On Ricci curvature of CR-submanifolds with rank one totally real distribution

Tooru Sasahara

Abstract

In a recent paper, Bang-yen Chen obtained sharp inequalities between the maximum Ricci curvature and the squared mean curvature for arbitrary submanifolds in real space forms and totally real submanifolds in complex space forms ($[6,7]$). In this paper we give sharp inequalities between the maximum Ricci curvature and the squared mean curvature for arbitrary submanifolds in complex space form. Moreover we investigate CR-submanifolds in complex space forms and in the nearly Kaehler six-sphere which realize the equality case of the inequalities mentioned above.

1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C42.
Key words and phrases. maximum Ricci curvature, CR-submanifold, normal almost contact metric structure.

1 Introduction

Let M^{n} be an n-dimensional submanifold of an m-dimensional manifold \tilde{M}^{m}. Denote by h the second fundamental form of M^{n} in \tilde{M}^{m}. Then the mean curvature vector \vec{H} of the immersion is given by $\vec{H}=\frac{1}{n}$ trace h. A submanifold is said to be minimal if its mean curvature vector vanishes identically. Denote by D the linear connection induced on the normal bundle $T^{\perp} M^{n}$ of M^{n} in \tilde{M}^{m}, by R and \tilde{R} the Riemann curvature tensors of M and of \tilde{M}^{m} respectively, and by R^{D} the curvature tensor of the normal connection D. Then the equation of Gauss and Ricci are given respectively by

$$
\begin{gather*}
R(X, Y) Z=\left\langle A_{h(Y, Z)} X, W\right\rangle-\left\langle A_{h(X, Z)} Y, W\right\rangle+\tilde{R}(X, Y) Z \tag{1.1}\\
R^{D}(X, Y ; \xi, \eta)=\tilde{R}(X, Y ; \xi, \eta)+\left\langle\left[A_{\xi}, A_{\eta}\right](X), Y\right\rangle \tag{1.2}
\end{gather*}
$$

for vectors X, Y, Z, W tangent to M and ξ, η normal to M, where A is the shape operator. For the second fundamental form h, we define the covariant derivative $\bar{\nabla} h$ of h with respect to the connection on $T M \oplus T^{\perp} M$ by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) . \tag{1.3}
\end{equation*}
$$

The equation of Codazzi is given by

$$
\begin{equation*}
(\tilde{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{1.4}
\end{equation*}
$$

The Ricci tensor S and the scalar curvature τ at a point $p \in M^{n}$ are given respectively by $S(X, Y)=\sum_{i=1}^{n}\left\langle R\left(e_{i}, X\right) Y, e_{i}\right\rangle$ and $\tau=\sum_{i=1}^{n} S\left(e_{i}, e_{i}\right)$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the tangent space $T_{p} M^{n}$.

Let $\overline{\text { Ric }}$ denote the maximum Ricci curvature function on M^{n} defined by

$$
\begin{equation*}
\overline{\operatorname{Ric}}(p)=\max \left\{S(X, X) \mid X \in T_{p}^{1} M^{n}\right\}, \quad p \in M^{n}, \tag{1.5}
\end{equation*}
$$

where $T_{p}^{1} M^{n}$ is the unit tangent vector space of M^{n} at p.
When M is a submanifold of an almost Hermitian manifold \tilde{M}, a subspace V of $T_{p} M$ is called totally real if $J V$ is contained in the normal space $T_{p}^{\perp} M$ of M at p. The submanifold M is called totally real if each tangent space of M is totally real; and M is called a $C R$-submanifold if there exists a differential holomorphic distribution \mathcal{H} on M such that the orthogonal complement \mathcal{H}^{\perp} of \mathcal{H} in $T M$ is a totally real distribution ([2]). A CR-submanifold is called proper if it is neither totally real (i.e., $\mathcal{H}^{\perp}=T M$) nor holomorphic (i.e., $\mathcal{H}=T M$).

Let M be a $(2 n+1)$-dimensional CR-submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ and we put $\mathcal{H}^{\perp}=\operatorname{Span}\left\{e_{2 n+1}\right\}$. We denote the tangential component of $J X$ by $P X$. Then ($P, e_{2 n+1}, \omega^{1}, g$) defines an almost contact metric structure on (M, g), where $\omega^{1}(X):=g\left(e_{2 n+1}, X\right)$ and g is an induced metric ([16]). M is said to be normal if the tensor field S_{M} defined by

$$
\begin{equation*}
S_{M}(X, Y)=[P X, P Y]+P^{2}[X, Y]-P[X, P Y]-P[P X, Y]+2 d \omega_{1}(X, Y) e_{2 n+1} \tag{1.6}
\end{equation*}
$$

vanishes ([1]).
For the maximum Ricci curvature and the squared mean curvature H^{2} for n-dimensional submanifolds in m-dimensional complex space forms $\tilde{M}^{m}(4 c)$ of constant holomorphic sectional curvature, we have the following:

$$
\begin{array}{lll}
\overline{R i c} \leq(n+2) c+\frac{n^{2}}{4} H^{2} & \text { for } & c \geq 0 \\
\overline{R i c} \leq(n-1) c+\frac{n^{2}}{4} H^{2} & \text { for } & c \leq 0 . \tag{1.8}
\end{array}
$$

In case $c<0$ and $\operatorname{dim} M=3$, the inequality is known as Chen's basic inequality (cf. [8]). In [8] Chen has completely classified 3-dimensional proper CR-submanifold which satisfy the equality case of (1.8).

In this article, we study proper CR-submanifolds with $\operatorname{dim} \mathcal{H}^{\perp}=1$ of complex space forms satifying the equality case of the inequalities (1.7) or (1.8). In particular, in case $c<0$, we are able to establish the explicit representation of such submanifolds which are normal in an anti-de Sitter space time via Hopf's fibration, and in case $c \geq 0$, classify 3 -dimensional normal CR-submanifolds satisfying the equality case of (1.7). The inequality (1.8) also holds for arbitrary submanifolds in real space forms $R^{m}(c)$ of constant sectional curvature c, too ([6]). In the last section, we investigate 3-dimensional CR-submanifolds in the nearly Kaehler 6-sphere which realize the equality case of the inequality.

2 Main Results

Theorem 1 Let M be a 3-dimensional CR-submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ in $\tilde{M}^{m}(4 c), c \in\{0,1\}$ satisfying the equality case of (1.7). Then M is normal if and only if it is one of the following.
(1) M is an open portion of a product submanifold $\mathbf{C} \times \mathbf{R}$ in $\mathbf{C}^{m-1} \times \mathbf{C}$,
(2) M is an open portion of a geodesic sphere of radius $\frac{\pi}{4}$ in $\mathbf{C} P^{2}(4)$.

Consider the complex number ($m+1$)-space \mathbf{C}_{1}^{m+1} endowed with the pseudo-Euclidean metric g_{0} given by $g_{0}=-d z_{0} d \bar{z}_{0}+\sum_{j=1}^{m} d z_{j} d \bar{z}_{j}$, where \bar{z}_{k} denotes the complex conjugate of z_{k}. On \mathbf{C}_{1}^{m+1} we
define $(z, w)=-z_{0} \bar{w}_{0}+\sum_{k=1}^{m} z_{k} \bar{w}_{k}$. Put $H_{1}^{2 m+1}(-r)=\left\{z=\left(z_{0} \cdot z_{1} \ldots \ldots z_{m}\right) \in \mathbf{C}_{1}^{m+1}:(z, z)=-\mathrm{r}^{2}\right\}$, It is known that $H_{1}^{2 m+1}(-1)$ together with the induced metric g is a pseudo-Riemannian manifold of constant sectional curvature -1 , which is known as an anti-de Sitter space time.

We put $H_{1}^{1}=\{\lambda \in \mathbf{C}: \lambda \bar{\lambda}=1\}$. The quotient space $H_{1}^{2 m+1}(-1) / \sim$, under the identification induced from the action, is the complex hyperbolic space $\mathbf{C} H^{m}(-4)$ with constant holomorphic sectional curvature -4 . The almost complex structure J on $\mathbf{C H}(-4)$ is induced from the canonical almost complex structure J on \mathbf{C}_{1}^{m+1}, the multiplication by i, via the totally geodesic fibration: $\pi: H_{1}^{2 m+1}(-1) \rightarrow \mathbf{C} H^{m}(-4)$.

We obtain the following general property.
Theorem 2 Let $x: M \rightarrow \mathbf{C} H^{m}(-4)$ be $a(2 n+1)$-dimensional $C R$-submanifold with dim $\mathcal{H}^{\perp}=1$. If M satisfies the equality case of (1.8), then \vec{H} is parallel i.e., $D \vec{H}=0$.

A submanifold is said to be linearly full in $\mathrm{CH}^{m}(-4)$ if it does not lie in any totally geodesic complex submanifold of $\mathbf{C H}(-4)$.

Theorem 3 Let U be a domain of $\mathbf{R}^{2 n}(n>1)$. Define $z: \mathbf{R}^{2} \times U \rightarrow \mathbf{C}_{1}^{m+1}$ by

$$
\begin{equation*}
z\left(s, t, x_{1}, x_{2}, \ldots, y_{1}, y_{2}\right)=\left(g\left(x_{1}, \ldots, y_{2}\right) e^{i s}, \sqrt{\frac{1}{2 n-2}} e^{i t}\right) \tag{2.1}
\end{equation*}
$$

where $|g|^{2}=-\frac{2 n-1}{2 n-2}$ and $g\left(x_{1}, \ldots, y_{2}\right) e^{i s}$ is a CR-submanifold of \mathbf{C}_{1}^{m} such that the unit totally real vector field is $\sqrt{\frac{2 n-2}{2 n-1}} \frac{\partial}{\partial s}$. Then $(z, z)=-1$ and the image $z\left(\mathbf{R}^{2} \times U\right)$ is invariant under the group H_{1}^{1}. Moreover the quotient space $z\left(\mathbf{R}^{2} \times U\right) / \sim$ is a $(2 n+1)$-dimensional CR-submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ which satisfies the equality case of (1.8) under the condition that the shape operator A_{η} with respect to the unit vector field $\eta \in \mathcal{H}^{\perp}$ has constant principal curvatures.

Conversely, in case $n>1$ and $m>n+1$, up to rigid motions of $\mathbf{C} H^{m}(-4)$, every linearly full $(2 n+1)$-dimensional CR-submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ which satisfies the equality case of (1.8) under the condition that the shape operator A_{η} with respect to the unit vector field $\eta \in \mathcal{H}^{\perp}$ has constant principal curvatures is obtained in such way.

3 The proof of Theorem 1

For arbitrary n-dimensional submanifolds M^{n} in complex space forms $\tilde{M}^{m}(4 c)$, we have the following.

Proposition 4 If M^{n} is an n-dimensional submanifold of complex space forms $\tilde{M}^{m}(4 c)$, then the maximum Ricci curvature $\overline{\text { Ric }}$ of M^{n} satifies the following inequalities:

$$
\begin{array}{lll}
\overline{R i c} \leq(n+2) c+\frac{n^{2}}{4} H^{2} & \text { for } & c \geq 0, \\
\overline{R i c} \leq(n-1) c+\frac{n^{2}}{4} H^{2} & \text { for } & c \leq 0 . \tag{3.2}
\end{array}
$$

The equality case of (3.1) holds at a point $p \in M$ if and only if there exists an orthonormal basis $e_{1}, \ldots, e_{2 m}$ at p such that e_{1}, \ldots, e_{n} are tangent to M and

$$
\begin{equation*}
(a) \overline{R i c}=S\left(e_{n}, e_{n}\right), \quad c \sum_{i=1}^{n-1}\left\langle J e_{i}, e_{n}\right\rangle^{2}=c \tag{3.3}
\end{equation*}
$$

$(b) h_{i n}^{s}=0, \quad \sum_{i}^{n-1} h_{i i}^{s}=h_{n n}^{s}:=\mu_{s}$,
where $1 \leq i \leq n-1$ and $n+1 \leq s \leq 2 m$.
The equality case of (3.2) holds at a point $p \in M$ if and only if there exists an orthonormal basis $e_{1}, \ldots, e_{2 m}$ at p such that e_{1}, \ldots, e_{n} are tangent to M and

$$
\begin{align*}
& (a) \overline{R i c}=S\left(e_{n}, e_{n}\right), \quad c \sum_{i=1}^{n-1}\left\langle J e_{i}, e_{n}\right\rangle^{2}=0 \tag{3.5}\\
& (b) h_{i n}^{s}=0, \quad \sum_{i}^{n-1} h_{i i}^{s}=h_{n n}^{s} \tag{3.6}
\end{align*}
$$

where $1 \leq i \leq n-1$ and $n+1 \leq s \leq 2 m$.
Proof: Put $\delta=\tau-n(n-1) c-\frac{n^{2}}{2} H^{2}-3 c\|P\|^{2}$, where $\|P\|^{2}:=\sum_{i, j=1}^{n}\left\langle e_{i}, J e_{j}\right\rangle^{2}$. Then from the Gauss equation (1.1), we have $n^{2} H^{2}=2\left(\delta+\|h\|^{2}\right)$, where $\|h\|^{2}$ is the squared norm of the second fundamental form. In a similar way to the proof of theorem 1 in [7], we have $S\left(e_{n}, e_{n}\right) \leq$ $(n-1) c+\frac{n^{2}}{4} H^{2}+3 c \sum_{i=1}^{n-1}\left\langle J e_{i}, e_{n}\right\rangle^{2}$.

First we recall the following result on CR-submanifolds from [4].
Lemma 5 Let M be a CR-submanifold of a Kaehler manifold \tilde{M}. Denote by $T^{\perp} M=J \mathcal{H}^{\perp} \oplus \nu$ the orthogonal decomposition of the normal bundle, where ν is a complex subbundle of $T^{\perp} M$. We have

$$
\begin{align*}
\left\langle\nabla_{U} Z, X\right\rangle & =\left\langle J\left(A_{J Z} U\right), X\right\rangle \tag{3.7}\\
A_{J \xi} X & =-A_{\xi} J X \tag{3.8}
\end{align*}
$$

for vector fields Z in \mathcal{H}^{\perp}, ξ in ν, U in $T M$ and vector field X in the holomorphic distribution \mathcal{H}.

Proof of Theorem 1

Case 1: $c=0$. In this case we consider two cases for a unit vector field $\eta \in \mathcal{H}^{\perp}$ to be either $\eta \in L$ or $\eta \notin L$, where L is the orthogonal complement of $\left\{e_{3}\right\}$ in $T_{p} M$ and e_{3} satisfies $\overline{\operatorname{Ric}}=S\left(e_{3}, e_{3}\right)$.

First, we consider the case where $\eta \notin L$. If we choose e_{4} in such way that $J \eta=e_{4}$, then we obtain that $A_{J e_{3}} e_{3}=\mu_{4} e_{3}$ and $\eta=e_{3}$ is a parallel vector field in the same way as lemma 8 in [8]. In general, for a $(2 n+1)$-dimensional CR-submanifold of $\tilde{M}^{m}(4 c)$ which satisfies the condition that $A_{J e_{2 n+1}} e_{2 n+1}=\mu_{2 n+2} e_{2 n+1}$ and $e_{2 n+1}$ is parallel, we have the following relation ([14]).

$$
\begin{align*}
& -2 c\langle P X, Y\rangle+2\left\langle A_{2 n+2} P A_{2 n+2} X, Y\right\rangle=\left(X \mu_{2 n+2}\right)\left\langle e_{2 n+1}, Y\right\rangle \tag{3.9}\\
& -\left(Y \mu_{2 n+2}\right)\left\langle e_{2 n+1}, X\right\rangle+\mu_{2 n+2}\left\langle P A_{2 n+2} X, Y\right\rangle-\mu_{2 n+2}\left\langle P A_{2 n+2} Y, X\right\rangle,
\end{align*}
$$

where $A_{2 n+2}:=A_{e_{2 n+2}}=A_{J e_{2 n+1}}$.
We may assume that $\left\{e_{1}, e_{2}, e_{3}\right\}$ diagonalize the shape operator $A_{J e_{3}}$ such that $J e_{1}=e_{2}$, $A_{J e_{3}} e_{1}=\alpha e_{1}$ and $A_{J e_{3}} e_{2}=\beta e_{2}$. From (3.9) and proposition 4, we have $2 \alpha \beta=\mu_{4}(\alpha+\beta)$ and $\alpha+\beta=\mu_{4}$. This implies that $\alpha=\beta=0$. Then by applying (3.7), we have

$$
\begin{array}{r}
<\nabla_{e_{1}} e_{2}-\nabla_{e_{2}} e_{1}, e_{3}>=<\nabla_{e_{1}} e_{3}, e_{2}>-<\nabla_{e_{2}} e_{3}, e_{1}> \\
=<J\left(A_{e_{3}} e_{1}\right), e_{2}>-<J\left(A_{e_{3}} e_{2}\right), e_{1}>=0 \tag{3.10}
\end{array}
$$

Therefore $\mathcal{H}=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$ is integrable. Hence M is a CR-product(cf. [2]) by proposition 4 and theorem 9.3 in [4]. Since the integral curve of e_{3} is an open portion of real line \mathbf{R} and M is normal, M is an open portion of $\mathbf{C} \times \mathbf{R}$ in \mathbf{C}^{m}.

Next, we consider the case where $\eta \in L$. We may assume that $\eta=e_{1}$ and $J \eta=e_{4}$. It follows from (3.8) and proposition 4 that $A_{\xi}=0$ for $\xi \in \nu$.

It is known that M is normal if and only if $P A_{J e_{1}}=A_{J e_{1}} P$ ([1]). From this fact and proposition 4, we have $A_{J e_{1}} e_{1}=0, A_{J e_{1}} e_{2}=\mu_{4} e_{2}$, and $A_{J e_{1}} e_{3}=\mu_{4} e_{3}$. Thus we find

$$
\begin{gather*}
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{3}, e_{1}\right)=-<\nabla_{e_{2}} e_{1}, e_{3}>\mu_{4} J e_{1}, \\
\left(\bar{\nabla}_{e_{3}} h\right)\left(e_{2}, e_{1}\right)=-<\nabla_{e_{3}} e_{1}, e_{2}>\mu_{4} J e_{1} . \tag{3.11}
\end{gather*}
$$

The equation of Codazzi and (3.11) implies that $<\nabla_{e_{2}} e_{3}-\nabla_{e_{3}} e_{2}, e_{1}>\mu_{4}=0$. If we put $W=$ $\left\{p \in M: \mu_{4}(p) \neq 0\right\}$, the above relation yields $\left\langle\nabla_{e_{2}} e_{3}-\nabla_{e_{3}} e_{2}, e_{1}>=0\right.$ on W, which implies that $\mathcal{H}=\operatorname{Span}\left\{e_{2}, e_{3}\right\}$ is integrable on W. Hence W is an open portion of a CR-product $\mathbf{C} \times \mathbf{R}$ and $\mu_{4}=0$. It is a contradiction. Consequently we conclude that W is empty and M is an open portion of a totally geodesic submanifold $\mathbf{C} \times \mathbf{R}$.

Case 2: $c=1$. In this case, a unit vector field $\eta \in \mathcal{H}^{\perp}$ lies in L. Similarly to the proof in case 1 , we have $A_{\xi}=0$ for $\xi \in \nu$. Hence, using

$$
\begin{equation*}
-A_{J e_{3}} X+D_{X}\left(J e_{3}\right)=\tilde{\nabla}_{X}\left(J e_{3}\right)=J\left(\nabla_{X} e_{3}\right)+J h\left(X, e_{3}\right), \tag{3.12}
\end{equation*}
$$

$D_{X}\left(J e_{3}\right)=0$ for any $X \in T M$.
Therefore, M is contained in a totally geodesic $\tilde{M}^{2}(4)$. Since M is normal, we have $A_{J e_{1}} e_{1}=0$, $A_{J e_{1}} e_{2}=\mu_{4} e_{2}$, and $A_{J e_{1}} e_{3}=\mu_{4} e_{3}$. This implies that M is a Hopf hypersurface. By virtue of theorem 8 in [5], M is an open portion of a geodesic sphere of radius $\frac{\pi}{4}$ of $\tilde{M}^{2}(4)$. This completes the proof of theorem 1.

In the same way as in the proof in case 1, by using (3.9), we obtain the following result.
Proposition 6 Let M be a $(2 n+1)$-dimensional CR-submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ in \mathbf{C}^{m} satisfying the equality case of (3.1). Then $\overline{\text { Ric }}=S\left(e_{2 n+1}, e_{2 n+1}\right)$ for $e_{2 n+1} \in \mathcal{H}^{\perp}$ if and only if M is an open portion of a product submanifold $N^{2 n} \times \mathbf{R}$ in $\mathbf{C}^{m-1} \times \mathbf{C}$, where $N^{2 n}$ is a Kaehler submanifold in $C^{\text {m-1 }}$.

4 The proof of Theorem 2

In the same way as [8, 14], we have the following result using (3.8).
Lemma 7 Let $x: M \rightarrow \mathbf{C} H^{m}(-4)$ be $a(2 n+1)$-dimensional $C R$-submanifold with dimH $\mathcal{H}^{\perp}=1$. If M satisfies the equality case of (3.2), then the mean curvature vector \vec{H} lies in $J \mathcal{H}^{\perp}$.

Proof of Theorem 2

Let $\left\{e_{1}, \ldots, e_{2 m}\right\}$ be an orthonormal frame field on M mentioned in proposition 4 such that $e_{2 n+2}$ is parallel to the mean curvature vector field and $\left\{e_{1}, \ldots, e_{2 n+1}\right\}$ diagonalize the shape operator $A_{2 n+2}$ with respect to $e_{2 n+2}$ and moreover $e_{2 l}=J e_{2 l-1}(l=1, \ldots, n)$. Under the hypothesis, we have $\vec{H} \in J \mathcal{H}^{\perp}$ from Lemma 7. Without loss of generality we may assume that $J e_{2 n+1}=e_{2 n+2}$. Then, in the same way as the proof of lemma 5.4 in [14] we obtain that $J e_{2 n+1}$ is a parallel normal vector field i.e., $D\left(J e_{2 n+1}\right)=0$. By choosing $Y=e_{2 n+1}$ in (3.9), we get

$$
\begin{equation*}
X \mu_{2 n+1}=\omega^{1}(X) e_{2 n+1} \mu_{2 n+2} \tag{4.1}
\end{equation*}
$$

Now, by differentiating (4.1) and using $\left(\nabla_{Y} \omega^{1}\right)(X)=\left\langle P A_{2 n+2} Y, X\right\rangle$, we obtain

$$
\begin{align*}
& Y\left(e_{2 n+1} \mu_{2 n+2}\right) \omega^{1}(X)-X\left(e_{2 n+1} \mu_{2 n+2}\right) \omega^{1}(Y) \\
& +e_{2 n+1} \mu_{2 n+2}\left\langle\left(P A_{2 n+2}+A_{2 n+2} P\right) Y, X\right\rangle=0 . \tag{4.2}
\end{align*}
$$

By choosing $Y=e_{2 n+1}$ in (4.2), we have $X\left(e_{2 n+1} \mu_{2 n+2}\right)=e_{2 n+1}\left(e_{2 n+1} \mu_{2 n+2}\right) \omega^{1}(X)$. Combining this and (4.2) yield

$$
\begin{equation*}
\left(e_{2 n+1} \mu_{2 n+2}\right)\left\langle\left(P A_{2 n+2}+A_{2 n+2} P\right) Y, X\right\rangle=0 \tag{4.3}
\end{equation*}
$$

By choosing $X=\sum_{l=1}^{n} J e_{2 l-1}$ and $Y=\sum_{l=1}^{n} e_{2 l-1}$ in (4.3), we have $e_{2 n+1} \mu_{2 n+2} \operatorname{trace}\left(A_{1}^{2 n+1}\right)=0$. If M is nonminimal, we have $e_{2 n+1} \mu_{2 n+2}=0$, since trace $\left(A_{1}^{2 n+1}\right) \neq 0$. Therefore this implies that $\mu_{2 n+2}$ is constant. Hence we obtain $D \vec{H}=0$.

5 The proof of Theorem 3

Let $\left\{e_{1}, \ldots, e_{2 n+1}\right\}$ be an orthonormal basis mentioned in the proof of theorem 2. From now on we shall assume that all principal curvatures of $A_{2 n+2}$ are constant. Then we have the following lemmas.

Lemma 8 Let $\left\{e_{1}, \ldots, e_{2 n}\right\}$ be an orthonormal frame field of \mathcal{H} with $A_{2 n+2} e_{i}=\lambda_{i} e_{i}$. Then we have for any $i \in\{1, \ldots, 2 n\}$,

$$
\begin{equation*}
\sum_{j=1, \lambda_{j} \neq \lambda_{i}}^{2 n}\left(\frac{-1+\lambda_{i} \lambda_{j}}{\lambda_{i}-\lambda_{j}}\left(1+2\left\langle P e_{i}, e_{j}\right\rangle\right)^{2}+\frac{1}{\lambda_{i}-\lambda_{j}} \sum_{2 n+3}^{m}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right)\right)=0 . \tag{5.1}
\end{equation*}
$$

where $h_{i j}^{r}=\left\langle A_{r} e_{i}, e_{j}\right\rangle$.
Proof: The proof is in the same way as the proof of lemma 2 in [3].
Lemma $9 A_{2 n+2}$ has at most three distinct principal curvatures.
Proof: The proof is separated into two cases.
Case 1: $\mu_{2 n+2}^{2}=4$. We denote by $\sigma(\mathcal{H})$ the spectrum of $A_{2 n+2} \mid \mathcal{H}$, and for $\lambda \in \sigma(\mathcal{H})$ by T_{λ} the subbundle of \mathcal{H} formed by the eigenspace corresponding to the eigenvalue λ. From (3.9) we obtain for $\lambda \in \sigma(\mathcal{H}), X \in T_{\lambda}$,

$$
\begin{equation*}
\left(2 \lambda-\mu_{2 n+2}\right) A_{2 n+2} P X=\left(-2+\lambda \mu_{2 n+2}\right) P X \tag{5.2}
\end{equation*}
$$

Assume that there exists $\lambda \in \sigma(\mathcal{H})$ with $\lambda \neq \frac{\alpha}{2}$. We obtain from (5.2) that $A_{2 n+2} P X=\frac{\alpha}{2} P X$ for $X \in T_{\lambda}$. Hence $\frac{\alpha}{2}$ is an eigenvalue. We denote by E_{j} the eigenvectors corresponding to $\lambda_{j} \neq \frac{\alpha}{2}$.

By the way, we have $\tilde{R}\left(X, Y ; J e_{2 n+1}, \xi\right)=R^{D}\left(X, Y ; J e_{2 n+1}, \xi\right)=0$ for any $\xi \in \nu$ by virtue of $D\left(J e_{2 n+2}\right)=0$. Hence, the equation of Ricci yields

$$
\begin{equation*}
\left[A_{2 n+2}, A_{\xi}\right]=0 . \tag{5.3}
\end{equation*}
$$

Relation (3.8) and (5.3) imply that $\left\langle A_{r} E_{j}, E_{j}\right\rangle\left\langle A_{r} X, X\right\rangle-\left\langle A_{r} E_{j}, X\right\rangle^{2}=0$ for eigenvector $X \in$ $T_{\frac{\alpha}{2}}$. Hence we have

$$
\begin{equation*}
\sum_{j=1, \lambda_{j} \neq \frac{\alpha}{2}}^{2 n} \frac{-1+\frac{\alpha}{2} \lambda_{j}}{\frac{\alpha}{2}-\lambda_{j}}\left(1+2\left\langle P X, E_{j}\right\rangle^{2}\right)=-\frac{\alpha}{2} \sum_{j=1, \lambda_{j} \neq \frac{\alpha}{2}}^{2 n}\left(1+2\left\langle P X, E_{j}\right\rangle^{2}\right) \neq 0 \tag{5.4}
\end{equation*}
$$

which contradicts (5.1). Therefore we obtain that $\sigma(\mathcal{H})=\left\{\frac{\alpha}{2}\right\}$.
Case 2: $\mu_{2 n+2}^{2} \neq 4$.

Assume that $\# \sigma(\mathcal{H}) \geq 2$. Then we have the following orthogonal decomposition:

$$
\begin{equation*}
\mathcal{H}=T_{\alpha_{1}} \oplus J T_{\alpha_{1}} \oplus \cdots T_{\alpha_{s}} \oplus J T_{\alpha_{s}} \oplus T_{\lambda} \oplus T_{\mu_{2 n+2}-\lambda} \tag{5.5}
\end{equation*}
$$

where $J T_{\alpha_{i}}$ is the eigenspace corresponding to $\frac{-2+\alpha_{i} \mu_{2 n+2}}{2 \alpha_{i}-\mu_{2 n+2}}$, and $\lambda=\frac{\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4}}{2}$, moreover T_{λ} and $T_{\mu_{2 n+2}-\lambda}$ are J-invariant, and $\lambda \neq \alpha_{j}$ from (5.2). We may assume that we can choose the eigenvalue $\beta \in \sigma(\mathcal{H})$ with $\beta>0$ and that there are no further eigenvalues between β and $\frac{1}{\beta}$. Hence, for all eigenvalues $\gamma \in \sigma(\mathcal{H})$, we have

$$
\begin{equation*}
\frac{-1+\beta \gamma}{\beta-\gamma} \leq 0 \tag{5.6}
\end{equation*}
$$

On the other hand by virtue of (3.8) and (5.3), we get

$$
\begin{equation*}
\sum_{j=1, \lambda_{j} \neq \alpha_{l}}^{2 n} \sum_{r=2 n+3}^{m} \frac{1}{\alpha_{l}-\lambda_{j}}\left(\left\langle A_{r} X, X\right\rangle\left\langle A_{r} e_{j}, e_{j}\right\rangle-\left\langle A_{r} e_{j}, X\right\rangle^{2}\right)=0 \tag{5.7}
\end{equation*}
$$

for each eigenvector X corresponding to $\alpha_{l}(l=1, \ldots, s)$, and moreover, for each eigenvector Y corresponding to λ

$$
\begin{align*}
& \sum_{j=1, \lambda_{j} \neq \lambda}^{2 n} \sum_{r=2 n+3}^{m} \frac{1}{\lambda-\lambda_{j}}\left(\left\langle A_{r} Y, Y\right\rangle\left\langle A_{r} e_{j}, e_{j}\right\rangle-\left\langle A_{r} Y, e_{j}\right\rangle^{2}\right) \\
= & \sum_{r=2 n+3}^{m}\left(\frac{1}{2 \lambda-\mu_{2 n+2}}\left\langle A_{r} Y, Y\right\rangle \sum_{j=1, \lambda_{j} \neq \lambda}^{t}\left\langle A_{r} \tilde{E}_{j}, \tilde{E}_{j}\right\rangle\right)=0, \tag{5.8}
\end{align*}
$$

where \tilde{E}_{j} are eigenvectors corresponding to $\mu_{2 n+2}-\lambda$ and $t=\operatorname{dim} T_{\mu_{2 n+2}-\lambda}$. Similarly, for each eigenvector Z corresponding to $\mu_{2 n+2}-\lambda$

$$
\begin{array}{r}
\sum_{j=1, \lambda_{j} \neq \mu_{2 n+2}-\lambda}^{2 n} \sum_{r=2 n+3}^{m} \frac{1}{\mu_{2 n+2}-\lambda-\lambda_{j}}\left(\left\langle A_{r} Z, Z\right\rangle\left\langle A_{r} e_{j}, e_{j}\right\rangle-\left\langle A_{r} Z, e_{j}\right\rangle^{2}\right) \\
\quad=\sum_{r=2 n+3}^{m}\left(\frac{1}{\mu_{2 n+2}-2 \lambda}\left\langle A_{r} Z, Z\right\rangle \sum_{j=1, \lambda_{j} \neq \mu_{2 n+2}-\lambda}^{s}\left\langle A_{r} \bar{E}_{j}, \bar{E}_{j}\right\rangle\right)=0, \tag{5.9}
\end{array}
$$

where \bar{E}_{j} are eigenvectors corresponding to λ and $s=\operatorname{dim} T_{\lambda}$. We obtain from (5.1), (5.6), (5.7), (5.8) and (5.9) that $-1+\beta \gamma=0$. Therefore $\# \sigma(\mathcal{H})=2$.

Lemma 10 If $m>n+1$ and M is linearly full, then with respect to some suitable orthonormal frame field $\left\{e_{1}, \ldots, e_{2 m}\right\}$, the second fundamental form of M in $\mathbf{C} H^{m}(-4)$ satisfies

$$
\begin{align*}
& h\left(e_{2 r-1}, e_{2 r-1}\right)=\sqrt{\frac{1}{2 n-1}} J e_{2 n+1}+\phi_{r} \xi_{r}, \tag{5.10}\\
& h\left(e_{2 r}, e_{2 r}\right)=\sqrt{\frac{1}{2 n-1}} J e_{2 n+1}-\phi_{r} \xi_{r}, \tag{5.11}\\
& h\left(e_{2 r-1}, e_{2 r}\right)=\phi_{r} J \xi_{r}, \quad h\left(e_{2 n+1}, e_{2 n+1}\right)=\frac{2 n}{\sqrt{2 n-1}} J e_{2 n+1} \tag{5.12}\\
& h\left(f, e_{2 n+1}\right)=0 \tag{5.13}
\end{align*}
$$

where $r=1, \ldots, n, \phi_{r}$ are functions, $\xi_{r} \in \nu$ and $f \in L:=\operatorname{Span}\left\{e_{1}, \ldots, e_{2 n}\right\}$.

Proof: Suppose that $\mathcal{H}=T_{\lambda} \oplus T_{\mu_{2 n+2}-\lambda}$. Let l and $m(l>m)$ be the dimension of T_{λ} and $T_{\mu_{2 n+2}-\lambda}$, respectively. Then we get $(l-m) \sqrt{\mu_{2 n+2}^{2}-4}=(2-l-m) \mu_{2 n+2}$. But it does not hold, since l, $m>2$.

Suppose that $\mathcal{H}=T_{\alpha_{1}} \oplus J T_{\alpha_{1}}$, where $\alpha_{1} \neq \mu_{2 n+2}, \lambda, \mu_{2 n+2}-\lambda$. Then by using (3.8) and (5.3), we obtain that M is contained in a totally geodesic complex hyperebolic space $\mathbf{C} H^{n+1}(-4)$, since $J e_{2 n+1}$ is parallel. This is a contradiction.

Therefore, $A_{2 n+2}$ has exactly two distinct eigenvalues. We denote the eigenvector corresponding to the second eigenvalue $\alpha \neq \mu_{2 n+2}$ by X. It follows from (5.2) that $P X$ is also an eigenvector corresponding to the eigenvalue $\beta=\frac{-2+\alpha \mu_{2 n+2}}{2 \alpha-\mu_{2 n+2}}$. Since $A_{2 n+2}$ has exactly two distinct eigenvalues, we have $\beta=\mu_{2 n+2}$ or $\beta=\alpha$.

We divide the proof into two cases.
First, let us suppose that $A_{2 n+2}$ has two distinct eigenvalues $\mu_{2 n+2}$ and $\frac{-2+\mu_{2 n+2}^{2}}{\mu_{2 n+2}}$ i.e. $\mu_{2 n+2}=\beta$. Then, using (3.8) and (5.3), we obtain that M is contained in a totally geodesic complex hyperebolic space $\mathbf{C} H^{n+1}(-4)$. This is a contaradiction.

Next, we consider the case where $A_{2 n+2}$ has two distinct eigenvalues $\mu_{2 n+2}$ and $\alpha=\beta$. Then from (5.5) we have $\mathcal{H}=T_{\lambda}$ or $T_{\mu_{2 n+2}-\lambda}$.

Consequentry, from proposition 3, replace $e_{2 n+1}$ by $-e_{2 n+1}$ if necessary, we obtain that $\alpha=$ $\frac{1}{\sqrt{2 n-1}}$ and $\mu_{2 n+2}=\frac{2 n}{\sqrt{2 n-1}}$.

Let $\hat{M}=\pi^{-1}(M)$ denote the inverse image of M via the Hopf fibration $\pi: H_{1}^{2 m+1} \rightarrow \mathbf{C} H^{m}(-4)$. Then \hat{M} is a principal circle bundle over M with time-like totally geodesic fibers. Let $z: \hat{M} \rightarrow$ $H_{1}^{2 m+1}(-1) \subset \mathbf{C}_{1}^{m+1}$ denote the immersion of \hat{M} in \mathbf{C}_{1}^{m+1}. Let $\tilde{\nabla}$ and $\hat{\nabla}$ denote the metric connections of \mathbf{C}_{1}^{m+1} and \hat{M}, respectively. We denote by X^{*} the horizontal lift of a tangent vector X of $\mathbf{C} H^{m}(-4)$. Then we have (cf. [9])

$$
\begin{align*}
& \tilde{\nabla}_{X} \cdot Y^{*}=\left(\nabla_{X} Y\right)^{*}+(h(X, Y))^{*}+\langle J X, Y\rangle V+\langle X, Y\rangle z, \tag{5.14}\\
& \tilde{\nabla}_{X} \cdot V=\tilde{\nabla}_{V} X^{*}=(J X)^{*}, \tag{5.15}\\
& \tilde{\nabla}_{V} V=-z \tag{5.16}
\end{align*}
$$

for vector fields X, Y tangent to M, where z is the position vector of \hat{M} in $\mathbf{C}_{1}^{2 m+1}$ and $V=i z \in$ $T_{z} H_{1}^{2 m+1}(-1)$.

Let $E_{1}, \ldots, E_{2 n+1}, \xi_{r}^{*}$ be the horizontal lifts of $e_{1}, \ldots, e_{2 n+1}, \xi_{r}$, respectively and let $E_{2 n+2}=i z$, and let $\left\{\omega_{i}^{j}\right\}$ be connection forms of \hat{M}. Then, from lemma 10 , (5.14), (5.15) and (5.16), we obtain

$$
\begin{align*}
& \tilde{\nabla}_{E_{2 r-1}} E_{2 r-1}=\sum_{j=1}^{2 n} \omega_{2 r-1}^{j}\left(E_{2 r-1}\right) E_{j}+\alpha i E_{2 n+1}+\phi_{r} \xi_{r}^{*}-i E_{2 n+2}, \tag{5.17}\\
& \tilde{\nabla}_{E_{2 r-1}} E_{2 r}=\sum_{j=1}^{2 n} \omega_{2 r}^{j}\left(E_{2 r-1}\right) E_{j}-\alpha E_{2 n+1}+i \phi_{r} \xi_{r}^{*}+E_{2 n+2}, \tag{5.18}\\
& \tilde{\nabla}_{E_{2 r}} E_{2 r-1}=\sum_{j=1}^{2 n} \omega_{2 r-1}^{j}\left(E_{2 r}\right) E_{j}+\alpha E_{2 n+1}+i \phi_{r} \xi_{r}^{*}-E_{2 n+2}, \tag{5.19}\\
& \tilde{\nabla}_{E_{2 r}} E_{2 r}=\sum_{j=1}^{2 n} \omega_{2 r}^{j}\left(E_{2 r}\right) E_{j}+i \alpha E_{2 n+1}-\phi_{r} \xi_{r}^{*}-i E_{2 n+2}, \tag{5.20}\\
& \tilde{\nabla}_{E_{2 r-1}} E_{2 n+1}=\alpha E_{2 r}, \tag{5.21}\\
& \tilde{\nabla}_{E_{2 r}} E_{2 n+1}=-\alpha E_{2 r-1}, \tag{5.22}\\
& \tilde{\nabla}_{E_{2 n+1}} E_{2 n+1}=2 n \alpha i E_{2 n+1}-i E_{2 n+2}, \tag{5.23}
\end{align*}
$$

$$
\begin{align*}
& \tilde{\nabla}_{E_{2 r-1}} E_{2 n+2}=\tilde{\nabla}_{E_{2 n+2}} E_{2 r-1}=E_{2 r}, \tag{5.24}\\
& \tilde{\nabla}_{E_{2 r}} E_{2 n+2}=\tilde{\nabla}_{E_{2 n+2}} E_{2 r}=-E_{2 r-1} \tag{5.25}\\
& \tilde{\nabla}_{E_{2 n+1}} E_{2 n+2}=\tilde{\nabla}_{E_{2 n+2}} E_{2 n+1}=i E_{2 n+1} \tag{5.26}\\
& \tilde{\nabla}_{E_{2 n+2}} E_{2 n+2}=i E_{2 n+2} \tag{5.27}
\end{align*}
$$

where $r=1, \ldots, n, \alpha=\sqrt{\frac{1}{2 n-1}}$ and
By using the above equations, we obtain the following lemma.
Lemma $11 \hat{M}$ is a Riemannian product $\hat{M}_{1} \times \hat{M}_{2}$, where M_{1}, M_{2} are integral submanifolds of $D_{1}:=\operatorname{Span}\left\{E_{1}, \ldots, E_{2 n}, \alpha E_{2 n+1}-E_{2 n+2}\right\}$ and $D_{2}:=\operatorname{Span}\left\{E_{2 n+1}-\alpha E_{2 n+2}\right\}$, respectively.

Proof: For $X^{\prime}, Y^{\prime} \in D_{1}$, we have

$$
\begin{aligned}
& \hat{\nabla}_{X^{\prime}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=0, \quad \hat{\nabla}_{E_{2 n+1}-\alpha E_{2 n+2}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=0, \\
& \hat{\nabla}_{X^{\prime}} Y^{\prime} \in D_{1}, \quad \hat{\nabla}_{E_{2 n+1}-\alpha E_{2 n+2}} X^{\prime} \in D_{1}
\end{aligned}
$$

Hence, D_{1} and D_{2} are totally geodesic in \hat{M} and parallel.
Moreover we obtain from (5.21)-(5.27) that

$$
\begin{array}{r}
\tilde{\nabla}_{E_{2 r-1}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=\tilde{\nabla}_{E_{2 r}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=0 \\
\tilde{\nabla}_{\alpha E_{2 n+1}-E_{2 n+2}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=\left(2 n \alpha^{2}-\alpha^{2}-1\right) i E_{2 n+1}=0
\end{array}
$$

Hence, $Z:=E_{2 n+1}-\alpha E_{2 n+2}$ is a constant vector in C_{1}^{m+1} along each integral manifold \hat{M}_{1} of D_{1}.
From lemma 11 , there exist coordinates $\left\{s, t, x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$ such that $\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial y_{n}}$ are tangent to integral manifolds \hat{M}_{1} of $D_{1}, \frac{\partial}{\partial s}=\alpha E_{2 n+1}-E_{2 n+2}$ and $\frac{\partial}{\partial t}=E_{2 n+1}-\alpha E_{2 n+2}$. Without loss of generality, we may assume that \hat{M}_{1} is defined by $t=0$. We put $Z_{0}:=\left.Z\right|_{t=0}$.

Then we may assume $Z_{0}=\left(0, \ldots, 0, \sqrt{1-\alpha^{2}}\right)$; up to rigid motions. Since $\left(z, Z_{0}\right)$ is constant along \hat{M}_{1}, we can write

$$
\begin{equation*}
z\left(s, 0, x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\left(\Psi_{1}, \ldots, \Psi_{m}, c\right) \tag{5.28}
\end{equation*}
$$

where c is a constant determined by the initial conditions and $\Psi_{1}, \ldots, \Psi_{m}$ are functions.
Since $z_{s}+\left(1-\alpha^{2}\right) i z=\alpha E_{2 n+1}-E_{2 n+2}+\left(1-\alpha^{2}\right) E_{2 n+2}=\alpha\left(E_{2 n+1}-\alpha E_{2 n+2}\right)=\alpha Z$, we have

$$
\begin{equation*}
\frac{\partial \Psi_{j}}{\partial s}+\left(1-\alpha^{2}\right) i \Psi_{j}=0, \quad c\left(1-\alpha^{2}\right) i=\alpha \sqrt{1-\alpha^{2}}, \quad\left(1-\alpha^{2}\right) i z_{2}=\alpha \frac{\partial z_{2}}{\partial t} \tag{5.29}
\end{equation*}
$$

where z_{2} is a position vector of \hat{M}_{2} in C_{1}^{m+1}. Thus we have

$$
\begin{equation*}
z=\left(g\left(x_{1}, \ldots, y_{n}\right) e^{-\left(1-\alpha^{2}\right) i s}, \frac{\alpha \sqrt{1-\alpha^{2}}}{1-\alpha^{2}} e^{\frac{1-\alpha^{2}}{\alpha} i t}\right) \tag{5.30}
\end{equation*}
$$

Since $(z, z)=-1$, we have

$$
\begin{equation*}
-|g|^{2}+\frac{\alpha^{2}}{1-\alpha^{2}}=-1 \tag{5.31}
\end{equation*}
$$

We put $\tilde{E}_{2 n+1}=\frac{1}{\sqrt{1-\alpha^{2}}}\left(\alpha E_{2 n+1}-E_{2 n+2}\right)$ and $\tilde{E}_{2 n+2}=\frac{1}{\sqrt{1-\alpha^{2}}}\left(E_{2 n+1}-\alpha E_{2 n+2}\right)$. It follows from (5.17)-(5.27) that \hat{M}_{1} is a CR-submanifold of C_{1}^{m} such that the unit totally real vector field is $\frac{1}{\sqrt{1-\alpha^{2}}} \frac{\partial}{\partial s}$.

Conversely, we consider the immersion mentioned in Theorem 3. We put $\tilde{E}_{2 n+2}=\left(0, \sqrt{2 n-2} \frac{\partial}{\partial t}\right)$, $\tilde{E}_{2 n+1}=\left(-\sqrt{\frac{2 n-2}{2 n-1}} \frac{\partial}{\partial s}, 0\right), E_{2 n+1}=-\sqrt{\frac{1}{2 n-2}} \tilde{E}_{2 n+1}+\sqrt{\frac{2 n-1}{2 n-2}} \tilde{E}_{2 n+2}$ and $E_{2 n+2}=-\sqrt{\frac{2 n-1}{2 n-2}} \tilde{E}_{2 n+1}+$ $\sqrt{\frac{1}{2 n-2}} \tilde{E}_{2 n+2}$. Then by straight-forward computaions we can see that $\left\{E_{1}, \ldots, E_{2 n}, E_{2 n+1}, E_{2 n+2}\right\}$ is an orthonormal basis of $z\left(\mathbf{R}^{2} \times U\right)$ and the second fundamental form of $z\left(\mathbf{R}^{2} \times U\right)$ in \mathbf{C}_{1}^{m+1} satisfies

$$
\begin{align*}
& \tilde{h}\left(E_{2 r-1}, E_{2 r-1}\right)=\sqrt{\frac{1}{2 n-1}} i E_{2 n+1}-i E_{2 n+2}+\phi_{r} \tilde{\xi}_{r}, \tag{5.32}\\
& \tilde{h}\left(E_{2 r-1}, E_{2 r-1}\right)=\sqrt{\frac{1}{2 n-1}} i E_{2 n+1}-i E_{2 n+2}-\phi_{r} \tilde{\xi}_{r}, \tag{5.33}\\
& \tilde{h}\left(E_{2 r-1}, E_{2 r-1}\right)=i \phi_{r} \tilde{\xi}_{r}, \tilde{h}\left(X, E_{2 n+1}\right)=0, \tag{5.34}\\
& \tilde{h}\left(E_{2 n+1}, E_{2 n+1}\right)=\frac{2 n}{\sqrt{2 n-1}} i E_{2 n+1}-i E_{2 n+2}, \tag{5.35}
\end{align*}
$$

$X \in \operatorname{Span}\left\{E_{1}, \ldots, E_{2 n}\right\}, \phi_{r}$ are functions and $\tilde{\xi}_{r}$ are unit normal vector fields perpendicular to $i E_{2 n+1}, i E_{2 n+2}$.

Since $i z$ is always tangent to $z\left(\mathbf{R}^{2} \times U\right)$, the image is invariant under the action of H_{1}^{1}. Hence, $z\left(\mathbf{R}^{2} \times U\right)$ is projectable via π. The image $\pi\left(z\left(\mathbf{R}^{2} \times U\right)\right)$ is a ($2 \mathrm{n}+1$)-dimensional proper CRsubmanifold of $\mathbf{C H}{ }^{m}(-4)$ whose holomorphic ditribution \mathcal{H} is spanned by $e_{1}=\pi_{*}\left(E_{1}\right), \ldots, e_{n}=$ $\pi_{*}\left(E_{2 n}\right)$ and \mathcal{H}^{\perp} is spanned by $e_{2 n+1}=\pi_{*}\left(E_{2 n+1}\right)$. From (5.32)-(5.35), we obtain that $e_{1}, \ldots, e_{n}, e_{2 n+1}$ and $\xi_{r}=\pi_{*}\left(\xi_{r}\right)$ satisfy (5.10)-(5.13). This completes the proof of theorem 2.

In the rest of this section we shall determine normal CR-submanifolds in a complex hyperbolic space satisfying the equality case of (3.2).

Corollary 12 In case $n>1$ and $m>n+1$, every linearly full $(2 n+1)$-dimensional normal $C R$ submanifold with $\operatorname{dim} \mathcal{H}^{\perp}=1$ in $\mathbf{C} H^{m}(-4)$ satisfying the equality case of (3.2) is obtained in the same way as in theorem 3.

Proof: By using (3.9) and relation $P A_{2 n+2}=A P_{2 n+2}$, we obtain that the shape operator $A_{2 n+2}$ has at most three distinct constant eigenvalues $\mu_{2 n+2}, \frac{\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4}}{2}$ and $\frac{\mu_{n+2}-\sqrt{\mu_{n+2}^{2}-4}}{2}$. The assertion follows immediatly from theorem 3.

6 CR-submanifolds in the nearly Kaehler six-sphere

It is well known that the unit six-sphere $S^{6}(1)$ has a nearly Kaehler structure J in the sense that $\left(\tilde{\nabla}_{X} J\right)(X)=0$, for any vector field X tangent to $S^{6}(1)$, where $\tilde{\nabla}$ denote the Levi-Civita connection related to the standard metric on $S^{6}(1)([10])$. For the maximum Ricci curvature $\overline{\text { Ric }}$ of a 3 -dimensional submanifold in $S^{6}(1)$, we have

$$
\begin{equation*}
\overline{R i c} \leq 2+\frac{9}{4} H^{2} \tag{6.1}
\end{equation*}
$$

F. Dillen and L. Vrancken have completely classified totally real submanifolds in the nearly Kaehler six-sphere satisfying the equality case of (6.1) ([11]). An n-dimensional Riemannian manifold is called quasi-Einstein if Ricci tensor has an eigenvalue of multiplicity at least $n-1$. R. Deszcz, F. Dillen, L. Verstraelen and L. Vrancken proved that 3-dimensional totally real submanifolds in $S^{6}(1)$ satisfying the equality case of (6.1) are quasi-Einstein ([12]). For proper CR-submanifolds, we obtained the following.

Theorem 13 Let M^{3} be a 3-dimensional proper CR-submanifold in $S^{6}(1)$. If M^{3} satisfies the equality case of (6.1), then M^{3} is minimal quasi-Einstein.

Proof: By virtue of main theorem in [14], $\overline{\mathrm{Ric}} \neq S(\eta, \eta)$ for a unit vector field $\eta \in \mathcal{H}^{\perp}$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame field on M^{3} such that $\overline{\operatorname{Ric}}=S\left(e_{3}, e_{3}\right)$. We may assume that $\eta=e_{2}$. Since $\left\langle A_{\xi} J X, X\right\rangle=-\left\langle A_{\xi} X, X\right\rangle$ for any vector field $X \in \mathcal{H}^{\perp}$ and $\xi \in \nu$, we obtain that the second fundamental form satisfies

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=a J e_{2}, \quad h\left(e_{2}, e_{2}\right)=b J e_{2}, \quad h\left(e_{3}, e_{3}\right)=(a+b) J e_{2}, \tag{6.2}\\
& h\left(e_{1}, e_{2}\right)=c J e_{2}+d \xi, \quad h\left(e_{1}, e_{3}\right)=h\left(e_{2}, e_{3}\right)=0, \tag{6.3}
\end{align*}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are functions and $\xi \in \nu$. From $\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{3}\right)=\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{2}, e_{3}\right)$, we get

$$
\begin{align*}
& \left\langle\nabla_{e_{2}} e_{3}, e_{2}\right\rangle d=\left\langle\nabla_{e_{1}} e_{3}, e_{1}\right\rangle d, \tag{6.4}\\
& \left\langle\nabla_{e_{1}} e_{2}-\nabla_{e_{2}} e_{1}, e_{3}\right\rangle h\left(e_{3}, e_{3}\right)-\left\langle\nabla_{e_{2}} e_{3}, e_{1}\right\rangle h\left(e_{1}, e_{1}\right)+\left\langle\nabla_{e_{1}} e_{3}, e_{2}\right\rangle h\left(e_{2}, e_{2}\right)=0 . \tag{6.5}
\end{align*}
$$

By using $\left(\tilde{\nabla}_{X} J\right)(Y)=-\left(\tilde{\nabla}_{Y} J\right)(X)$, we have the following:

$$
\begin{align*}
& -A_{J e_{2}} e_{1}+D_{e_{1}} J e_{2}=\tilde{\nabla}_{e_{1}}\left(J e_{2}\right)=-\nabla_{e_{2}} e_{3}+J\left(\nabla_{e_{2}} e_{1}+\nabla_{e_{1}} e_{2}+2 h\left(e_{1}, e_{2}\right)\right), \tag{6.6}\\
& -A_{e_{2}} e_{3}+D_{e_{3}} J e_{2}=\tilde{\nabla}_{e_{3}}\left(J e_{2}\right)=\nabla_{e_{2}} e_{1}+h\left(e_{1}, e_{2}\right)+J\left(\nabla_{e_{2}} e_{3}+\nabla_{e_{3}} e_{2}\right), \tag{6.7}\\
& J\left(\nabla_{e_{2}} e_{2}\right)+J h\left(e_{2}, e_{2}\right)=\tilde{\nabla}_{e_{2}}\left(J e_{2}\right)=-A_{J e_{2}} e_{2}+D_{e_{2}} J e_{2} \tag{6.8}
\end{align*}
$$

It follows from (6.6), (6.7) and (6.8) that an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ satisfies

$$
\begin{align*}
& \left\langle\nabla_{e_{2}} e_{1}, e_{3}\right\rangle=0, \quad\left\langle\nabla_{e_{1}} e_{2}, e_{1}\right\rangle=0, \quad\left\langle\nabla_{e_{1}} e_{2}, e_{3}\right\rangle=-a, \quad\left\langle\nabla_{e_{2}} e_{3}, e_{2}\right\rangle=-c, \\
& \left\langle\nabla_{e_{3}} e_{2}, e_{3}\right\rangle=0, \quad\left\langle\nabla_{e_{3}} e_{2}, e_{1}\right\rangle=-a-b, \quad D_{e_{3}} J e_{2}=0 . \tag{6.9}
\end{align*}
$$

From $\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{3}, e_{3}\right)=\left(\bar{\nabla}_{e_{3}} h\right)\left(e_{1}, e_{3}\right)$, we obtain

$$
\begin{equation*}
(a+b) D_{e_{1}} J e_{2}=0, \quad e_{1}(a+b) J e_{2}=-\left\langle\nabla_{e_{3}} e_{1}, e_{3}\right\rangle(a+b) J e_{3}-\left\langle\nabla_{e_{3}} e_{3}, e_{1}\right\rangle h\left(e_{1}, e_{1}\right) . \tag{6.10}
\end{equation*}
$$

We put $M_{0}:=\left\{p \in M^{3} \mid(a+b)(p) \neq 0\right\}$. Then $D_{e_{1}} J e_{2}=0$ on M_{0}, which implies that $h\left(e_{1}, e_{2}\right)=d \xi=0$ by (6.6). If $d=0,(6.7)$ yields $D J e_{2}=0$. Since $h(X, Y) \in \operatorname{Span}\left\{J e_{2}\right\}$ for any tangent vector X, Y, we obtain that M_{0} is contained in a totally geodesic $S^{4}(1)$. Hence $\left.T S^{4}(1)\right|_{M_{0}}$ is spanned by $\left\{e_{1}, e_{2}, e_{3}, J e_{2}\right\}$. A result of Gray in [13] shows that this is impossible. Therefore, $a+b=0$ on M^{3}. Moreover by using $\left(\bar{\nabla}_{e_{3}} h\right)\left(e_{1}, e_{1}\right)=\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{3}, e_{1}\right)$, we have $a c=0$. It follows from the equation of Gauss that $c=0, a^{2}=d^{2}=1$ and $S(X, Y)=2\left\langle X, e_{3}\right\rangle\left\langle Y, e_{3}\right\rangle$ for any tangent vector X, Y. This proves the required result.

References

[1] A. Bejancu, Normal CR-submanifolds of a Kaehler manifold, An. St. Univ. Al. I. Cuza Iasi, 26(1980), 123-132.
[2] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ. Dordrecht, Holland, (1986).
[3] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine angrew. Math, 395 (1989), 132-141.
[4] B. Y. Chen, CR-submanifolds of a Kaehler manifold, I, J. Differential Geometry 16 (1981), 305-322.
[5] B. Y. Chen, A general inequality for submanifolds in complex space forms and its applications, Arch. Math, 67 (1996), 519-528.
[6] B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
[7] B. Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Arch. Math, 74 (2000), 154-160.
[8] B. Y. Chen and L. Vrancken, CR-submanifolds of complex hyperbolic spaces satisfying a basic equality. Israel. J. Math. 110 (1999), 341-358.
[9] B. Y. Chen, G. D. Ludden and S. Montiel, Real submanifolds of a Kaehler manifold, Algebras, Groups and Geom, 1 (1984), 176-212.
[10] E. Calabi, Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc, 87 (1958), 407-438.
[11] F. Dillen, L. Vrancken, Totally real submanifolds in $S^{6}(1)$ satisfying Chen's equality, Trans. Amer. Math. Soc, 348 (1996), 1633-1646.
[12] F. Dillen, L. Vrancken, L. Verstraelen, R. Deszcz, Quasi-einstein totally real submanifolds of the nearly Kaehler 6-sphere, Tohoku Math. J, 51 (1999) 461-478.
[13] A. Gray, Almost complex submanifold of the six sphere, Amer. Math. Soc. 20 (1969), 277-279.
[14] T. Sasahara, CR-submanifolds in complex hyperbolic spaces satisfying an equality of Chen, Tsukuba. J. Math, 23 (1999), 565-583.
[15] T. Sasahara, Three-dimensional CR-submanifolds in the nearly Kaehler six-sphere satisfying Chen's basic equality, Tamkang J. Math, 31 (2000).
[16] Y. Tashiro, Relations between almost complex spaces and almost contact spaces (in Japanese), Sugaku, 16 (1964), 34-61.

Department of Mathematics
Hokkaido University,
Sapporo 060-0810
Japan
E-mail: t-sasa@math.hokudai.ac.jp

Received October 16, 2000 Revised January 22, 2001

