Nevanlinna-type spaces on the upper half plane

Yasuo IIDA

Abstract

In this paper, we shall define the Smirnov class \mathfrak{N}_* and its subspace \mathfrak{N}^p , p > 1, on the upper half plane and show some properties of \mathfrak{N}_* and a canonical factorization theorem for \mathfrak{N}^p .

0. Introduction.

Let U be the unit disk in the complex plane and T the unit circle. The class N^p , p > 1, is the class of all of holomorphic functions f on U which satisfy

$$\sup_{0 < r < 1} \int_T \left(\log^+ |f(r\zeta)| \right)^p d\sigma(\zeta) < +\infty,$$

where $d\sigma$ denotes the normalized Lebesgue measure on T. Letting p=1, we have the Nevanlinna class N. It is well-known that each function f in N has the nontangential limit $f^*(\zeta) = \lim_{n \to \infty} f(r\zeta)$ (a.e. $\zeta \in T$).

the nontangential limit $f^*(\zeta) = \lim_{\substack{r \to 1^- \ }} f(r\zeta)$ (a.e. $\zeta \in T$). We let the Smirnov class, N_* , consist of all holomorphic functions f on U such that $\log(1+|f(z)|) \leq Q[\phi](z)$ $(z \in U)$ for some $\phi \in L^1(T)$, $\phi \geq 0$, where the right side means the Poisson integral in U.

The class N^p , p > 1, lies between the Hardy spaces H^q $(0 < q \le \infty)$ and N_* , i.e., we have $H^q \subset N^p \subset N_*$ $(0 < q \le \infty, p > 1)$. These including relations are proper. The notion of N^p was introduced by Stoll [7] and has been explored by several authors. N and its subspaces $(N_*, N^p \text{ and } H^q)$ are called Nevanlinna-type spaces.

Let $D := \{z \in \mathbb{C} \mid \text{Im} z > 0\}$. Krylov [3] introduced the Nevanlinna class \mathfrak{N} on D as follows:

Mathematics Subject Classification (2000): 30H05, 46E10.

Key words and phrases. Nevanlinna class, Smirnov class, N^p , canonical factorization theorem.

A holomorphic function f on D is said to belong to the class $\mathfrak N$ if there holds

$$\sup_{y>0} \int_{\mathbf{R}} \log^+ |f(x+iy)| \, dx < +\infty.$$

In this paper, we shall define the Smirnov class \mathfrak{N}_* and the class \mathfrak{N}^p (p>1) on D, analogous to the definitions of N_* and N^p (p>1), that is, we let \mathfrak{N}_* consist of all holomorphic functions f on D such that $\log^+|f(z)| \leq P[\phi](z)$ $(z \in D)$ for some $\phi \in L^1(\mathbf{R})$, $\phi \geq 0$, where the right side means the Poisson integral on D, and we let \mathfrak{N}^p , p>1, consist of all holomorphic functions f on D such that

$$\sup_{y>0} \int_{\mathbf{R}} \left(\log^+ |f(x+iy)| \right)^p dx < +\infty.$$

First we obtain some properties of the class \mathfrak{N}_* . Moreover, a factorization theorem for \mathfrak{N}^p is also given.

1. Preliminaries.

Let ν be a real measure on T and $\Psi(z)=(z-i)/(z+i)$ $(z\in\overline{D})$. Then there corresponds a finite real measure μ on $\mathbb R$ such that

$$\int_{\mathbf{R}} h(t) d\mu(t) = \int_{T^{\bullet}} (h \circ \Psi^{-1})(\eta) d\nu(\eta) \quad (h \in C_c(\mathbf{R})),$$

where $T^* = T \setminus \{1\}$. Let $H(w, \eta) = (\eta + w)/(\eta - w)$ $((w, \eta) \in U \times T)$. There holds

(1.1)
$$\frac{1}{i} \int_{\mathbf{R}} \frac{1+tz}{t-z} d\mu(t) = \int_{T^*} H(\Psi(z), \eta) d\nu(\eta)$$
$$= \int_{T} H(\Psi(z), \eta) d\nu(\eta) - i\alpha z \quad (z \in D),$$

where $\alpha = -\nu(\{1\})$. We write Poisson integrals as follows:

$$P[\mu](z) = \frac{1}{\pi} \int_{\mathbf{R}} \frac{y}{(x-t)^2 + y^2} d\mu(t) \quad (z = x + iy \in D),$$

$$Q[\nu](w) = \int_{T} \frac{1 - |w|^{2}}{|\eta - w|^{2}} d\nu(\eta) \quad (w \in U).$$

Taking the real parts in (1.1), we have

(1.2)
$$P[\pi(1+t^2)d\mu(t)](z) = Q[\nu](\Psi(z)) + \alpha \cdot \text{Im}z \quad (z \in D).$$

2. Some properties on N, N_* and N^p .

In this section, we collect some properties on Nevanlinna-type spaces on the unit disk. For the following results, the reader is referred to [1], [5] and [7].

Proposition 2.1 Let $f \in N$, $f \neq 0$. Then f can be factored as follows,

$$f(z) = \frac{aB(z)F(z)S_1(z)}{S_2(z)},$$

where $a \in T$,

 $B(z) = z^m \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$ $(z \in U)$ is a Blaschke product determined by

the zeros of f,

$$F(z) = \exp\left(\int_T \frac{\zeta + z}{\zeta - z} \log |f^*(\zeta)| \, d\sigma(\zeta)\right),\,$$

$$S_j(z) = \exp\left(-\int_T \frac{\zeta + z}{\zeta - z} d\nu_j(\zeta)\right) \quad (j = 1, 2)$$

(ν_j are positive singular measures, and ν_1 and ν_2 are mutually singular). Except for the choice of the constant $a \in T$, the factorization is unique.

Remark that when $f \in N_*$, $\nu_2 = 0$, i.e., $S_2(z) \equiv 1$.

Proposition 2.2 Let $f \in N^p$ (p > 1), $f \neq 0$. Then f can be expressed as follows,

$$f(z) = aB(z)F(z)S(z),$$

where a, B(z) and F(z) are same as those in Proposition 2.1. Moreover, S(z) corresponds to $S_1(z)$.

Proposition 2.3 Let $f \in N$ and p > 1. Then $f \in N^p$ if and only if $(\log^+ |f|)^p$ has the harmonic majorant.

Proposition 2.4 Let $f \in N$. Then $\log^+ |f|$ has the least harmonic majorant $Q[\log^+ |f^*| + \nu_2]$.

Proposition 2.5 Let $f \in N^p$. Then $(\log^+ |f|)^p$ has the least harmonic majorant $Q[(\log^+ |f^*|)^p]$.

3. The Nevanlinna class \mathfrak{N} .

In this section, we shall describe some properties of the class \mathfrak{N} . The following theorems are Krylov's results [3]:

Theorem 3.1 Let $f \in \mathfrak{N}$, $f \neq 0$. Then f is factored, uniquely, in the form

$$(3.1) f(z) = ae^{i\alpha z}b(z)d(z)g(z) (z \in D),$$

where the factors above have the following properties:

- (i) $a \in T$, $\alpha \geq 0$.
- (ii) b(z) is the Blaschke product with respect to the zeros of f.

(iii)
$$d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log h(t) dt\right),$$

where $h(t) \ge 0$, $\log h \in L^1(\mathbf{R}, (1+t^2)^{-1} dt)$ and $\log^+ h \in L^1(\mathbf{R})$.

(vi)
$$g(z) = \exp\left(\frac{1}{i}\int_{\mathbf{R}} \frac{1+tz}{t-z} d\mu(t)\right)$$
, where μ is a finite real measure on \mathbf{R} , singular with respect to the Lebesgue measure, and such that
$$\int_{\mathbf{R}} (1+t^2) d\mu^+(t) < \infty.$$

If f is expressed in the form (3.1), then $f \in \mathfrak{N}$.

Theorem 3.2 A function $f \in \mathfrak{N}$ has the following properties:

(i) The nontangential limit $f^*(x)$ exists for a.e. $x \in \mathbf{R}$.

(ii)
$$\sup_{y>0} \int_{\mathbf{R}} \log^+ |f(x+iy)| \, dx = \lim_{y\to 0^+} \int_{\mathbf{R}} \log^+ |f(x+iy)| \, dx$$

$$= \int_{\mathbf{R}} \log^+ |f^*(x)| \, dx + \frac{1}{2} \int_{\mathbf{R}} \pi (1+x^2) \, d\mu^+(x).$$

Proofs of Theorems 3.1 and 3.2. See [3].

4. The Smirnov class \mathfrak{N}_{*} .

Recall that a convex function φ on \mathbf{R} is strongly convex if φ is nonnegative, nondecreasing and $\lim_{t\to\infty}\frac{\varphi(t)}{t}=\infty$.

Theorem 4.1 Let $f \in \mathfrak{N}$, $f \neq 0$. Then the following assertions are mutually equivalent:

- (i) $f \in \mathfrak{N}_*$.
- (ii) $f \circ \Psi^{-1} \in N_*$.
- (iii) $\mu \leq 0$, in the factorization (3.1).

(iv)
$$\lim_{y\to 0^+} \int_{\mathbb{R}} \log^+ |f(x+iy)| \, dx = \int_{\mathbb{R}} \log^+ |f^*(x)| \, dx.$$

(v) There exists a strongly convex function φ such that

$$\sup_{y>0} \int_{\mathbb{R}} \varphi(\log^+|f(x+iy)|) \, dx < \infty.$$

(vi) The family $\{\log^+ |f(x+iy)|\}_{y>0}$ is uniformly integrable on R.

Proof. That (i), (ii), (iii) and (iv) are mutually equivalent is the same as [4, Corollary 2.4].

Suppose $f \in \mathfrak{N}_*$. Then Proposition 2.4 implies $\log^+ |(f \circ \Psi^{-1})(w)| \le Q[\log^+ |(f \circ \Psi^{-1})^*|](w)$, hence $\log^+ |f(z)| \le P[\log^+ |f^*|](z)$. We have, for a strongly convex function φ ,

$$\varphi(\log^+ |f(z)|) \le \varphi(P[\log^+ |f^*|](z)) \le P[\varphi(\log^+ |f^*|)](z),$$

where we utilize Jensen's inequality [5, p.31]. Therefore $\int_{\mathbf{R}} \varphi(\log^+ |f(x+iy)|) dx < \infty$. Hence the family $\{\log^+ |f(x+iy)|\}_{y>0}$ is uniformly integrable

on R by [5, Theorem 3.10]. Conversely, [5, Theorem 3.10] shows that if the family $\{\log^+|f(x+iy)|\}_{y>0}$ is uniformly integrable on R, there exists a strongly convex function φ such that $\sup_{y>0}\int_{\mathbf{R}}\varphi(\log^+|f(x+iy)|)\,dx<\infty$.

Remark. For each strongly convex function φ on \mathbb{R} , we define H_{φ} to be the class of all holomorphic functions f on D for which $\sup_{y>0} \int_{\mathbb{R}} \varphi(\log^+|f(x+iy)|) dx < \infty$. Then we note that

$$\mathfrak{N}_{\bullet} = \bigcup \{ H_{\varphi} \, | \, \varphi : \text{strongly convex} \}.$$

5. The class \mathfrak{N}^p , p > 1.

Let p > 1. We define $\varphi(t)$ on \mathbb{R} by $\varphi(t) = t^p$ for $t \ge 0$, and equal to zero for t < 0. Note that this function φ is strongly convex. Then the class H_{φ} coincides with the class \mathfrak{N}^p . Therefore we have $\mathfrak{N}^p \subset \mathfrak{N}_*$ (p > 1).

We easily have the following proposition by [6, Chapter II, Theorem 4.6].

Proposition 5.1 Let p > 1 and $f \in \mathfrak{N}^p$. Then we have the following:

- (i) $(\log^+ |f|)^p$ has the least harmonic majorant $P[\tau]$, where τ is a finite real measure on \mathbb{R} .
- (ii) $\parallel \tau \parallel \leq \sup_{y>0} \int_{\mathbb{R}} \left(\log^+ |f(x+iy)| \right)^p dx$.
- (iii) Let $D_{\delta} = \{z \in \mathbb{C} \mid \text{Im} z > \delta\}$. Then $\log^+ |f(z)| \to 0$ as $|z| \to +\infty$ $(z \in \overline{D_{\delta}})$, for each $\delta > 0$.

Using the above proposition, we observe that \mathfrak{N}^p has the following properties:

Theorem 5.2 A function $f \in \mathfrak{N}^p$ has the following properties:

(i) $f \circ \Psi^{-1} \in N^p$.

(ii)
$$\sup_{y>0} \int_{\mathbf{R}} \left(\log^{+} |f(x+iy)| \right)^{p} dx = \lim_{y\to 0^{+}} \int_{\mathbf{R}} \left(\log^{+} |f(x+iy)| \right)^{p} dx$$

$$= \int_{\mathbf{R}} \left(\log^{+} |f^{*}(x)| \right)^{p} dx.$$

Proof. Suppose $f \in \mathfrak{N}^p$. Then $f \circ \Psi^{-1} \in N^p$ by Proposition 2.3 and part (i) in Proposition 5.1.

If $f \in \mathfrak{N}^p$, then

$$\sup_{y>0} \int_{\mathbf{R}} \left(\log^{+} |f(x+iy)| \right)^{p} dx = \lim_{y\to 0^{+}} \int_{\mathbf{R}} \left(\log^{+} |f(x+iy)| \right)^{p} dx$$

by part (iii) in Proposition 5.1 and [2, Theorem 1]. Moreover, $f \circ \Psi^{-1} \in N^p$ and Proposition 2.5 show that $(\log^+ |f^*|)^p$ has the least harmonic majorant $P[(\log^+ |f^*|)^p]$, hence we have

$$\int_{\mathbf{R}} \left(\log^+ |f^*(x)| \right)^p dx \le \sup_{y>0} \int_{\mathbf{R}} \left(\log^+ |f(x+iy)| \right)^p dx$$

by part (ii) in Proposition 5.1. Finally, $f \circ \Psi^{-1} \in \mathbb{N}^p$ and Proposition 2.5 imply

$$\sup_{y>0} \int_{\mathbf{R}} \left(\log^+ |f(x+iy)| \right)^p dx \le \int_{\mathbf{R}} \left(\log^+ |f^*(x)| \right)^p dx.$$

Theorem 5.3 Let p > 1. Then $f \in \mathfrak{M}^p$, $f \neq 0$, is expressed in the form

$$(5.1) f(z) = ae^{i\alpha z}b(z)d(z)g(z) (z \in D),$$

where the factors above have the following properties:

- (i) $a \in T$, $\alpha \geq 0$.
- (ii) b(z) is the Blaschke product with respect to the zeros of f.

(iii)
$$d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log h(t) dt\right),$$

where $h(t) \ge 0$, $\log h \in L^1(\mathbf{R}, (1+t^2)^{-1} dt)$ and $\log^+ h \in L^p(\mathbf{R})$.

(iv)
$$g(z) = \exp\left(\frac{1}{i} \int_{\mathbf{R}} \frac{1+tz}{t-z} d\mu(t)\right)$$
, where μ is a finite real measure on \mathbf{R} , singular with respect to the Lebesgue measure, and

$$\int_{\mathbf{R}} (1+t^2) \, d\mu^+(t) < \infty.$$

If f is expressed in the form (5.1), then $f \in \mathfrak{N}^p$.

Proof. Let $f \in \mathfrak{N}^p$, $f \neq 0$. Then we have

$$(f \circ \Psi^{-1})(w) = aB(w)F(w)S(w) \quad (w \in U)$$

by Proposition 2.2. In the factorization $f(z) = aB(\Psi(z))F(\Psi(z))S(\Psi(z))$ $(z \in D), b(z) := B(\Psi(z))$ is the Blaschke product with respect to the zeros of f, and the change of the variables $\eta = \Psi(t)$ $(t \in \mathbf{R})$ shows that $d(z) := F(\Psi(z))$ is of the form (iii). Note that, since $\log |(f \circ \Psi^{-1})^*| \in L^1(T)$, we have $\log |f^*| \in L^1(\mathbf{R}, (1+t^2)^{-1}dt)$

Now in the proof of [4, Theorem 2.1], $\nu_2 = 0$ since $f \circ \Psi^{-1} \in N^p$, so $S(\Psi(z)) := S_1(\Psi(z)) = g(z)e^{i\alpha z}$, where g is of the form (iv). Since f belongs to \mathfrak{N} , we observe that $\alpha \geq 0$ and that $\int_{\mathbf{R}} (1+t^2) d\mu^+(t) < \infty$ by Theorem 3.1.

Suppose, conversely, that f is of the form (5.1). Then

$$|f(z)| = |e^{i\alpha z}||b(z)|\exp(P[\log h + \pi(1+t^2)d\mu(t)](z)).$$

Let ν_0 be the measure on T concentrated on $\{1\}$ and $\nu_0(\{1\}) = -\alpha$. Letting $z = \Psi^{-1}(w)$, we have $|\exp(i\alpha z)| = \exp(\operatorname{Re}(-\alpha(1+w)/(1-w))) = \exp(Q[\nu_0](w))$.

Moreover, μ determines a singular measure ν on $T \setminus \{1\}$. Hence we see that $P[\pi(1+t^2)d\mu(t)](z) = Q[\nu](w)$ by (1.2). Therefore

$$|(f \circ \Psi^{-1})(w)| = |B(w)| \exp(Q[\log(h \circ \Psi^{-1}) + \nu + \nu_0](w)) \quad (w \in U).$$

Since $\log^+ |(f \circ \Psi^{-1})(w)| \leq Q[\log^+(h \circ \Psi^{-1}) + \nu^+](w)$, we have $f \circ \Psi^{-1} \in N^p$. Letting $y \to 0^+$ in |f(x+iy)|, we see that $|f^*(x)| = h(x)$ for a.e. $x \in \mathbb{R}$.

By the way, $(\log^+|f\circ\Psi^{-1}|)^p$ has the least harmonic majorant $v'=Q[\{\log^+|(f\circ\Psi^{-1})^*|\}^p]$ by Proposition 2.5, $v:=v'\circ\Psi$ is the least harmonic majorant of $(\log^+|f|)^p$, that is, $(\log^+|f(z)|)^p \leq P[(\log^+|f^*|)^p](z)$. Integrating the both sides, we have $f\in\mathfrak{N}^p$.

Acknowledgement. The author wishes to thank the referee for detailed comments and valuable suggestions.

References

- [1] J. S. Choa and H. O. Kim, Composition operators between Nevanlinna -type spaces, J. Math. Anal. Appl. 257 (2001), 378-402.
- [2] T. M. Flett, Mean values of subharmonic functions on half-spaces, J. London Math. Soc. (2) 1 (1969), 375-383.
- [3] V. I. Krylov, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939); Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.
- [4] N. Mochizuki, Nevanlinna and Smirnov classes on the upper half plane, Hokkaido Math. J. 20 (1991), 609-620.
- [5] M. Rosenblum and J. Rovnyak, *Topics in Hardy Classes and Univalent Functions*, Birkhäuser Verlag, Basel-Boston-Berlin, 1994.
- [6] E. M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, 1971.
- [7] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158.

Yasuo Iida Graduate School of Information Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 Japan e-mail: iida@ims.is.tohoku.ac.jp

Current address:

Department of Mathematics, School of Liberal Arts and Sciences, Iwate Medical University, 3-16-1 Honcho-dori, Morioka 020-0015 Japan e-mail: yiida@iwate-med.ac.jp

Received January 9, 2001