_{23}^{n} \\
U_{31}^{n} & U_{32}^{n} & U_{33}^{n}
\end{array}\right)\left(\begin{array}{ccc}
A_{n} & & \\
& B_{n} & \\
& & C_{n}
\end{array}\right)=\left(\begin{array}{ccc}
-A_{n} & & \\
& -B_{n} & \\
& & -C_{n}
\end{array}\right)\left(\begin{array}{ccc}
U_{11}^{n} & U_{12}^{n} & U_{13}^{n} \\
U_{21}^{n} & U_{22}^{n} & U_{23}^{n} \\
U_{31}^{n} & U_{32}^{n} & U_{33}^{n}
\end{array}\right) .
$$

Since both A_{n} and B_{n} are invertible, by the proceeding analysis, $U_{11}^{n}=U_{22}^{n}=0$ for each $n \in \mathbb{N}$. Meanwhile, $E\left(C_{12}^{n}\right) \rightarrow 0(\mathrm{SOT})$ as $n \rightarrow \infty$ and $U_{11}=E\left(C_{11}^{n}\right) U_{11} E\left(C_{11}^{n}\right)+$ $E\left(C_{11}^{n}\right) U_{11} E\left(C_{12}^{n}\right)+E\left(C_{12}^{n}\right) U_{11}(n \in \mathbb{N})$. Since $U_{11}^{n}=0$ for each $n \in \mathbb{N}, E\left(C_{11}^{n}\right) U_{11} E\left(C_{11}^{n}\right)=$ 0 . Then for each $x \in E\left(C_{1}\right) \mathcal{H}$,

$$
\left\|U_{11} x\right\| \leq\left\|E\left(C_{11}^{n}\right) U_{11} E\left(C_{12}^{n}\right) x\right\|+\left\|E\left(C_{12}^{n}\right) U_{11} x\right\| \rightarrow 0 \text { as }(n \rightarrow \infty)
$$

Hence $U_{11}=0$. Similarly, we also have $U_{22}=0$.
It now follows that U_{12} is unitary and that B is unitarily equivalent to A^{*}. Hence without loss of generality, we may assume that

$$
T=\left(\begin{array}{ccc}
A & & \\
& A^{*} & \\
& & 0
\end{array}\right)=\left(\begin{array}{ccc}
A & & \\
& -A & \\
& & 0
\end{array}\right)
$$

Define $B=\int_{C_{1}}\left(\frac{1}{4}+\lambda^{2}\right)^{\frac{1}{2}} d E_{\lambda}$. Since $\sigma(T) \subseteq\{i b:|b| \leq 1 / 2\}$, we have $\frac{1}{4}+\lambda^{2} \geq 0$. Then $B^{*}=B$. Note that

$$
\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right)\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right)=\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right)
$$

So it suffices to prove that $\left(\begin{array}{cc}0 & A \\ A & 0\end{array}\right)$ is the commutator of a pair of orthogonal projections. Define $P=\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)$ and $Q=\left(\begin{array}{cc}\frac{1}{2} I-B & A \\ -A & \frac{1}{2} I+B\end{array}\right)$. It is clear that P and Q both are self-adjoint. By direct calculus, we have they are also idempotents and $P Q-Q P=\left(\begin{array}{cc}0 & A \\ A & 0\end{array}\right)$. It easily follows that T is also a commutator of projections. The proof is completed.

Lemma 6. (P, Q) is a pair of generic projections if and only if $P Q-Q P$ is injective.

Proof. If (P, Q) is a pair of generic projections, then by the forms in (2) we have

$$
P Q-Q P=\left(\begin{array}{cc}
0 & Q_{11}^{\frac{1}{2}} D Q_{22}^{\frac{1}{2}} \\
-Q_{22}^{\frac{1}{2}} D^{*} Q_{11}^{\frac{1}{2}} & 0
\end{array}\right)
$$

Hence $N(P Q-Q P)=\{0\}$, since $N\left(Q_{i i}^{\frac{1}{2}}\right)=0(i=1,2)$ by Lemma 3(2).
If $P Q-Q P$ is injective, then $\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3} \oplus \mathcal{H}_{4}=\{0\}$. So $P=P_{0}$ and $Q=Q_{0}$ in the forms (6). Thus (P, Q) is a generic pair. The proof is completed.

Corollary 7. T is commutator of a pair of generic projections if and only if $T^{*}=-T,\|T\| \leq \frac{1}{2}, N(T)=\{0\}$ and T is unitarily equivalent to T^{*}.

Proof. It is clear by Theorem 4 and Lemma 5.
Remark. If $P=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$ and $Q=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$, then $\|P Q-Q P\|=\frac{1}{2}$. Hence the equation $\|T\|=\frac{1}{2}$ may hold.

Proposition 8. Let P and Q be the orthogonal projections. Then the norm equation $\|P Q-Q P\|=\frac{1}{2}$ holds if and only if $\frac{1}{2} \in \sigma(P Q P)$.

Proof. Sufficiency. Let $T=P Q-Q P$. Then by the proof of Lemma 4, we have $\|(P Q-Q P)\|=\left\|Q_{11}\left(1-Q_{11}\right)\right\|^{\frac{1}{2}}$. By functional calculus of positive operators and $1 / 2 \in \sigma(P Q P)$, we have $\left\|Q_{11}\left(1-Q_{11}\right)\right\|=1 / 4$. So $\|P Q-Q P\|=1 / 2$.

Necessity. By the proceeding analysis, if $\|P Q-Q P\|=1 / 2$, we have $\| Q_{11}(1-$ $\left.Q_{11}\right) \|=1 / 4$. So there exists a $\lambda \in \sigma\left(Q_{11}\right)$ such that $|\lambda(1-\lambda)|=1 / 4$. Then $\lambda=1 / 2$. Hence $1 / 2 \in \sigma(P Q P)$. The proof is completed.

Acknowledgement The author is very grateful to the referee for his valuable comments and suggestions.

References

[1] J. Avron, R. Seiler and B. Simon, The index of a pair of projection, J. Funct. Anal., 120(9)(1994), 220-237.
[2] Jerzy K.Baksalary, Oskar Maria Baksalary, Commutativity of Projection, Linear Algebra Appl. 341(2002), 129-142.
[3] R. Drnovesk, H. Radjavi, P. Rosenthal, A Characterization of Commutators of Idempotents, Linera Algebra Appl. 347(2002), 91-99.
[4] J. Grob, On the Product of orthogonal projections, Linear Algebra Appl. 289(1999) 141-150.
[5] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc., 114(1969), 381-389.
[6] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
College of Mathematics and Information Science
Shaanxi Normal University
Xi'an 710062
People's Republic of China
E-mail address : lqh991978@hotmail.com

Recieved December 30, 2003 Revised February 13, 2004

[^0]: This research was supported in part by the National Natural Science Foundation of China(No. 10071047).

