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Abstract: Sufficient conditions for boundary controllability of neutral integrodif-
ferential systems in Banach spaces are established. The results are obtained by using
the strongly continuous semigroup theory and the Schaefer fixed point theorem.
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1. Introduction

The theory of nonlinear neutral integrodifferential systems in Banach spaces has
been studied by several authors [7,10,12]. Ntouyas and Tsamatos [12] discussed
the existence results for neutral functional integrodifferential equations by means
of the Schaefer fixed point theorem. Arino et al. [1] studied the existence results
for initial value problem for neutral functional differential equations. Controllability
of neutral functional integrodifferential systems in abstract spaces was first stud-
ied by Balachandran et al. [3]. Recently, Balachandran and Marshal Anthoni [2]
discussed the controllability of second order neutral functional differential systems
using the strongly continuous cosine family of bounded linear operators. Several
authors [ 4,6,16] have developed many abstract settings to describe the boundary
control systems in which the control must be taken in sufficiently smooth functions
for the existence of regular solutions to state space system. Barbu [5] and Fattorini
[8] discussed the general theory for boundary control systems. Lasiecka [11] estab-
lished the regularity of optimal boundary controls for parabolic equations. Han and
Park [9] derived a set of sufficient conditions for the boundary controllability of a
semilinear system with nonlocal conditions. The aim of this paper is to derive a set
of sufficient conditions for the boundary controllability of neutral integrodifferential
systems in Banach spaces by using the semigroup theory and the Schaefer fixed
point theorem.

2. Preliminaries

Let E and U be a pair of real Banach spaces with the norms || - || and || - |lv
respectively. Let o be a linear, closed and densely defined operator with D(c)CE



and R(¢) C E and let 8 be a linear operator with D(f) C E and R(f) C X, a
Banach space.

Consider the boundary control neutral integrodifferential system

Do)~ btz = ozt + f(t,20, [ 9lt,5,2)ds),
0z(t) = Byu(t), teJ=[0,b],
Ty = ¢ on [—T)O]: (1)

where the control function u € L!(J,U), a Banach space of admissible control
functions, B; : U — X is a linear continuous operator, the nonlinear operators
f:JxYXxE - E,h:JxY —- FEand g: AxY — E are continu-
ous and A = {(t,s); 0 < s <t < b}. Here Y = C([-r,0],E) is the Ba-
nach space of all continuous functions ¢ : [-r,0] — E endowed with the norm
|#| = sup{|l¢(s)|; —r < s < 0}. Also for z € C([-r,b], E), we have z; € Y for
t€[0,8], ze(s) =z(t +s) for s € [—7,0].

Let A : E — E be the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators T'(t) with domain

D(A) = {z € D(0); 6z=0}, Az =0z, for z € D(A).
We shall make the following hypotheses:

(H,) D(c) C D(8) and the restriction of 8 to D(o) is continuous relative to graph
norm of D(o).

(H,) There exists a linear continuous operator B : U — E such that ¢B € L(U, E),
6(Bu) = Byu, for all u € U. Also Bu(t) is continuously differentiable and
||Bu|| < C||Byullx for all u € U, where C is a constant.

(H3) For all t € [0,b] and u € U, T(t)Bu € D(A). Moreover, there exists a positive
function v € L(0, b) such that ||AT(¢)B||Lw,z) <v(t), a.e. for t€(0,b).

Let z(t) be the solution of (1). Then we can define a function z(t) = z(t) — Bu(t)
and, from our assumption, we see that z(t) € D(A). Hence (1) can be written in
terms of A and B as ‘

%[w(t) — h(t,z;)] = Az(t)+ oBu(t) + f(t, 2, /ot g(t,s,x,)ds), teJ,
z(t) = z(t)+ Bu(t),
o = ¢ on [—r,0].

If u is continuously differentiable on [0, ], then z can be defined as a mild solution
to the Cauchy problem

2(t) = Az(t)+ %h(t,xt) + oBu(t) — Bu(t)



+ f(t, :I:t,/otg(t, 8,T,)ds), t € J,
€0) = $(0) - Bu0)

and the solution of (1) is given by
t d
2(t) = T(t)[6(0) — Bu(0)] + Bu(t) + /0 T(t - 5) (s, 2)ds
t s
+ /0 T(t — s)[oBu(s) — Bu(s) + £(s, s, /0 g(s, 7,z )dr)ds.  (2)
Since the differentiability of the control u represents an unrealistic and severe re-

quirement, it is necessary to extend the concept of the solution for the general inputs
u € L'(J,U). Integrating (2) by parts, we get

2&) = T()[0) - h(0, )] + h(t, z) + / " AT(t — s)h(s, z,)ds
+ /0 “IT(t — s)o — AT(t — s)| Bu(s)ds
+f Tt - 8)£(s, o, / " g(s,7,z,)dr)ds, teJ,
#(t) = &(t) on [~r,0]. 3)
Thus (3) is well defined and it is called a mild solution of the system (1).

Definition. The system (1) is said to be null controllable on the interval J, if
for every continuous initial function ¢ € Y, there exists a control u € L?(J,U) such
that the solution z(-) of (1) satisfies z(b) = 0. |

We need the following fixed point theorem due to Schaefer [15].

Schaefer’s Theorem. Let Z be a normed linear space. Let F : Z — Z be
a completely continuous operator, that is, it is continuous and the image of any
bounded set is contained in a compact set and let

(={zr€Z; z=MAFz forsome 0<A\<1}.

Then either {(F') is unbounded or F' has a fixed point.

Let A be the infinitesimal generator of a bounded analytic semigroup 7'(t) with
bounded inverse A~! on the Banach space E. The operator (—A)* can be defined
for 0 < a <1 as the inverse of the bounded linear operator

(—A)~ = f—(la—) [ e



and (—A)? is a closed linear invertible operator with domain D((—A)®) dense in E.
The closedness of (—A)* implies that D((—A)%) endowed with the graph norm of
(—A)*, that is |||z]|| = ||z||+ ||(—A)*z||, is a Banach space. Since (—A)* is invertible
its graph norm |||.||| is equivalent to the norm ||z|o = ||(—A)*z||. Thus, D((—A)%)
equipped with the norm ||.||, is a Banach space which we denote by E,. From this
definition it is clear that 0 < o < 8 implies E, D Es and that the imbedding of Eg
in F, is compact whenever the resolvent operator of A is compact. For more results
on fractional powers of operators one can refer [13].

Further we consider the following assumptions:

(Hy4) A is the infinitesimal generator of an analytic semigroup of compact linear
operators T'(t) in E such that ||T'(t)|| < K; for some K; > 0 and for any oo > 0,
there exists a positive constant K,(a) > 0 such that ||(—A)*T(?)|| < Kyt™.

(Hs) For each (t,s) € A, the function g(¢,s,-) : Y — F is continuous and for each
z € Y, the function g(:,-,z) : A — F is strongly measurable.

(Hpg) For each t € J, the function f(¢,-,-) : Y x E — E is continuous and for each
(z,y) € Y x E, the function f(-,z,y) : J — FE is strongly measurable.

(H,) For every positive integer k, there exists ux € L*(0,b) such that

sup ||f(t, z,v)|| < uk(t), for t € J ae.

=], llvlt <k

(Hg) The function h : J x Y — E is completely continuous and for any bounded
set @ in C([—-r,b], E), the set {t — h(t,z:) : = € Q} is equicontinuous in
C(J,E).

(Hy) There exists 8 € (0,1) and a constant b, > 0 such that

I(=A)Ph(t,z)|| < b1, teJ, TEY.

(H1o) There exists an integrable function ¢ : J — [0, 00) such that
1f@& 29l <@zl +lyl), ted, €Y, yeE,
where Q2 : [0, c0) — (0, oo) is a continuous nondecreasing function.

(H;1) There exists an integrable function m : J — [0, 00) such that
g, s, 2)ll <m(s)(lz]), 0<s<t<b z€Y,

where Q : [0,00) — (0, 00) is a continuous nondecreasing function.



(Hi3) There exist constants M7, My >0 such that ||oB|| w5 < M;
b
and /I/(t)dtSMQ.
0

(Hy3) The linear operator W from L?(J,U) into E defined by
b
Wu = / [T(b— s)o — AT(b — s)|Bu(s)ds
0

induces a bounded invertible operator W defined on L?(J,U)/kerW and there
exists a positive constant M > 0 such that |[W™!|| < M( see [14]).

: Kby VP
where o* = Ki[|@| + Mobi] + Moby + 261 + (K1 My + M,)N,
p(t) = max{Kig(t),m(t)}, Mo=|[(-A)"’| and
Kgble

N = M|zl + Ki[lg] + Mob:] + Mob: +

B
+K [ " ()9l + | mir)90(la, )drlds].

3. Main Result

Theorem: If the hypotheses (H;) — (Hi4) are satisfied, then the boundary con-
trol neutral integrodifferential system (1) is controllable on J.

Proof: Using the hypothesis (H;3), for an arbitrary function x(-), define the control
u(t) = ~WT®)[6(0) - h(0, ¢)] + h(b, z)
b b s
+ /0 AT(b — s)h(s, z,)ds + /0 T(b — 8)F(s, zo, /O (s, 7, 2, )dr)ds](t).
Let Y, = C([—r,b]; E) be the Banach space endowed with the norm
zll] = sup{llz(®)Il; —r <t<b}.

First we obtain a priori bounds for the following equation,

2(t) = XT(E)[#(0) — h(0, 8)) + Mh(t,z) + ) [ " AT(t — $)h(s, z,)ds
< [0~ m)o — AT = DIBWHTG[B(0) - h(0,9)
+ h(b, zp) + /0 " AT (b — s)h(s, z,)ds
+ [(T0-5)f(s,2., [ gls,7,2:)dr)dsldn

+_)\ /: T(t — s)f(s,zs, /08 g(s, 7, z,)dr)ds.



We have

oIl < Kalll+ Mobi] + Moby + Z20E ("1, + L [l + Mot

- &)
bilbﬂ b s
o+ K /0 a()|zs| + /o m(7)Q(|z)dr]ds] dn

+EK [ " a(s)Qlzs | + [ m(r)o(lz, drlds. @)

+ Mob, +

Consider the function 3 given by
B(t) =sup{llz(s)l; —-r<s<t}, 0<t<b
Let t* € [—, ] be such that B(t) = [|lz(t*)||. If t* € J, then by (4),
Kb VP
B
t* s
+Ki [ a0)B(s) + [ m(r)(B(r))drlds

Kb, P
B

+ K [ a&U8(s) + [ m(r)Qo(B(r))drds. 5)

If t* € [-r,0], then B(t) = |¢| and the inequality (5) holds since K; > 1. Denoting
the right hand side of the above inequality by v(t), we have

B(t) < Ki[|l@| + Moby] + Mob, +

+ [bE 1My + My)N

< Ki[l¢| + Moby] + Mob; +

+ [bEL My + My)N

Bt) <wv(t), 0<t<b,

Kb, bP
g

V) = Kg@RBE) + [ m(s)0(B()ds]

< Ka®ob) + [ * ()0 (v(s))ds].

a* = 'U(O) = K1[|¢| + MObll + M0b1 +

+ (bK M, + My)N

and

Let w(t) = v(t) + /Ot m(s)Q(v(s))ds. Then w(0) =v(0), v(t) < w(t) and

w'(t) V() + m(t)Q(v(t))
K1g(t)w(t)) +m(t)0(w(t))
p()[Qw(?)) + Qo(w(t))]-

w(t) ds b ©__ ds
This implies /w o T6F 00 S /o p(s)ds < fa Q0) + %)
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The above inequality implies that there is a constant K™* such that v(t) < K*, t € J.
Then G(t) < K* for all t € J and hence

llzll] = sup{l|lz(®)[; —r <t < b} < KT,

where K* depends ohly on b and on the functions m,  and . -
Let Yy = {z € Y}; o =0}. For ¢ €Y, define 2 € Y} by

| (), —-r<t<0,
2(t) —'{ T(t)$(0), 0<t<b.

If o(t) = 2(t) + y(t), t € [—r,b], it is easy to see that y satisfies

v = 0, .
y(t) = =T(t)h(0,0)+ h(t,y: + %) + /Ot AT (t — s)h(s,ys + Z,)ds

t ~
= [Tt =)o - AT - )BW T(®)$(0) ~ h(0, 8)]
, .
+ h(b, zp) + /0 AT(b — s)h(s,ys + Z,)ds
b 8
+ /0 T(b—s)f(s,ys + Z, /0 9(3,7,Yr + Z;)dr)ds|dn
1 8
+ /o T(t—s)f(sys + 231/0 9(s, 7, yr + Zr)dr)ds, 0<t<b.
- We shall now prove that the operator ¥ : Y; — Y; defined by

(Iy)(t) = 0, —r<t<0,
t
= —TORO,8) + h(t, g+ 2) + [ AT(t — s)h(s,ys + £)ds
t _ .
~ [Tt —myo - AT(t = m|BW > [T(®)[$(0) — h(0, 9)]
b
+ (b, 23) + /0 AT(b — 8)h(s,ys + Z:)ds
b s .
+ [T =90+ 4 [ ols,7v + 2)dr)ds]dn
t 8
+ /0 T(t — )£ (,Ys + %o, /O 9(s,7,ys + 2)dr)ds, teJ
is a completely continuous operator. Let Br = {y € Yo; Hlylll < R} for some
R > 1. First we show that ¥ maps Bp into an equicontinuous family. Let y € Br

and t;,to € J. Thenif 0 < t; <ty < b,

1(Zy)(t1) — (Ty) ()l
< T (@) = TR0, ) + 1At yer + 2:) — hlt2, %1 + 225l



AN

H| [ AT = 5) - T(ta = s)lA(s, v, + 2)ds
H| [ AT (ks = 5)h(s, v + 2)ds]
[T~ m) ~ Tt — o BW[TB[#(0) - (0, #)

R(b,ys + 5) + [0 " AT(b = 8)h(s, y, + 2,)ds

4 [T~ )5, + 5 [ 95,73, + 2)dr)dsan
H| [ T(ta = o BW[T®)[#(0) — h(©,4)

hib,3e+ 5)+ | " AT(b — s)h(s, ys + 2,)ds

4 [ T )f(s,9+ 2 [ 9l 7,90 + 2)dr)ds]di
H [ AT~ ) = T — ) BW TGS ~ h(0,9)

+h(b, s+ 5) + | " AT(b — $)h(s, s + £,)ds

+ /0 "Tb = ) F(s,ys + %, /0 " (s, 7, yr + 7)dr)ds|dn|
H| [ AT — m)BW[T)[$(0) - h(0, 9)

+h(b,ys + 5) + /0 " AT(b — s)h(s, s + £,)ds

+f "Tb— $) (5,0 + %, [ 9,70 + 2)dr)ds]an
HI [T = 9) = T2 = 5,00 + 2, [ 95,700+ 27)dr)ds|

to s
HI [Tt = 5) 15, v0+ 20 | (57,9, + 2)dr)ds]

I7(t2) = T(E) NI, B + 1h(tr, s + %) = hlta,ves + 20)]
K'b b2~ Kby (ty — t1)P
B— g
+ [T = m) = T(t2 = ) MM K1 [16(0) - A0, 8)]
Kb, P b
2ﬁ1 + K1/0 ke (s)ds]dn
+ [ 1Tt = mIM MK 16(0) — RO, 9)]

+ (ta — )" +

+Myb;, +




b
+K1/0 ,uk*(s)ds]dn

Kb, b
+ Mgy + =2 51

t1
+ [T IAIT(E: = m) = T2 — ) BIM [K |6(0) - h(0, @)
Kb 0P b
21 4K, / e (5)ds] dr
Jé] 0
t2
+ [ 14T (2 ~ n)BIM [Kill(0) ~ h(0,9)]
Kb, b°
B
131 to
+ [CIT(t = ) = Tlta = 9)llwe(s)ds + [ 1Ttz = o)l ()ds
where K’ > 0 and k* > R+ ||2|| + ||m|lz20,5S0(R + ||Z]]). The right hand side
is independent of y € Bgr and tends to zero as t; — t; — 0, since h is completely

continuous and the compactness of 7'(¢), for ¢ > 0 implies continuity in the uniform
operator topology. Thus ¥ maps By into an equicontinuous family of functions.

+Mob, +

+Mob1 +

+ K, /Ob e (s)ds] dn

Next we show that UBj is compact. Since we have shown ¥ Bp, is equicontinuous,
by Ascoli Arzela theorem it suffices to show that ¥ maps Bg into precompact set in
E. Let 0 <t < b be fixed and ¢ be a real number satisfying 0 < ¢ < b. For y € Bp,
we define

(Ta)t) = ~T(h(0,8) +h(t,ye+2) + [ AT(t~ $)h(s,ys + 2)ds
! = [ T~ e B TG)60) - h0,9)
+ h(b,yp + 2) + /Ob AT (b — s)h(s,ys + Z5)ds
b s
+ /0 T(b—s)f(s,ys + z/o 9(s,7,yr + #)dr)ds|dn
‘ + [ AT - nBWT®)[9(0) - h(0,9)]
+ h(b,yp + %) + /b AT (b — s)h(s,ys + Zs)ds
b ° s
+ [ TO—=9)f(s,us+ 2, [ 9ls, 7,y + 2)dr)ds]dn
+ /0 - T(t— s)f(s,ys + Zs, /OS g9(s, 7, yr + Z;)dT)ds
‘ = —T()h(0,9) + h(t,u + 2)+T(e) [ TAT(t — 5 — )h(s, ys + 4,)ds
~T(@) [T~ 1~ o BW[T(®)$(0) ~ h(0,4)

b
+ h(b,ys + %) + /0 AT (b — s)h(s,ys + 2,)ds



4 [ T )f(sunt 2, [ ol vr + 57 )dr)ds]dn
+T() [ AT(t—n— B [T®#0) - h(0, §)

+ h(b,ys + %) + /0 " AT(b— s)h(s, ys + %,)ds

+ /Ob T(b . $)f(s,Ys + Zs, /0 “g(s,mue + z;)dr)ds] dn
+7() | Tt~ 5~ f (5,00 + Zu, [ 905,730 + £)dr)ds.

Since T'(t) is compact, the set {¥.y(t); y € Bgr} is precompact in E for every e,
0 < € < t. Moreover for every y € Br, we have

II(‘I’y)(tZ — (T)®
< /t_e |AT (¢t - $)h(s, v + Z0)l|ds

+ / IT(t — ) BW~[T(B)[$(0) — h(0, #)]
+ h(b,ys + %) + /0 " AT(b — s)h(s, ys + ,)ds
+ [T )5(6,v + 2 [ olom,0. + £2)dr)ds]
+ [ 14T (¢ - n)BW [T®[#0) - h(0, 9)
+ h(b,yp + %) + /0 ’ AT (b — s)h(s,ys + Zs)ds
+ /0 ' T(b— s)f(s,ys + Zs, '[) “9(s, Ty + Z;)dr)ds| ||dn
+ /t i T(t - s)f(s,ys + %, /0 " 9(s, 7, yr + Z;)dr)ds
< /ti IAT(t — $)h(s,ys + Z)|ds
" /t; IT(t - n)l| My M [K1[|$(0) — R(0, §)]
IR, w+ 2+ [ IATG - 9)h(s, s + 2)llds
+ [ 1T @ = o)l (s)ds]
+ /ti IAT (¢ — ) BIIM [K1[|6(0) — h(0, $)I

b
+11n(, 3 + )|+ [ 1AT(® — s)h(s, yo + 2)llds



b t
+ [ IO = o)llue-(s)ds]dn + [ IT(t = 5)llme ().

Since there are precompact sets arbitrarily close to the set {(¥y)(t); y € Br}, the

set is precompact in E. It remains to show that ¥ : Yy — Y} is continuous. Let

{yn}® C Y, with y, — y in Yp. Then there is an integer R such that ||yn(t)|| <R,
for all n and t € J, so y, € Br. By (Hs) and (Hs),

t t
f(t; Ynt + £t7/0 g(ta S, Yns + 2s)ds) - f(t7 Yt + 2h/(; g(t7 S,Ys + fs)ds)’

for each t € J, and since

t i
11t Yne + zt/O 9(t, 8y Yns + Z)ds) — f(t, 3 + z},/o 9(t,8,Ys + Z5)ds)|| < 24 (2)
and also h is completely continuous, we have by the dominated convergence theorem,

Hl‘I’yn Tyll|
= sup||[h(t Ynt + 2) — h(t, 3 + 2))

o+ /0 AT(t — $)[A(5, Uns + 25) — h(5, s + £,)]ds
t 5 .
- /0 [T(t —n)o — AT (t —n)]BW ™~ [h(b, yas + %) — h(b,ys + )
b
+/0 AT (b~ 8)[h(8,Yns + ) — h(s,ys + Z)]ds
b R s Vg
+A T(b - 3)[f(sayns + Zs’/O‘ Q(S, T, Ynr + ZT) '7')
~F(s,us + %oy [ 95,7,y + £)dr)]ds]dn
. t . . s .
+/0 T(t — s)[f(s,yns + z,,/o 9(8, Ty Ynr + Z-)dT)

—f(s,ys + z*s,/o g(s, 7, yr + Z)dr)]ds||
sup NR(t, Ynt + 2¢) — h(t, ye + 2|
(=3

IN

+ [ IAT( = )15, une + 2) — h(s,3s + 2)l1ds

+ [T = mlloBI + IATE - MIBINIT |
AT O s, + ) — 5,30 + 2)lds

4 17O~ LA, e + 5, [ 95,7, yor + 2)d)

"‘f(sa Ys + 28»[) g(s, T,Yr + zA‘r)dT)”dS]dTl



t s
+ [ ITE = NF(S: Yo+ 7oy [ 95700 + 21)dr)

S
(8,95 + 5, /0 9(s,7,yr + Z,)dr)||ds = 0, as n — co.

Thus ¥ is continuous and hence it is completely continuous.

Finally the set ((¥) = {y € Yp; y = APy, A € (0,1)} is bounded, since for
every solution y in ¢(¥), the function z = y + 2 is a mild solution of (3), for which
we have proved that |||z||| < K* and hence |||y||| < K* + |2|. Hence by Schaefer’s
fixed point theorem the operator ¥ has a fixed point in Y, which satisfies ¥z(b) = 0.
Thus the system (1) is null controllable on J.
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