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Nevanlinna-type spaces on the upper half plane

Yasuo IIDA

Abstract

In this paper, we shall define the Smirnov class 91, and its subspace
NP, p > 1, on the upper half plane and show some properties of .
and a canonical factorization theorem for 9P.

0. Introduction.

Let U be the unit disk in the complex plane and T the unit circle. The
class N?, p > 1, is the class of all of holomorphic functions f on U which
satisfy

sup_ [ (108" I£(r¢)1) do(€) < oo,

o0<r<1
where do denotes the normalized Lebesgue measure on T'. Letting p =1, we
have the Nevanlinna class N. It is well-known that each function f in N has
the nontangential limit f*(¢) = l_1g1_ f(r¢) (ae. (€T).

We let the Smirnov class, N:, consist of all holomorphic functions f on
U such that log(1 + |f(2)|) < Q[#](2) (2 € U) for some ¢ € L'(T), ¢ 2 0,
where the right side means the Poisson integral in U.

The class N?, p > 1, lies between the Hardy spaces H? (0 < ¢ £ o)
and N,, i.e., we have HfC NP C N, (0 < g £ 0o, p > 1). These including
relations are proper. The notion of N? was introduced by Stoll [7] and has
been explored by several authors. N and its subspaces (N, , N? and HY) are
called Nevanlinna-type spaces.

Let D := {z € C|Imz > 0}. Krylov [3] introduced the Nevanlinna class
9 on D as follows:
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A holomorphic function f on D is said to belong to the class I if there
holds

sup/ log® | f(z + iy)| dz < +o0.
y>0JR

In this paper, we shall define the Smirnov class 91, and the class 9% (p > 1) on
D, analogous to the definitions of N, and N? (p > 1), that is, we let R, consist
of all holomorphic functions f on D such that log* |f(2)| £ P[¢](z) (z € D)
for some ¢ € L'(R), ¢ 2 0, where the right side means the Poisson integral

on D, and we let 9%, p > 1, consist of all holomorphic functions f on D
such that

sup/ (log"’ |f(z + iy)l)pdz < +o00.
y>0JR

First we obtain some properties of the class J1,. Moreover, a factorization
theorem for 9% is also given.

‘1. Preliminaries. _
Let v be a real measure on T and ¥(2) = (z —1)/(2+1) (z € D). Then
there corresponds a finite real measure p on R such that

[ aeyaue = [ (ovHmam (ke cm),
R T

where T* =T \ {1}. Let H(w, n) = (n + w)/(n —w) ((w,n) € U x T).
There holds

ay ;[ = [ HEE, ndm
- /T H(¥(2), 1) dv(n) —iaz (z € D),
where a = —v({1}). We write Poisson integrals as follows:

PUE) =7 [ = du® =s+iweD),
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Q) = [ =L am weu)
Taking the real parts in (1.1), we have

(1.2) Plr(1+ t*)du(t)](z) = Q[v)(¥(2)) + a- Imz (z € D).

2. Some properties on N, N, and NP.
In this section, we collect some properties on Nevanlinna-type spaces on
the unit disk. For the following results, the reader is referred to [1], [5] and

[7)-
Proposition 2.1 Let f € N, f #0. Then f can be factored as follows,

o) = FETHAE,

wherea € T,

B(z) =2z H lan| a"_— (z € U) is a Blaschke product determined by

the zeros of f,

F)=exp( [ $52 10g15°(0)1do(0)),
TC z

5@ =ew (- [ £2an0)) (=12

(v; are positive singular measures, and vy, and v, are mutually singular).
Ezcept for the choice of the constant a € T, the factorization is unique.

Remark that when f € N,, 1, =0, ie., S2(2) = 1.

Proposition 2.2 Let f € N? (p> 1), f #0. Then f can be expressed
as follows,

f(2) = aB(2)F(2)5(2),
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where a, B(z) and F(z) are same as those in Proposition 2.1. Moreover, S(z)
corresponds to Sy(z).

Proposition 2.3 Let f € N andp > 1. Then f € N” if and only if
(log* | f])? has the harmonic majorant.

Proposition 2.4  Let f € N. Then log* |f| has the least harmonic
majorant Qlog™ | f*| + va).

Proposition 2.5 Let f € NP. Then (log* |f|)? has the least harmonic
majorant Q[(log* |£*])?].

3. The Nevanlinna class 1.
In this section, we shall describe some properties of the class 9t. The
following theorems are Krylov’s results [3):

Theorem 3.1 Let f € M, f #0. Then f is factored, uniquely, in the
form

(31)  f(2) = ae™b(2)d(2)g9(z) (z € D),

where the factors above have the following properties:
(i) a€eT,az=0.
(ii)  b(2) is the Blaschke product with respect to the zeros of f.
1 I1+tz 1
(i) d(z) = exp (E /R PR ST log h(t) dt) ,
where h(t) 2 0, logh € LY(R, (1 + t2)~'dt) and log* h € L'(R).

(vi) g(z) =exp (%/ 1t+ iz du(t)) , where u is a finite real measure on
R E—

R, singular with respect to the Lebesgue measure, and such that
/(1 + t?) du™ (t) < oo.
R

If f is expressed in the form (8.1), then f € M.
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Theorem 3.2 A function f € M has the following properties:
(i) The nontangential limit f*(z) exists for a.e. € R.

(ii) sup/log+ |f(z +iy)|dz = lim/log+ |f(z + ty)| dx
>0 JR y=0t JR

= [t @ldet [ w(1+at) dut (@),

Proofs of Theorems 3.1 and 3.2. See [3].

4. The Smirnov class N,.
Recall that a convex function ¢ on R is strongly convez if ¢ is nonnegative,

t
nondecreasing and lim w = 00
tooo ¢

Theorem 4.1 Let f € M, f # 0. Then the following assertions are
mutually equivalent:
1 i) fen.
(i) foU~!e N..
(iii) wp <0, in the factorization (3.1).
(iv) lim / log* | £ (z + iy)| dz = / log* | f*(z)| dz.
y—0t Jr R

(v) There egists a strongly convex function @ such that
sup/ o(log* | f(z + iy)|) dz < oo.
y>0JR

(vi) The family {log™ | f(z + iy)|}y>0 is uniformly integrable on R.

Proof. That (i), (ii), (iii) and (iv) are mutually equivalent is the same
as [4, Corollary 2.4].

Suppose f € M,. Then Proposition 2.4 implies log™ [(f o ¥~ 1)(w)| <
Qlog™ |(f o ¥~1)*|](w), hence log™ |f(2)| < P[log* |f*|](z). We have, for a
strongly convex function ¢,

o(log™ |f(2)]) £ o(Pllog™ |£*[1(2)) £ Ple(log™ |£*]))(2),

where we utilize Jensen’s inequality [5, p.31]. Therefore / o(log* |f(z +
R
iy)|) dz < co. Hence the family {log™* |f(z + iy)|}y>o is uniformly integrable
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on R by [5, Theorem 3.10]. Conversely, [5, Theorem 3.10] shows that if
the family {log™ | f(z + iy)|}y>0 is uniformly integrable on R, there exists a

strongly convex function ¢ such that sup / o(log* | f(z + iy)]) dz < o0.
y>0 /R

Remark. For each strongly convex function ¢ on R, we define H, to be
the class of all holomorphic functions f on D for which sup / o(log™ |f(z +
1y)|) dz < co. Then we note that

n, = U {H, | : strongly convex}.

5. The class 97, p > 1.

Let p > 1. We define ¢(t) on R by ¢(t) = t? for t = 0, and equal to zero
for t < 0. Note that this function ¢ is strongly convex. Then the class H,
coincides with the class 9. Therefore we have 9% C 91, (p > 1).

We easily have the following proposition by [6, Chapter II, Theorem 4.6).

Proposition 5.1 Letp > 1 and f € M. Then we have the following:
(i) (log* |f])P has the least harmonic majorant P[r], where 7 is a
finite real measure on R.

@ N7 lissup [ (log* If(a +iv)])"da

(iii) Let D; = {z € C|Imz > é}. Thenlog*|f(z)| = 0 as |2| = +o0
(z € Dy), for each § > 0.

Using the above proposition, we observe that 9 has the following prop-
erties:

Theorem 5.2 A function f € MP has the following properties:
(i) fo¥!eNr,
P P
(ii) sup/ (log“' lf(z+iy)|) dr = lim /‘(log+ |f(a:+z'y)|) dr
>0 JR 0+ JRr

= [ (1o&* 11" @)1)" dz
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Proof. Suppose f € M. Then f o ¥~! € N? by Proposition 2.3 and
part (i) in Proposition 5.1.
If f €9, then

sup [ (log* |f(@ +)) do = lim [ (1og* |f(@ +i)])”do
>0 JR y0T JR

by part (iii) in Proposition 5.1 and [2, Theorem 1]. Moreover, f o ¥~! € N?
and Proposition 2.5 show that (log* |f*|)? has the least harmonic majorant
P[(log™ | f*|)?], hence we have

/R(1°g+ |f‘(-"3)|)pd$éiggA(log+|f(x+iy)|)pdx

by part (ii) in Proposition 5.1. Finally, f o ¥~! € N? and Proposition 2.5
imply

3ggA(log+lf(w+iy)l)pdxé/R(log+ If‘(w)l)pdx-

Theorem 5.3 Letp > 1. Then f € 9P, f # 0, is ezpressed in the
form

(5.1)  f(2) = ae™*b(2)d(2)g(z) (z € D),

where the factors above have the following properties:
i) a€T,az0.
(ii)  b(z) is the Blaschke product with respect to the zeros of f.
1 [1+tz 1 '
(iii) d(z) =exp (-1;; /R 2118 log h(t) dt) ,
where h(t) 20, logh € L*(R,, (1 + t*)~'dt) and log™ h € L*(R).

1
(iv) g(z) =exp (; / 1t+ t; d,u(t)), where p is a finite real measure on
R E—

R, singular with respect to the Lebesgue measure, and

f (1 +£2) du* (t) < oo.
R

—119 —



If f is expressed in the form (5.1), then f € MP.
Proof. Let f € 9%, f # 0. Then we have

(f o ™) (w) = aB(w)F(w)S(w) (w e V)

by Proposition 2.2. In the factorization f(z) = aB(¥(2))F(¥(z))S(¥(2))
(z € D), b(2) := B(¥(z)) is the Blaschke product with respect to the zeros
of f, and the change of the variables n = ¥(t) (¢ € R) shows that d(z) :=
F(¥(z)) is of the form (iii). Note that, since log|(f o ¥~1)*| € LY(T), we
have log|f*| € L}(R, (1 + t?)"ldt)

Now in the proof of [4, Theorem 2.1], v, = 0 since f o ¥~! € NP, so
S(¥(2)) := S1(¥(2)) = g(z)e***, where g is of the form (iv). Since f belongs

to 91, we observe that & = 0 and that / (1 + %) du*(t) < oo by Theorem
R

3.1
Suppose, conversely, that f is of the form (5.1). Then

|£(2)] = [€***]|b(2)| exp(Pllog b + m(1 + £*)du(t))(2))-

Let vy be the measure on T concentrated on {1} and »5({1}) = —a. Let-
ting z = ¥~!(w), we have |exp(icz)] = exp(Re(—a(l + w)/(1 — w))) =
exp(Q[ro](w)).

Moreover, y determines a singular measure v on T \ {1}. Hence we see
that Pr(1 + t?)du(t)](2) = Q[v](w) by (1.2). Therefore

|(f 0 T (w)| = |B(w)| exp(Qllog(h 0 ¥™') + v + o) (w)) (w € V).

Since log™ |(f o ¥~1)(w)| £ Q[log* (ho ¥~!) 4+ v*](w), we have fo U1 € NP
Letting y — 0% in |f(z + iy)|, we see that |f*(z)| = h(z) for a.e. z € R.

By the way, (log*|f o ¥~!|)? has the least harmonic majorant v’ =
Q[{log™ |(f o ¥~1)*|}?] by Proposition 2.5, v := v’ o ¥ is the least harmonic
majorant of (log* |f|)?, that is, (log™ |f(2)|)? < P[(log* |f*|)?](2). Integrat-
ing the both sides, we have f € 0P.
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