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On a Class of Reaction-Diffusion Systems
Describing Bone Remodelling Phenomena

Yoshinori MATSUURA1 , Shinnosuke OHARU2 and Duncan TEBBS2

Bone remodelling refers to the naturally occuring reformation of bone after some
form of damage or trauma. Principally, two types of cell are involved in the processes
which make up the metabolism of bone: osteoclasts and osteoblasts. Osteoclasts dis-
sociate clacium through the secretion of acid, and degrade organic matter by releasing
lysosomal enzymes, resulting in resorption of the bone. On the other hand, osteoblasts
produce both inorganic calcium phosphate, which is converted to hydroxyapatite, and
an organic matrix consisting mainly of type I collagen, depositing new bone at the site
resorbed by osteclasts. A third kind of cell present in the bone, osteocytes, also play
a part in the metabolism by sensing physical loads, and conveying signals to activate
osteoblasts. In this way, the three types of cell interact and between them carry out
the bone remodelling process.

The purpose of this paper is to investigate a new class of convective reaction-
diffusion systems, which describe the phenomena outlined above. Study of this phe-
nomena clearly has applications from a medical point of view, and is of particular
importance in relation to research into bone diseases, such as osteoporosis, physiolog-
ical studies of the internal architecture of bone, and design of dental implants.

Activation by osteocytes of formation and resorption processes is induced mainly
by the density of calcium and the concentrations of osteclasts and osteoblasts in the
marrow. Therefore we use these three parameters as the elements of the reaction-
diffusion systems treated in this paper.

Let $\Omega$ be a bounded domain in $R^{n}$ , with sufficently smooth boundary $\partial\Omega$ . The
system of equations describing the bone remodelling phenomena is given below.

(RDS) $\left\{\begin{array}{ll}u_{t}= & d_{1}\triangle u-e_{1}E\cdot\nabla u+\gamma wu-\beta vu-c_{1}u\\v_{t}= & d_{2}\triangle v-e_{2}E\cdot\nabla v+a_{2}\nabla u\cdot\nabla v+\epsilon_{2}uv-c_{2}v\\w_{t}= & d_{3}\Delta w+e_{3}E\cdot\nabla w-a_{3}\nabla u\cdot\nabla w-e_{3}uw+c_{3}w\end{array}\right.$
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under the initial conditions $u(0, \cdot)=u_{0_{7}}v(0, \cdot)=v_{0}$ and $w(0, \cdot)=w_{0}$ . We impose
homogeneous Neumann boundary conditions on $u,$ $v$ , and $w$ , namely that

(BC) $u_{\nu}=v_{\nu}=w_{\nu}=0$

on the boundary $\partial\Omega$ , where $v$ represents the outward normal vector.
Firstly, $u=u(t, x)$ represents the concentration of calcium at location $x\in\overline{\Omega}$ and

time $t>0$ . The cell densities of osteoblasts and osteoclasts are given by $v=v(t, x)$

and $w=w(t, x)$ , respectively. The $R^{3}$-valued function $E\in C^{1}(\overline{\Omega})$ represents electric
fields produced by stress-strain distribution through the bone. Diffusion effects on
each of these quantities are given by $d_{1}\triangle u,$ $d_{2}\triangle v$ and $d_{3}\triangle w$ , where $\triangle$ represents
the Laplace operator under O-Neumann boundary conditions. Advection effects along
the negative and positive directions of physical and chemical stimulation $E$ , are rep-
resented by $-e_{1}E\cdot\nabla u,$ $-e_{2}E\cdot\nabla v$ , and $e_{3}E\cdot\nabla w$ , for advection coefficients $e_{1},$ $e_{2}$

and $e_{3}$ , where $\nabla$ stands for the gradient operator. Similarly the terms $a_{2}\nabla v\cdot\nabla u$

and $a_{3}\nabla w\cdot\nabla u$ describe the advection effect on osteoblasts and osteoclasts along the
gradient of the concentration of $u$ .

The effect on the release of calcium by osteoclasts and the mineralization of cal-
cium by osteoblasts may be expressed as $\gamma wu-\beta vu$ , for some positive coefficients $\beta$

and $\gamma$ . The decrease and increase of calcium, osteoblasts and osteoclasts are repre-
sented $as-c_{1}u,$ $-c_{2}v$ and $c_{3}w$ .

This paper is organized as follows. In the first section we give some preliminary
results such that appropriate convective diffusion operators can be formulated. In
Section 2 we construct a new type of descrete scheme consistent with (RDS). The
third section is concerned with obtaining some essential estimates, and finally in the
fourth section we show the convergence of the scheme and thereby construct strong
solutions.

The authors would like to express their gratitude to Professor Testuro Miyakawa
for his valuable advice and suggestions.

1 Formulation of convective diffusion and reaction
operators

In preparation for constructing the scheme we recall the following well-known results.
For more details, the reader is refered to [1], [6], [2] and [3].

1 Deflnition. In this section let $b=(b_{1}, \ldots, b_{n})$ be a function in $C^{1}(\overline{\Omega};R^{n}),$ $d>0$ .
$\Omega$ is assumed to be a bounded domain in $R^{\mathfrak{n}}$ with sufficiently smooth boundary $\partial\Omega$ .
For $p>n,$ $\Lambda_{p}$ shall represent an operator of the form

(1.1) $\Lambda_{p}z=d\triangle z+b\cdot\nabla z,$ $z\in D(\Lambda_{p})$
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where

(1.2) $D(\Lambda_{p})=$ { $z\in W^{2,p}|z_{\nu}=0$ on $\partial\Omega$ }.
Here $v$ represents the outward unit normal vector on the boundary $\partial\Omega$ of $\Omega$ . Note that
if $p<q\leq L^{\infty}$ then, since we are considering bounded domains in $\mathbb{R}^{n},$ $L^{p}\supset L^{q}\supset L^{\infty}$ ,
and $\Lambda_{p}\supset\Lambda_{q}\supset\Lambda_{\infty}$ . Hence we shall often write just $\Lambda$ when no confusion will occur.

2 Lemma. (Elliptic Estimates) Let $v\in W^{2,p}$ . Then there exis $ts$ som $e$ constant $C$

such that

(1.3) $\Vert\nabla v||_{\infty}\leq C(||\Lambda v\Vert_{p}+\Vert v\Vert_{p})$ .

Here $C\equiv C(n, \Omega, d, K)$ , where $|b_{j}|<K$ .

Proof. This follows simply from well known estimates. Since

$\Vert v\Vert_{W^{2,p}}\leq C^{\prime}(\Vert\Lambda v\Vert_{p}+\Vert v\Vert_{p})$ ,

we know that $\nabla v\in W^{1,p}$ , and we have the embedding $W^{1,p}\rightarrow C^{1-n/p}(\overline{\Omega})$ , the
statement is obtained through the estimates

$||\nabla v\Vert_{\infty}+[\nabla v]_{1-n/p}\leq C^{\prime\prime}\Vert\nabla v\Vert_{W^{1,p}}\leq C^{\prime\prime\prime}\Vert v\Vert_{W^{2,p}}$ .

Full details can be found in [6]. $\square $

3 Lemma. Consider the following parabolic initial boundary value problem in the
space If.

(1.4) $\left\{\begin{array}{ll}u_{t}=\Lambda u & , t>0, x\in\Omega\\ u_{v}=0 o & \partial\Omega,\\u(O, x)= & v(x)\geq 0 , x\in\Omega\end{array}\right.$

where $v$ represents the outward normal. Here $v(\cdot)$ is assumed to belong to $L^{p}$ . Then
the following hold:

1. There exists a strong sol $u$ tion $u\in W^{2,p}$ such that $\nabla u\in L^{\infty}$ .

2. If $v(x)\geq 0,$ $ x\in\Omega$ , then $u(t, x)\equiv u(t, x;v)\geq 0$ for all $t\geq 0$ .

3. In fact $u\in C^{2}$ (St), $n$amely $u$ is a classical solution.
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4 Proposition. Let $1<p<\infty,$ $\Lambda$ be as above, and let $F$ : $If\rightarrow(L^{p})^{*}$ be the
duality mapping from $L^{p}$ into its $du$al. Then, the following estimate holds:

(1.5) $\langle\Lambda z, F(z)\rangle\leq(\frac{||b||_{\infty}^{2}}{4d(p-1)})\Vert z\Vert_{p}^{2}$

for $z\in D(\Lambda)\cap L_{+}^{p}$ .

Proof. We begin by recalling that $(L^{p})^{*}\equiv L^{q}$ for $p$ and $q$ such that $1<p,$ $ q<\infty$

and $p^{-1}+q^{-1}=1$ , and that $F(z)(x)=||z\Vert_{p}^{2-p}|z(x)|^{p-2}z(x)$ for $ x\in\Omega$ , and

(1.6) $\langle\Lambda z, F(z)\rangle=\int_{\Omega}\Lambda z.F(z)dx$ .

Write $\langle\Lambda z, F(z)\rangle=(d\triangle z,$ $F(z0\rangle$ $+\langle b\cdot\nabla z, F(z)\rangle$ . The contraction semigroup $e^{t\triangle}$ is
analytic and positive, preserving all If-norms for general $p$ with $ 1\leq p\leq\infty$ , so that
for $\eta>0,$ $e^{\eta\triangle}z\in D(\Lambda)\cap C^{\infty}$ . Thus $F(z)\nabla e^{\eta\triangle}z\in C^{1}$ , and hence we may apply the
divergence theorem to obtain

$\int_{\Omega}(\triangle e^{\eta\triangle}z)(F(z))dx$ $=\int_{\Omega}$ div $(F(z)\nabla e^{\eta\triangle}z)dx-\int_{\Omega}(\nabla e^{t\triangle}z)\cdot(\nabla F(z))dx$

$=\int_{\partial\Omega}F(z)(\nabla e^{\eta\triangle}z\cdot\nu)dS-\int_{\Omega}(\nabla e^{\eta\triangle}z)\cdot(\nabla F(z))dx$

$=-\int_{\Omega}(\nabla e^{\eta\triangle}z)\cdot(\nabla F(z))dx$ ,

where $\int_{\partial\Omega}dS$ represents the integral over the surface of $\Omega$ , and as usual $v$ is the
outward normal. Let $\eta$ tend to $0$ . Then $\triangle e^{\eta\triangle}z$ tends to $\triangle z$ , and by the elliptic
estimate of Lemma 2 we see that $\nabla e^{t\triangle}z$ tends to $\nabla z$ . In other words, we have

$\langle\triangle z, F(z)\rangle=-\int_{\Omega}\nabla z\cdot\nabla F(z)dx$ .
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Noting that $\nabla F(z)=(p-1)\Vert z\Vert_{p}^{2-p}|z|^{p-2}\nabla z$ , we obtain

$\langle\Lambda z, F(z)\rangle=-d(p-1)\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p-2}|\nabla z(x)|^{2}dx$

$+\Vert z\Vert_{p}^{2-p}\int_{\Omega}z(x)|z(x)|^{p-2}b\cdot\nabla z(x)dx$

$\leq-d(p-1)\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p-2}|\nabla z(x)|^{2}dx$

$+\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p-2}|b|.|\nabla z(x)|.|z(x)|dx$

$\leq-d(p-1)\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p-2}\{|\nabla z(x)|^{2}$

$-d^{-1}(p-1)^{-1}|b|.|\nabla z(x)|.|z(x)|+\frac{1}{4d^{2}(p-1)^{2}}|z(x)|^{2}|b|^{2}\}dx$

$+(4d(p-1))^{-1}\Vert b\Vert_{\infty}^{2}\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p}dx$ ,

where the last inequality is obtained by simply adding and subtracting the term
$(2d(p-1))^{-2}|z(x)|^{2}|b|^{2}$ in the integrand. We then rewrite this in the following way
to obtain the inequality in the statement of the proposition.

$\langle\Lambda z, F(z)\rangle$
$\leq-d(p-1)\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p-2}\{|\nabla z(x)|-\frac{|b|}{2d(p-1)}|z(x)|\}^{2}dx$

$+(4d(p-1))^{-1}\Vert b\Vert_{\infty}^{2}\Vert z\Vert_{p}^{2-p}\int_{\Omega}|z(x)|^{p}dx$

$\leq(\frac{||b||_{\infty}^{2}}{4d(p-1)})\Vert z\Vert_{p}^{2}$ .

$\square $

5 Lemma. Suppose the assumptions of Proposition 4 hold, and le$tp$ be a positive
real number such that $ n<p<\infty$ . Then $\Lambda$ generates a positive analytic semigroup
$e^{t\Lambda}$ in $L^{p}$ . Futhermore,

(1.7) $\Vert\Lambda e^{t\Lambda}z\Vert_{p}\leq\frac{M_{p}}{t}\Vert z\Vert_{p}$ for $z\in L^{p}$ .

Namely, for $v\in L^{p}$ , we $h$ave $u(t)=e^{t\Lambda}v\in D(\Lambda)$ . Moreover, $e^{t\Lambda}$ is a contraction
semigroup in $L^{\infty}$ .

Proof. The only part of the statement which is not well known is the final remark
concerning the preservation of the $L^{\infty}$-norm. We refer the reader to [10], and in
particular Chapter 2, to justify the following explanation:
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Consider the parabolic domain $\Omega\times(0, \infty)$ , and assume that the initial function
$v(\cdot)$ belongs to $L^{\infty}$ . Firstly, there cannot exist maxima on the boundary of $\Omega$ taking
values greater than $\Vert v\Vert_{\infty}$ , since $u$ would have derivative in any inward direction
(including the direction along the inward normal of $\Omega$ ) less than zero, contradicting
the O-Neumann boundary conditions. If at some time $t>0$ the solution $e^{t\Lambda}v$ takes a
maximal value over the set $\Omega\times(0, t^{0})$ greater than $\Vert v\Vert_{\infty}$ at some $(x^{0}, t^{0})\in D$ , then $u$

must take the same value on all of $\Omega\times(0, t^{0})$ , implying that $v$ must also attain this
value. This contradicts our original assumption on $\Vert v\Vert_{\infty}$ . $\square $

Finally, in preparation for construction of the scheme, we need the following.

6 Definition. Define the following operators on our space $L^{p}$ , for $z\in W^{2,p}(\overline{\Omega})$ .
$\Lambda_{1}$ $=d_{1}\triangle-e_{1}E\cdot\nabla$

$\Lambda_{2}(z)$ $=d_{2}\triangle-e_{2}E\cdot\nabla+a_{2}\nabla z\cdot\nabla$

$\Lambda_{3}(z)$ $=d_{3}\triangle+e_{3}E\cdot\nabla-a_{3}\nabla z\cdot\nabla$

2 Construction of descrete scheme
Essentially, our argument shall be carried out in the space $L^{\infty}$ , although with respect
to the $L^{p}$ norms, using the estimates obtained in the previous section. Convergence
in the If topologies also implies convergence in $L^{1}$ , however, and it is this space we
are interested in, since the $L^{1}$ norm is most meaningful in a physical sense when we
consider what the functions in our system actually represent.

We are now in a position to construct the appropriate descrete scheme for (RDS).
Given a sufficiently small time spacing $h>0$ we construct sequences $\{u^{i}\},$ $\{v^{i}\}$ and
$\{w^{i}\}$ of elements in $L^{1}\cap L^{\infty}$ , such that $ ih\leq\tau$ using the following scheme.

Let the functions $u^{k-1}\in C^{2}(\overline{\Omega}),$ $v^{k-1},$ $w^{k-1}\in L^{1}\cap L^{\infty}$ be given. By Lemma 3, we
know that the operator $\Lambda_{1}$ generates a positive analytic quasi-contractive semigroup
$T_{1}(\cdot)$ on $ I\nearrow$ and that $T_{1}(t)u\in C^{2}(\overline{\Omega})\subset L^{\infty}(\Omega)$ for $u\in L^{p}$ . Furthermore, the resolvent
$(I-h\Lambda_{1})^{-1}$ exists on the whole space $ I\nearrow$ . Let $u^{k}$ be given by

(2.1) $u^{k}=[I-h\Lambda_{1}]^{-1}[1+h\gamma w^{k-1}-h\beta v^{k-1}-hc_{1}]u^{k-1}$ .
At first glance it would seem natural to use the resolvents $[1-h\Lambda_{2}(u^{k})]^{-1}$ in the next
step, however since we cannot guarantee that $u^{k}$ is $C^{2}$ , and hence $\nabla u^{k}\in C^{1}$ , this
resolvent may not exist. Applying the operator $T_{1}(h)$ to $u^{k}$ allows us to generate
a resolvent of an approximate operator, by Lemma 3, and continue generating the
scheme in the following way:

(2.2) $v^{k}$ $=[1-h\Lambda_{2}(T_{1}(h)u^{k})]^{-1}[I+he_{2}u^{k-1}-hc_{2}]v^{k-1}$

(2.3) $w^{k}$ $=[1-h\Lambda_{3}(T_{1}(h)u^{k})]^{-1}[I-he_{3}u^{k-1}+hc_{3}]w^{k-1}$
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7 Remark. Note that the operators $T_{1}(h),$ $(I-h\Lambda_{1})^{-1},$ $[I-h\Lambda_{2}(T_{1}(h)u^{k})]^{-1}$ and
$[I-h\Lambda_{3}(T_{1}(h)u^{k})]^{-1}$ are all positivity preserving. We claim that they also preserve
the $L^{\infty}$ norm. This is clear for $T_{1}(h)$ by the maximum principle arguments of Lemma
5, and we now show that this holds for the remaining operators. $\Lambda_{2}(T_{1}(h)u^{k})$ and
$\Lambda_{3}(T_{1}(h)u^{k})$ also generate analytic semigroups, $T_{2}(\cdot)$ and $T_{3}(\cdot)$ which again preserve
the $L^{\infty}$ norm. Considering for the moment $\Lambda_{2}(T_{1}(h)u^{k})$ , its resolvent is given by the
Laplace transform

$[I-h\Lambda_{2}(T_{1}(h)u^{k})]^{-1}v=h^{-1}\int_{0}^{\infty}e^{-t/h}T_{2}(t)vdt$ ,

where the integral is taken in $L^{p}$ in the sense of Bochner. The mapping $\Vert\cdot\Vert_{\infty}$ :
$If\rightarrow[0, \infty]$ is a convex, lower semicontinuous functional, and therefore since $T_{2}(\cdot)v$

is continuous in If we have that $\Vert T_{2}(t)v\Vert_{\infty}$ is integrable with respect to $t$ , and obtain

$\Vert[I-h\Lambda_{2}(T_{1}(h)u^{k})]^{-1}v\Vert_{\infty}$ $=\Vert h^{-1}\int_{0}^{\infty}e^{-t/h}T_{2}(t)vdt\Vert_{\infty}$

$\leq h^{-1}\int_{0}^{\infty}e^{-t/h}||T_{2}(t)v\Vert_{\infty}dt$

$\leq\Vert v\Vert_{\infty}$ .

We may proceed similarly for $\Lambda_{3}(u^{k})$ , and it is trivial to use this type of argument for
$(I-h\Lambda_{1})^{-1}$ .

3 Essential estimates
In this section we shall give some more estimates on various elements of the scheme
described above, with a view to showing the convergence to a generalized solution of
the equation (RDS). This will be done by evaluating error terms $f^{k}$ in the difference
approximation

(3.1) $\frac{u^{k}-u^{k-1}}{h}-f^{k}=(\mathcal{A}+\mathscr{B})u^{k}$ ,

where $u^{k}$ denotes the element $(u^{k}, v^{k}, w^{k})\in(L^{p})^{3}$ , for terms $u^{k},$ $v^{k}$ and $w^{k}$ gener-
ated in the scheme above. Operators $\mathcal{A}$ and $\mathscr{B}$ are defined by

(3.2) $\mathcal{A}\left(\begin{array}{l}u\\v\\w\end{array}\right)=\left(\begin{array}{l}\Lambda_{1}u\\\Lambda_{2}(u)v\\\Lambda_{3}(u)w\end{array}\right)$ $\mathscr{B}\left(\begin{array}{l}u\\v\\w\end{array}\right)=\left(\begin{array}{l}\gamma wu-\beta vu-c_{l}u\\e_{2}uv-c_{2}v\\-\epsilon_{3}uw+c_{3}w\end{array}\right)$ .
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for $(u, v, w)\in D(\mathcal{A})$ or $D(\mathscr{B})$ . Note that we define $D(\mathcal{A})$ as simply $D(\Lambda)^{3}$ or
$D(\Lambda_{1})\times D(\Lambda_{2})\times D(\Lambda_{3})$ . Using these operators we can now rewrite the system (RDS)
in the form

(3.3) $\left\{\begin{array}{l}u^{\prime}(t)=(\mathscr{A}+\mathscr{B})u\\u(0)=u_{0}\end{array}\right.$

Consistent with our scheme, define the following approximate operators to $\mathcal{A}$ , for
$h>0$ .

(3.4) $\mathcal{A}_{h}\left(\begin{array}{l}u\\v\\w\end{array}\right)=\left(\begin{array}{l}\Lambda_{l}u\\\Lambda_{2}(T_{1}(h)u)v\\\Lambda_{3}(T_{1}(h)u)w\end{array}\right)$ for $D(\mathcal{A}_{h})=D(\mathcal{A})$ .

The norms $\Vert\cdot\Vert_{p}$ , for $ 1\leq p<\infty$ , and $\Vert\cdot\Vert_{\infty}$ defined on the product spaces $(L^{p})^{3}$ and
$(L^{\infty})^{3}$ , respectively, shall be defined

II $(u, v, w)||_{p}=(\Vert u\Vert_{p}^{p}+\Vert v\Vert_{p}^{p}+\Vert w\Vert_{p}^{p})^{\frac{1}{p}}$

$(3.5)$

II $(u, v, w)\Vert_{\infty}=\max\{\Vert u\Vert_{\infty}, \Vert v\Vert_{\infty}, \Vert w\Vert_{\infty}\}$

for elements ( $u$ , $v$ , w) in the appropriate product spaces. Then for $ 1<p<\infty$ , the
dual spaces of $(L^{p})^{3}$ are simply $(L^{q})^{3}$ with similar norms, where $p^{-1}+q^{-1}=1$ . In a
similarly natural way, the dual of $(L^{1})^{3}$ is $(L^{\infty})^{3}$ , and the dual of $(L^{\infty})^{3}$ is $(ba(\Omega))^{3}$ .
If it can be shown that

(3.6) $\lim_{h\downarrow 0}h\sum_{i=1}^{[\tau/h]}\Vert f^{i}$ llp $=0$

then we can use an argument similar to that given in [5] to prove convergence of the
scheme to a generalized solution to the problem (RDS).

8 Proposition. Let $u_{0},$ $v_{0}$ and $w_{0}$ be functions in $L^{1}\cap L^{\infty}$ , such that $u_{0}(x),$ $v_{0}(x)$

and $w_{0}(x)\geq 0$ for almost every $ x\in\Omega$ . Then $u^{k},$ $v^{k}$ and $w^{k}$ generated as above, are
all positive in the same sense, an $d$ are uniformly $L^{\infty}$-bound$ed$ above.

Proof. Noting Remark 7, at the end of the previous section, concerning the posi-
tivity preserving properties of the operators $(I-h\Lambda_{1})^{-1},$ $[I-h\Lambda_{2}(T_{1}(h)u^{k})]^{-1}$ and
$[I-h\Lambda_{3}(T_{1}(h)u^{k})]^{-1}$ , we shall show the statement by means of an induction argu-
ment. Assume that for $i=0,$ $\ldots,$

$k-1$ all elements $u^{i},$ $v^{i}$ and $w^{i}$ are all positive and
belong to $L^{\infty}$ . Firstly,

$w^{k}$ $\leq\prod_{i=1}^{k-1}(1-he_{3}u^{i}+hc_{3})w_{0}$

$\leq(1+hc_{3})^{k}w_{0}$

(3.7) $\leq e^{hkc_{3}}w_{0}\leq e^{\tau c_{3}}w_{0}\equiv\alpha_{3}$ .
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Note that $\alpha_{3}$ is in fact a bound for all $w^{i},$ $i=0,$ $\ldots,$
$k$ . Next,

$(1+h\gamma w^{k-1}-h\beta v^{k-1}-hc_{1})u^{k-1}$ $\leq(1+h\gamma w^{k-1})u^{k-1}$

(3.8) $\leq(1+h\gamma\alpha_{3})^{k}u_{0}\leq e^{\tau\gamma\alpha_{3}}\equiv\alpha_{1}$ .

Again, the estimate holds for $u^{i},$ $i=0,$ $\ldots,$
$k$ . Now consider $v^{k}$ ,

$(1+h\epsilon_{2}u^{k-1}-hc_{2})v^{k-1}$ $\leq(1+h\epsilon_{2}\alpha_{1})v^{k-1}$

(3.9) $\leq(1+he_{2}\alpha_{1})^{k}v_{0}\leq e^{\tau\epsilon_{2}\alpha_{1}}v_{0}\equiv\alpha_{2}$ .

So we have three constants bounding the $L^{\infty}$ norms of elements $u^{i},$ $v^{i}$ and $w^{i}$ for
$i=0,$ $\ldots,$

$k-1$ and bounding the values of the functions $u^{k},$ $v^{k}$ and $w^{k}$ above. It
remains to show positivity of $u^{k},$ $v^{k}$ and $w^{k}$ . Define

(3.10) $h_{0}\leq\min t\frac{1}{(\beta\alpha_{2}+c_{1})},$ $\frac{1}{c_{2}},$ $\frac{1}{e_{3}\alpha_{1}}I$ ,

noting that this is greater than zero, and let $0<h<h_{0}$ . Then

$(1+h\gamma w^{k-1}-h\beta v^{k-1}-hc_{1})u^{k-1}$ $\geq(1-h(\beta v^{k-1}+c_{1}))u^{k-1}$

$\geq(1-h(\beta\alpha_{2}+c_{1}))\geq 0$ for $0<h\leq h_{0}$ .

$(1+h\epsilon_{2}u^{k-1}-hc_{2})v^{k-1}\geq(1-hc_{2})v^{k-1}\geq 0$ for $0<h\leq h_{0}$ .

$(1-he_{3}u^{k-1}+hc_{3})w^{k-1}$ $\geq(1-h\epsilon_{3}u^{k-1})w^{k-1}$

$\geq(1-he_{3}a_{1})w^{k-1}\geq 0$ for $0<h\leq h_{0}$ .

This completes the proof of the statement. $\square $

9 Remark. We have shown in Proposition 8 that there exists some $r>0$ such that,
for $0<h<h_{0}$ all terms $u^{k},$ $v^{k}$ and $w^{k}$ are non-zero and have $L^{\infty}$-norm bounded by
$r$ . It is also easily veriPed that each of the terms making up the operator $\mathscr{B}$ (namely
the reaction terms in the equation itself) is at least bilinear and Lipschitz continuous
on such $L^{\infty}$-bounded sets. Hence, given $r>0$ there exists some Lipschitz constant,
which we denote by $m(r)>0$ , such that

(3.11) $\Vert \mathscr{B}u-\mathscr{B}v\Vert_{p}\leq m(r)\Vert u-v\Vert_{p}$

for all $u,$ $v\in(L^{p})^{3}$ with $\Vert u\Vert_{\infty}$ and $\Vert v||_{\infty}\leq r$ .

10 Lemma. Let $u\in D(\mathcal{A})\cap(L^{\infty})^{3}$ . Then we have

(3.12) $\lim_{h\downarrow 0}\Vert \mathcal{A}_{h}u-\mathcal{A}u\Vert_{p}\rightarrow 0$ .
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Proof. Let $u=(u, v, w)\in D(\mathcal{A})\cap(L^{\infty})^{3}$ . Then

$\Vert \mathcal{A}_{h}u-\mathcal{A}u\Vert_{p}^{p}$ $=\Vert a_{2}\nabla(T_{1}(h)u-u)\cdot\nabla v\Vert_{p}^{p}$

$+\Vert a_{3}\nabla(T_{1}(h)u-u)\cdot\nabla w11_{p}^{p}$

Lemma 2 implies that, since $\Vert\Lambda_{2}(u)v\Vert_{p}<\infty$ ,

(3.13) $\Vert\nabla v||_{\infty}\leq C^{\prime}(\Vert\Lambda_{2}(u)v\Vert_{p}+\Vert v\Vert_{p})<\infty$

for $q>n$ . Note also that $\nabla v\in L^{p}$ , and that $u$ and $T_{1}(h)u$ are bounded uniformly in
$L^{\infty}$ for $0<h<h_{0}$ . It is sufficient to prove that

$\Vert\nabla(T_{1}(h)u-u)\Vert_{p}\rightarrow 0$

as $h$ tends to zero. Employing the well known theory of fractional powers of closed
linear operators (see, among others, [9] for a detailed treatment), we have

(3.14) $||\nabla(T_{1}(h)u-u)||_{p}\leq C_{p}^{\prime\prime}\Vert(-\Lambda_{1})^{\theta}(T_{1}(h)u-u)\Vert_{p}$ for $\frac{1}{2}<\theta<1$ .

and

(3.15) $|(-\Lambda_{1})^{\theta}T_{1}(h)|\leq\frac{M_{\theta,\tau,p}}{h^{\theta}}$

where $|\cdot|$ here represents the operator norm. Furthermore,

$T_{1}(h)u-u=\int_{0}^{h}T_{1}(\xi)\Lambda_{1}ud($

and so

$\Vert(-\Lambda_{1})^{\theta}(T_{1}(h)u-u)\Vert_{p}$ $=\Vert\int_{0}^{h}(-\Lambda_{1})^{\theta}T_{1}(\xi)\Lambda_{1}ud\xi\Vert_{p}$

$\leq\int_{0}^{h}|(-\Lambda_{1})^{\theta}T_{1}(\xi)|$ . $\Vert\Lambda_{1}u\Vert_{p}d\xi$

$\leq\int_{0}^{h}\frac{M_{\theta,\tau}}{\xi^{\theta}}$ . $||\Lambda_{1}u||_{p}d\xi$

$\leq M_{\theta,\tau,p}h^{1-\theta}$ . $\Vert\Lambda_{1}u\Vert_{p}\rightarrow 0$ as $h\downarrow 0$ .

$\square $

The next step in our argument will be to show the boundedness of the terms
$\Vert \mathcal{A}_{h}u^{k}$ llp uniformly over $h$ and $k$ for $ hk\leq\tau$ .
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11 Lemma. Let $h$ be such that $0<h<h_{0}$ , for $h_{0}$ as in equation (3.10), and let
the elements $u_{h}^{k}=(u_{h}^{k}, v_{h}^{k}, w_{h}^{k})$ be generated through the scheme described previo $u$sly,
for $u^{0}$ satisfyin$g$ the conditions of the previous lemma. Then $\Vert \mathscr{A}_{h}u_{h}^{k}\Vert_{p}$ is bounded
uniformly over $h$ an$dk$ , for $ hk\leq\tau$ .

Proof. We have

$\Vert u_{h}^{k}-u_{h}^{k-1}-h(\mathcal{A}_{h}+\mathscr{B})u_{h}^{k}\Vert_{p}$ $=\Vert(I-h\mathcal{A}_{h})u_{h}^{k}-u_{h}^{k-1}-h\mathscr{B}u_{h}^{k}\Vert_{p}$

$=\Vert(I+h\mathscr{B})u_{h}^{k-1}-u_{h}^{k-1}-h\mathscr{B}u_{h}^{k}\Vert_{p}$

$=h\Vert \mathscr{B}u_{h}^{k-1}-\mathscr{B}u_{h}^{k}\Vert_{p}$

$\leq hm(r)$ . $\Vert u_{h}^{k-1}-u_{h}^{k}\Vert_{p}$

(Note also that this holds equally for the $\Vert\cdot||_{\infty}$ norm). Assume for the moment that we
can find an upper bound $\omega_{p}$ for all constants of quasi-dissipativity of the appropriate
operators. Then,

$\Vert u_{h}^{k}-u_{h}^{k-1}\Vert_{p}$ $\leq e^{h\omega_{p}}\Vert(I-h\mathcal{A}_{h})u_{h}^{k}-(I-h\mathcal{A}_{h})u_{h}^{k-1}\Vert_{p}$

$=e^{h\omega_{p}}\Vert(I+h\mathscr{B})u_{h}^{k-1}-(I+h\mathscr{B})u_{h}^{k-2}\Vert_{p}$

$\leq e^{h\omega_{p}}(1+hm(r))\Vert u_{h}^{k-1}-u_{h}^{k-2}\Vert_{p}$

(3.16) $\leq e^{kh(m(r)+\omega_{p})}\Vert u_{h}^{1}-u^{0}\Vert_{p}$ .

Finally, we see that

$\Vert u_{h}^{1}-u^{0}\Vert_{p}\leq e^{h\omega_{p}}\Vert(I-h\mathcal{A}_{h})u_{h}^{1}-(I-h\mathcal{A}_{h})u^{0}\Vert_{p}$

$\leq e^{h\omega_{p}}\Vert(I+h\mathscr{B})u^{0}-u^{0}+h\mathcal{A}_{h}u^{0}\Vert_{p}$

$\leq he^{h\omega_{p}}(\Vert \mathscr{B}u^{0}\Vert_{p}+\Vert \mathcal{A}_{h}u^{0}\Vert_{p})$ ,

so that bringing all these things together,
(3.17)

$\Vert u_{h}^{k}-u_{h}^{k-1}-h(\mathcal{A}_{h}+\mathscr{B})u_{h}^{k}\Vert_{p}\leq h^{2}m(r)e^{(k+1)h(m(r)+\omega_{p})}[\Vert \mathscr{B}u^{0}\Vert_{p}+\Vert \mathcal{A}_{h}u^{0}\Vert_{p}]$

and this is uniformly bounded by the convergence of $\mathcal{A}_{h}$ , as proven in Lemma 10. By
Proposition 8 and Remark 9 we have also the uniform boundedness of $u_{h}^{k}$ and $\mathcal{B}u^{k}$ ,
and so it remains only to show that the uniform constant $\omega_{p}$ exists.

Performing the estimates above for elements $u_{h}^{i}$ , where $u_{h}^{k}=(u_{h}^{k}, v_{h}^{k}, w_{h}^{k})$ , we see by
Lemma 4 that since $E$ is fixed, the constant of quasi-dissipativity for $\Lambda_{1}$ is fixed and
elements $\Lambda_{1}u_{k}^{i}$ are uniformly bounded. Thus terms $\Vert\nabla u_{h}^{i}\Vert_{\infty}$ are uniformly bounded by
the elliptic estimate of Lemma 2. Since $\Lambda_{1}T_{1}(h)u_{h}^{i}=T_{1}(h)\Lambda_{1}u_{h}^{i}$ and $T_{1}(h)$ preserves
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the $L^{\infty}$ norm, we can again use the elliptic estimate to show the boundedness of
$\Vert\nabla T_{1}(h)u_{h}^{i}\Vert_{\infty}$ and hence we may choose a constant $\omega_{h}$ , as described above and the
statment holds, by Lemma 4. $\square $

12 Corollary. We have also obtained the following estimat $e$, which shall be of im-
portance later on.

$\Vert u_{h}^{k}-u_{h}^{k-1}\Vert_{p}\leq he^{(k+1)h(m(r)+\omega_{p})}[\Vert \mathscr{B}u^{0}\Vert_{p}+\Vert \mathcal{A}_{h}u^{0}||_{p}]$

Note that this estimate is also uniform over $k$ and $h$ for $0<h<h_{0}$ an$dhk\leq\tau$ .

13 Lemma. Let $u^{0}\in D(\mathcal{A})\cap(L_{+}^{p})^{3}\cap(L^{\infty})^{3}$ . Then terms $\mathcal{A}_{h}u_{h}^{k}$ converge uniformly
to $\mathcal{A}u_{h}^{k}$ , for $0<h<h_{0}$ an$ dhk\leq\tau$ .

Proof. Let $u_{i}^{h}=(u_{i}^{h}, v_{i}^{h}, w_{i}^{h})$ . Recalling the elliptic estimate of Lemma 2 and Lemma
11 we obtain uniform boundedness of $\Vert\nabla v_{h}^{k}\Vert_{\infty}$ , since we can find a uniform constant
in the inequality. This is achieved by noting that $\Vert\Lambda_{1}u_{h}^{i}\Vert_{p}\leq\Vert \mathcal{A}_{h}u_{h}^{i}\Vert_{p}$ , and hence
$\Vert\nabla u_{i}^{h}\Vert_{\infty}$ , is uniformly bounded. A similar argument holds for $w_{i}^{h}$ . Retracing our
steps through the proof of lemma 10 we see that $\Vert\nabla(T_{1}(h)u_{h}^{k}-u_{h}^{k})\Vert_{p}$ converges to
zero uniformly by noting that $\Vert\Lambda_{1}u_{h}^{k}$ llp $\leq||\mathcal{A}_{h}u_{h}^{i}\Vert_{p}$ is uniformly bounded. Hence the
statement holds. $\square $

4 Convergence of the scheme

Armed with the above lemmas we can now deal with the main estimates for the
error terms in (3.1). Namely, we wish to show that (3.6) holds for the scheme we
have defined, and that the operator $\mathcal{A}+\mathscr{B}$ is quasi-dissipative over the set $\{u_{h}^{k}\}$ , for
$0<h<h_{0}$ and $ kh\leq\tau$ . In fact, local quasi-dissipativity of $\mathcal{A}+\mathcal{B}$ is immediate,
since we have Lemma 4 and as we have already seen, $\mathscr{B}$ is Lipschitz continuous on
$L^{\infty}$-bounded sets.

14 Theorem. Let $u_{h}^{k}$ be generated as described above for $0<h<h_{0}$ and $ hk\leq\tau$ ,
where the initial conditions $u^{0}$ satisfy 11 $u^{0}\Vert_{\infty}<\infty$ and $\Vert \mathcal{A}u^{0}\Vert_{\infty}<\infty$ . Then the
elements $f_{h}^{k}$ in the equation

(4.1) $\frac{u_{h}^{k}-u_{h}^{k-1}}{h}-f_{h}^{k}=(\mathcal{A}+\mathscr{B})u_{h}^{k}$

satisfy

(4.2) $\lim_{h\downarrow 0}h\sum_{k=0}^{[\tau/h]}\Vert f_{h}^{k}\Vert_{p}=0$

–28 –



Proof. Assume that the element $u_{h}^{k}$ may be denoted by $(u_{h}^{k}, v_{h}^{k}, w_{h}^{k})$ . For notational
concision we define the operators in the respective components of the definition of
$\mathscr{B}(u, v, w)$ to be $\mathscr{B}_{1}(v, w)u,$ $\mathscr{B}_{2}(u)v$ and $\mathscr{B}_{3}(u)w$ . The reader will verify the appro-
priate (in)dependencies and also that, by Remark 9, each of these is locally Lipschitz
continuous in each of its variables.
We consider the components seperately, starting with the first. We have

$\Vert\frac{u_{h}^{k}-u_{h}^{k- 1}}{h}-(\Lambda_{1}+\mathscr{B}_{1}(v_{h}^{k},w_{h}^{k}))u_{h}^{k}\Vert_{p}$

$=h^{-1}\Vert(I-h\Lambda_{1})u_{h}^{k}-u_{h}^{k- 1}-h\mathscr{B}_{1}(v_{h}^{k},w_{h}^{k})u_{h}^{k}\Vert_{p}$

$=h^{-1}\Vert(I+h\mathscr{B}_{1}(v_{h}^{k- 1},w_{h}^{k- 1}))u_{h}^{k- 1}-u_{h}^{k- 1}-h\mathscr{B}_{1}(v_{h}^{k},w_{h}^{k})u_{h}^{k}\Vert_{p}$

$\leq\Vert \mathscr{B}_{1}(v_{h}^{k- 1},w_{h}^{k- 1})u_{h}^{k- 1}-\mathscr{B}_{1}(v_{h}^{k},w_{h}^{k})u_{h}^{k}\Vert_{p}$

The uniform boundedness of all elements, and the estimate in Remark 12 (i) imply
that the above converges to zero, and in fact

(4.3) $\Vert\frac{u_{h}^{k}-u_{h}^{k-1}}{h}-(\Lambda_{1}+\mathscr{B}_{1}(v_{h}^{k},w_{h}^{k}))u_{h[1_{p}}^{k}\leq hm(r)e^{(\mathcal{T}+h)(m}r)+\omega_{p})(\Vert \mathscr{B}u^{0}$

lip $+\Vert \mathcal{A}_{h}u^{0}||_{p})$

Turning now to the second component, we may argue as follows:

(4.4) $\Vert\frac{v_{h}^{k}-v_{h}^{k-1}}{h}-(\Lambda_{2}(u_{h}^{k})+\mathscr{B}_{2}(u_{h}^{k}))v_{h}^{k}\Vert_{p}$

$=h^{-1}\Vert(I-h\Lambda_{2}(u_{h}^{k}))v_{h}^{k}-v_{h}^{k-1}-h\mathscr{B}(u_{h}^{k})v_{h}^{k}\Vert_{p}$

Writing $(I-h\Lambda_{2}(u_{h}^{k}))$ as $(I-h\Lambda_{2}(T_{1}(h)u_{h}^{k}))-[(I-h\Lambda_{2}(T_{1}(h)u_{h}^{k}))-(I-h\Lambda_{2}(u_{h}^{k}))]$

it follows that the above term is bounded by

$\Vert \mathscr{B}_{2}(u_{h}^{k-1})v_{h}^{k-1}-\mathscr{B}_{2}(u_{h}^{k})v_{h}^{k}\Vert_{p}$

$+h^{-1}||[(I-h\Lambda_{2}(T_{1}(h)u_{h}^{k}))-(I-h\Lambda_{2}(u_{h}^{k}))]v_{h}^{k}\Vert_{p}$

$\leq\Vert \mathscr{B}_{2}(u_{h}^{k-1})v_{h}^{k-1}-\mathscr{B}_{2}(u_{h}^{k})v_{h}^{k}\Vert_{p}+a_{2}\Vert\nabla(T_{1}(h)u_{h}^{k}-u_{h}^{k})\cdot\nabla v_{h}^{k}\Vert_{p}$ .

Recalling the elliptic estimate of Lemma 2 and Lemma 11 we obtain uniform bound-
edness of $\Vert\nabla v_{h}^{k}\Vert_{\infty}$ . We use the estimate

(4.5) $\Vert\nabla v_{h}^{k}\Vert_{\infty}\leq C^{\prime}(\Vert\Lambda_{2}(T_{1}(h)u_{h}^{k})v_{h}^{k}\Vert_{p}+\Vert v_{h}^{k}\Vert_{p})$ ,
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and the fact that $\Vert \mathcal{A}_{h}u_{h}^{k}\Vert_{p}$ is uniformly bounded. However, to maintain rigour we
must also note the dependence of the constant $C^{\prime}$ on the term $u_{h}^{k}$ , which of course
may vary. In order to find a uniform constant we appeal to the fact that $\Vert\nabla u_{h}^{k}\Vert_{\infty}$ is
uniformly bounded and choose C’ sufficiently large (see Lemma 2). As in the proof of
lemma 10, we see that $\Vert\nabla(T_{1}(h)u_{h}^{k}-u_{h}^{k})$ llp converges to zero by noting that $\Vert\Lambda_{1}u_{h}^{k}\Vert_{p}$

is uniformly bounded. Thus so does the expression in equation (4.4). In fact we have

(4.6) $\Vert\frac{v_{h}^{k}-v_{h}^{k-1}}{h}-(\Lambda_{2}(u_{h}^{k})+\mathscr{B}_{2}(u_{h}^{k}))v_{h}^{k}\Vert_{p}$ $\leq m(r)\Vert v_{h}^{k}-v_{h}^{k-1}\Vert_{p}$

$+a_{2}.C\Vert\nabla(T_{1}(h)u_{h}^{k}-u_{h}^{k})\Vert_{p}$

(4.7) $\leq C_{1}.h+C_{2}.h^{1-\theta}$ .

Making a similar estimate for the third component, i.e. terms $w_{h}^{k}$ , which can be
done in almost exactly the same way, we see that equation (4.2) holds true. $\square $

An argument resembling very closely that given in [7] or [4], can now be applied
to show convergence of the scheme to a generalized solution to the system (RDS).
We obtain, therefore, the following proposition.

15 Proposition. Let $u_{\lambda}^{i}$ and $u_{\mu}^{j}$ be generated as described above, for $0<\lambda,$ $\mu<h_{0}$ ,
where $u^{0}\in D(\mathcal{A})$ . Let $r$ and $m(r)$ be defined as in Remark 9, and let $\hat{u}\in D(\mathcal{A})$ .
Then the following estimate holds

$(1-\lambda m(r))^{-i}(1-\mu m(r))^{-j}\Vert u_{i}^{\lambda}-u_{j}^{\mu}\Vert$

$\leq 2\Vert u_{0-u||+\{(\lambda i-\mu j)^{2}+\lambda^{2}i+\mu^{2}j\}^{\frac{1}{2}}.\Vert(\mathcal{A}+\mathcal{B})u\Vert}^{\wedge}\wedge$

(4.8)

$+\sum_{k=1}^{i}\lambda\Vert f_{k}^{\lambda}\Vert+\sum_{k=1}^{j}\mu\Vert f_{k}^{\mu}\Vert$ .

Combining this with the estimates we have obtained for the difference terms $\dot{P}_{\lambda}$ and
$f_{\mu}^{j}$ , we obtain a Cauchy sequence converging to a continuous function $u(\cdot)$ : $[0, \tau]\rightarrow D$ ,
in the following sense

$u(t)=$
$\lim_{h\downarrow 0,ih\rightarrow t}u_{i}^{h}$

It remains to show regularity, and this is done using the results of [8].

16 Proposition. The solution $u(t)$ obtained above is in fact $C^{1}$ in the space $(L^{p})^{3}$ .
In other words, $u(t)\in C^{1}([0, \infty);(L^{p})^{3})$ .
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Proof. Let $u_{1}=(u_{1}, v_{1}, w_{2})$ and $u_{2}=(u_{2}, v_{2} , w_{2})$ be elements of the schemes
described above, for possibly different time-spacings $h$ . We shall use the notation

$\Vert u\Vert_{\theta}=\Vert((-\triangle)^{\theta}u, (-\triangle)^{\theta}v,$ $(-\triangle)^{\theta}w)\Vert_{p}$ , $u=(u, v, w)\in(L^{p})^{3}$

to represent the graph-norm of $(-\triangle)^{\theta}$ . Note that this stronger norm satisfies
(4.9) $\Vert u\Vert_{p}\leq C\Vert u\Vert_{\theta}$

for some constant $C$ . We shall next divide up the operator $\mathcal{A}+\mathscr{B}$ in a different way,
namely $ A+\Psi$ , for
(4.10)

$A\left(\begin{array}{l}u\\v\\w\end{array}\right)=\left(\begin{array}{l}d_{l}\triangle u\\d_{2}\triangle v\\d_{3}\triangle w\end{array}\right)$ and $\Psi\left(\begin{array}{l}u\\v\\w\end{array}\right)=\left(\begin{array}{l}-e_{1}E\cdot\nabla u\\-e_{2}E\cdot\nabla v+a_{2}\nabla u\cdot\nabla v\\e_{3}E\cdot\nabla w-a_{3}\nabla u\cdot\nabla w\end{array}\right)+\mathscr{B}\left(\begin{array}{l}u\\v\\w\end{array}\right)$ .

It follows that, since $\Vert\nabla u_{i}\Vert_{\infty},$ $\Vert\nabla v_{i}\Vert_{\infty}$ and $\Vert\nabla w_{i}\Vert_{\infty}$ are all uniformly bounded,

$|1^{\Psi u_{1}-\Psi u_{2}\Vert_{p}}\leq\Vert \mathscr{B}u_{1}-\mathscr{B}u_{2}\Vert_{p}+\Vert\nabla u_{1}\cdot\nabla v_{1}-\nabla u_{2}\cdot\nabla v_{2}\Vert_{p}$

$+\Vert\nabla u_{1}\cdot\nabla w_{1}-\nabla u_{2}\cdot\nabla w_{2}\Vert_{p}$

$\leq m(r)\Vert u_{1}-u_{2}\Vert_{p}$

+11 $\nabla u_{1}\cdot(\nabla v_{1}-\nabla v_{2})\Vert_{p}+\Vert(\nabla u_{1}-\nabla u_{2})\cdot\nabla v_{2}\Vert_{p}$

$+\Vert\nabla u_{1}\cdot(\nabla w_{1}-\nabla w_{2})\Vert_{p}+\Vert(\nabla u_{1}-\nabla u_{2})\cdot\nabla w_{2}\Vert_{p}$

$\leq m(r)||u_{1}-..u_{2}\Vert_{p}++\Vert\nabla u_{1}||_{\infty}||\nabla w_{1}-\nabla w_{2}\Vert_{p}+\Vert\nabla w_{2}\Vert_{\infty}\Vert\nabla u_{1}-\nabla u_{2}\Vert_{p}+||\nabla u_{1}||_{\infty}||\nabla v_{1}-\nabla v_{2}\Vert_{p}+||\nabla v_{2}||_{\infty}.||.\nabla u_{1}-\nabla u_{2}||_{p}$

Next we use (4.9) and the estimate (3.14) for fractional powers, as employed in the
proof of Lemma 10, to obtain
(4.11) $\Vert\Psi u_{1}-\Psi u_{2}\Vert_{p}\leq C’$ . $\Vert u_{1}-u_{2}\Vert_{\theta}$

for some constant $C$‘. To satisfy the hypothesis of [8] it remains to show an exponential-
type growth condition, but this is satisfied automatically since we have the estimates
(3.7) through (3.9) for $t\in[0, \tau]$ . Thereby the regularity theorem of [8] holds and we
obtain the statement of the proposition. $\square $

The differentiability with respect to time of the function $u(\cdot)$ , and the fact that it
is a mild solution to the evolution equation (3.3) imply that the derivative is in fact
equal to $(\mathcal{A}+\mathscr{B})u(t)$ in the sense of $L^{\rho}$ and hence $L^{1}$ (see [7]). In summary then,
we have the following theorem.

17 Theorem. Let $u_{0}=$ $(u_{0} , v_{0}, w_{0})\in D(\mathcal{A})\cap(L^{\infty})^{3}$ . Then the equation (RDS)
has a strong solution $u(t)=(u(t, \cdot),$ $v(t, \cdot),$ $w(t, \cdot))$ , which is the limit of the scheme
defined in Section 2.
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