
Nihonkai Math. J.
Vol. 12(2001), 47-58

On Ricci curvature of CR-submanifolds with rank one totally real
distribution

Tooru Sasahara

Abstract

In a recent paper, Bang-yen Chen obtained sharp inequalities between the maximum Ricci
curvature and the squared mean curvature for arbitrary submanifolds in real space forms and
totally real submanifolds in complex space forms ([6, 7]). In this paper we give sharp inequalities
between the maximum Ricci curvature and the squared mean curvature for arbitrary submani-
folds in complex space form. Moreover we investigate CR-submanifolds in complex space forms
and in the nearly Kaehler six-sphere which realize the equality case of the inequalities mentioned
above.
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1 Introduction

Let $M^{n}$ be an n-dimensional submanifold of an m-dimensional manifold $\tilde{M}^{m}$ . Denote by $h$ the
second fundamental form of $M^{n}$ in $\tilde{M}^{m}$ . Then the mean curvature vector fi of the immersion is
given by $\not\supset=\frac{1}{n}$ trace $h$ . A submanifold is said to be minimal if its mean curvature vector $vanishes\sim$

identically. Denote by $D$ the linear connection induced on the normal bundle $T^{\perp}M^{n}$ of $Af^{n}$ in $M^{m}$ ,
by $R$ and $\tilde{R}$ the Riemann curvature tensors of $M$ and of $\tilde{M}^{m}$ respectively, and by $R^{D}$ the curvature
tensor of the normal connection $D$ . Then the equation of Gauss and Ricci are given respectively by

$R(X, Y)Z$ $=$ $\langle A_{h(Y,Z)}X,$ $W\rangle-\langle A_{h(X,Z)}Y,$ $W\rangle+\tilde{R}(X, Y)Z$ (1.1)

$ R^{D}(X, Y;\xi, \eta)=\tilde{R}(X, Y;\xi, \eta)+\langle[A_{\xi}, A_{\eta}](X), Y\rangle$ (1.2)

for vectors $X,$ $Y,$ $Z,$ $W$ tangent to $M$ and $\xi,$
$\eta$ normal to $M$ , where $A$ is the shape operator. For

the second fundamental form $h$ , we define the covariant derivative $\overline{\nabla}h$ of $h$ with respect to the
connection on $TM\oplus T^{1}M$ by

$(\overline{\nabla}_{X}h)(Y, Z)=D_{X}(h(Y, Z))-h(\nabla_{X}Y, Z)-h(Y, \nabla_{X}Z)$ . (1.3)

The equation of Codazzi is given by

$(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}h)(Y, Z)-(\overline{\nabla}_{Y}h)(X, Z)$ . (1.4)

The Ricci tensor $S$ and the scalar curvature $\tau$ at a point $p\in M^{n}$ are given respectively by
$ S(X, Y)=\sum_{i=1}^{n}\langle R(e_{i}, X)Y, e_{i}\rangle$ and $\tau=\sum_{i=1}^{n}S(e_{i}, e_{i})$ , where $\{e_{1}, \ldots, e_{n}\}$ is an orthonormal basis
of the tangent space $T_{p}M^{n}$ .
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Let $Ric$ denote the maximum Ricci curvature function on $M^{n}$ defined by

$\overline{Ric}(p)=\max\{S(X, X)|X\in T_{p}^{1}M^{n}\}$ , $p\in M^{n}$ , (1.5)

where $T_{p}^{1}M^{n}$ is the unit tangent vector space of $M^{n}$ at $p$ .
When $M$ is a submanifold of an almost Hermitian manifold $\tilde{M}$ , a subspace $V$ of $T_{p}M$ is called

totally real if $JV$ is contained in the normal space $T_{p}^{\perp}M$ of $M$ at $p$ . The submanifold $M$ is called
totally real if each tangent space of $M$ is totally real; and $M$ is called a CR-submanifold if there
exists a differential holomorphic distribution $\mathcal{H}$ on $M$ such that the orthogonal complement $\mathcal{H}^{\perp}$

of $\mathcal{H}$ in $TM$ is a totally real distribution ([2]). A CR-submanifold is called proper if it is neither
totally real (i.e., $\mathcal{H}^{\perp}=TM$) nor holomorphic (i.e., $\mathcal{H}=TM$).

Let $M$ be a $(2n+1)$-dimensional CR-submanifold with dim $\mathcal{H}^{\perp}=1$ and we put $\mathcal{H}^{\perp}=Span\{e_{2n+1}\}$ .
We denote the tangential component of $JX$ by $PX$ . Then $(P, e_{2n+1},\omega^{1},g)$ defines an almost contact
metric structure on $(M,g)$ , where $\omega^{1}(X);=g(e_{2n+1}, X)$ and $g$ is an induced metric ([16]). $M$ is
said to be normal if the tensor field $S_{M}$ defined by

$S_{M}(X, Y)=[PX, PY]+P^{2}[X, Y]-P[X, PY]-P[PX, Y]+2d\omega_{1}(X, Y)e_{2n+1}$ (1.6)

vanishes ([1]).
For the maximum Ricci curvature and the squared mean curvature $H^{2}$ for n-dimensional sub-

manifolds in m-dimensional complex space forms $\tilde{M}^{m}(4c)$ of constant holomorphic sectional curva-
ture, we have the following:

$\overline{Ric}\leq(n+2)c+\frac{n^{2}}{4}H^{2}$ for $c\geq 0$ , (1.7)

$\overline{Ric}\leq(n-1)c+\frac{n^{2}}{4}H^{2}$ for $c\leq 0$ . (1.8)

In case $c<0$ and $dimM=3$ , the inequality is known as Chen’s basic inequality (cf. [8]). In
[8] Chen has completely classified 3-dimensional proper CR-submanifold which satisfy the equality
case of (1.8).

In this article, we study proper CR-submanifolds with dim $\mathcal{H}^{\perp}=1$ of complex space forms
satifying the equality case of the inequalities (1.7) or (1.8). In particular, in case $c<0$ , we are able
to establish the explicit representation of such submanifolds which are normal in an anti-de Sitter
space time via Hopf’s fibration, and in case $c\geq 0$ , classify 3-dimensional normal CR-submanifolds
satisfying the equality case of (1.7). The inequality (1.8) also holds for arbitrary submanifolds in
real space forms $R^{m}(c)$ of constant sectional curvature $c$, too ([6]). In the last section, we investigate
3-dimensional CR-submanifolds in the nearly Kaehler 6-sphere which realize the equality case of
the inequality.

2 Main Results

Theorem 1 Let $M$ be a 3-dimensional CR-submanifold with dim $\mathcal{H}^{\perp}=1$ in $\tilde{M}^{m}(4c),$ $c\in\{0,1\}$

satisfying the equality case of (1.7). Then $M$ is normal if and only if it is one of the following.
(1) $M$ is an open portion of a product submanifold $C\times R$ in $C^{m-1}\times C$ ,
(2) $M$ is an open portion of a geodesic sphere of mdius $\frac{\pi}{4}$ in $CP^{2}(4)$ .

Consider the complex number $(m+1)$-space $C_{1}^{m+1}$ endowed with the pseudo-Euclidean metric $g_{0}$

gi.ven by $g_{0}=-dz_{0}d\overline{z}_{0}+\sum_{j=1}^{m}dz_{j}d\overline{z}_{j}$ , where $\overline{z}_{k}$ denotes the complex conjugate of $z_{k}$ . On $C_{1}^{m+1}$ we
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define $(z, w)=-z_{0}\overline{w}_{0}+\sum_{k=1}^{m}z_{k}\overline{w}_{k}$ . Put $H_{1}^{2m+1}(-r)=\{z=(z_{0}.z_{1}\ldots..z_{m})\in C_{1}^{m+1} : (z, z)=-r^{2}\}$ ,
It is known that $H_{1}^{2m+1}(-1)$ together with the induced metric $g$ is a pseudo-Riemannian manifold
of constant sectional curvature $-1$ , which is known as an anti-de Sitter space time.

We put $H_{1}^{1}=\{\lambda\in C : \lambda\overline{\lambda}=1\}$ . The quotient space $ H_{1}^{2m+1}(-1)/\sim$
’ under the identification

induced from the action, is the complex hyperbolic space $CH^{m}(-4)$ with constant holomorphic
sectional curvature-4. The almost complex structure $J$ on $CH^{m}(-4)$ is induced from the canonical
almost complex structure $J$ on $C_{1}^{m+1}$ , the multiplication by $i$ , via the totally geodesic fibration:
$\pi$ : $H_{1}^{2m+1}(-1)\rightarrow CH^{m}(-4)$ .

We obtain the following general property.

Theorem 2 Let $x:M\rightarrow CH^{m}(-4)$ be a $(2n+1)$ -dimensional CR-submanifold with $dim\mathcal{H}^{\perp}=1$ .
If $M$ satisfies the equality case of (1.8), then fi is parallel $i.e.,$

$DB_{-\triangleleft}$ .

A submanifold is said to be linearly full in $CH^{m}(-4)$ if it does not lie in any totally geodesic
complex submanifold of $CH^{m}(-4)$ .

Theorem 3 Let $U$ be a domain of $R^{2n}(n>1)$ . Define $z:R^{2}\times U\rightarrow C_{1}^{m+1}$ by

$z(s, t, x_{1}, x_{2}, \ldots, y_{1}, y_{2})=(g(x_{1}, \ldots, y_{2})e^{is}, \sqrt{\frac{1}{2n-2}}e^{it})$ , (2.1)

where $|g|^{2}=-\frac{2n-1}{2n-2}$ and $g(x_{1}, \ldots, y_{2})e^{is}$ is a CR-submanifold of $C_{1}^{m}$ such that the unit totally real

vector field is $\sqrt{\frac{2n-2}{2n-1}}^{\partial}T_{S}$ Then $(z, z)=-1$ and the image $z(R^{2}\times U)$ is invariant under the group
$H_{1}^{1}$ . Moreover the quotient space $z(R^{2}\times U)/\sim is$ a $(2n+1)$ -dimensional CR-submanifold with
dim $\mathcal{H}^{\perp}=1$ which satisfies the equality case of (1.8) under the condition that the shape operator $A_{\eta}$

with respect to the unit vector field $\eta\in \mathcal{H}^{\perp}has$ constant $p$rincipal curvatures.
Conversely, in case $n>1$ and $m>n+1$ , up to rigid motions of $CH^{m}(-4)$ , every linearly full

$(2n+1)$ -dimensional CR-submanifold with dim $\mathcal{H}^{\perp}=1$ which satisfies the equality case of (1.8)
under the condition that the shape operator $A_{\eta}$ with respect to the unit vector field $\eta\in \mathcal{H}^{\perp}$ has
constant principal curvatures is obtained in such way.

3 The proof of Theorem 1

For arbitrary n-dimensional submanifolds $M^{n}$ in complex space forms $\tilde{M}^{m}(4c)$ , we have the follow-
ing.

Proposition 4 If $M^{n}$ is an n-dimensional submanifold of complex space forms $\tilde{M}^{m}(4c)$ , then the
maximum Ricci curvature $Ric$ of $M^{n}$ satifies the following inequalities:

$\overline{Ric}\leq(n+2)c+\frac{n^{2}}{\frac{n^{2}4}{4}}H^{2}\overline{Ric}\leq(n-1)c+H^{2}$
$forfor$ $c\geq 0c\leq 0’$

.
$(3.1)(32)$

The equality case of (3.1) holds at a point $p\in M$ if and only if there exists an orthonormal basis
$e_{1},$

$\ldots,$ $e_{2m}$ at $p$ such that $e_{1},$
$\ldots,$

$e_{n}$ are tangent to $M$ and

$(a)\overline{Ric}=S(e_{n}, e_{n})$ , $c\sum_{i=1}^{n-1}\langle Je_{i}, e_{n}\rangle^{2}=c$ , (3.3)
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$(b)h_{in}^{s}=0$ , $\sum_{i}^{n-1}h_{ii}^{s}=h_{nn}^{s}$ $:=\mu_{s}$ ,

where $1\leq i\leq n-1$ and $n+1\leq s\leq 2m$ .

(3.4)

The equality case of (3.2) holds at a point $p\in M$ if and only if there enists an orthonormal basis
$e_{1},$ $\ldots,$ $e_{2m}$ at $p$ such that $e_{1},$

$\ldots,$
$e_{n}$ are tangent to $M$ and

$(a)\overline{Ric}=S(e_{n}, e_{n})$ , $c\sum_{i=1}^{n-1}\langle Je_{i},$ $e_{n})^{2}=0$ , (3.5)

$(b)h_{in}^{l}=0$ , $\sum_{i}^{n-1}h_{ii}^{s}=h_{nn}^{s}$ , (3.6)

where $1\leq i\leq n-1$ and $n+1\leq s\leq 2m$ .

Proof.$\cdot$ Put $\delta=\tau-n(n-1)c-\frac{\mathfrak{n}^{2}}{2}H^{2}-3c||P||^{2}$ , where $||P||^{2}$ $:=\sum_{i,j=1}^{n}\langle e_{i},$ $Je_{j})^{2}$ . Then from
the Gauss equation(l.l), we have $n^{2}H^{2}=2(\delta+||h||^{2})$ , where $||h||^{2}$ is the squared norm of the
second fundamental form. In a similar way to the proof of theorem 1 in [7], we have $ S(e_{n}, e_{n})\leq$

$(n-1)c+\frac{n^{2}}{4}H^{2}+3c\sum_{1=1}^{n-1}\langle Je_{i},$ $e_{n})^{2}$ . I

First we recall the following result on CR-submanifolds from [4].

Lemma 5 Let $M$ be a CR-submanifold of a Kaehler manifold $\tilde{M}$ . Denote by $T^{\perp}M=J\mathcal{H}^{\perp}\oplus v$ the
orthogonal decomposition of the normal bundle, where $\nu$ is a complex subbundle of $T^{1}M$ . We have

$\langle\nabla_{U}Z, X\rangle$ $=$ $\langle J(A_{JZ}U), X\rangle$ , (3.7)
$A_{J\xi}X$ $=$ $-A_{\xi}JX$ , (3.8)

for vector fields $Z$ in $\mathcal{H}^{\perp},$
$\xi$ in $\nu,$

$U$ in $TM$ and vector field $X$ in the holomorphic distribution $\mathcal{H}$ .
Proof of Theorem 1
Case 1: $c=0$ . In this case we consider two cases for a unit vector field $\eta\in \mathcal{H}^{\perp}$ to be either $\eta\in L$

or $\eta\not\in L$ , where $L$ is the orthogonal complement of $\{e_{3}\}$ in $T_{p}M$ and $e_{3}$ satisfies $Ric=S(e_{3}, e_{3})$ .
First, we consider the case where $\eta\not\in L$ . If we choose $e_{4}$ in such way that $J\eta=e_{4}$ , then we

obtain that $A_{Je_{3}}e_{3}=\mu_{4}e_{3}$ and $\eta=e_{3}$ is a parallel vector field in the same way as lemma 8 in [8].
In general, for a $(2n+1)$-dimensional CR-submanifold of $\tilde{M}^{m}(4c)$ which satisfies the condition that
$A_{Je_{2\mathfrak{n}+1}}e_{2n+1}=\mu_{2n+2}e_{2n+1}$ and $e_{2n+1}$ is parallel, we have the following relation ([14]).

$-2c\langle PX, Y\rangle+2(A_{2n+2}PA_{2\mathfrak{n}+2}X, Y)=(X\mu_{2n+2})\langle e_{2n+1}, Y\rangle$ (3.9)
$-(Y\mu_{2\mathfrak{n}+2})\langle e_{2\mathfrak{n}+1}, X\rangle+\mu_{2\mathfrak{n}+2}\langle PA_{2n+2}X,$ $Y$) $-\mu_{2\mathfrak{n}+2}\langle PA_{2n+2}Y, X\rangle$ ,

where $A_{2n+2}$ $:=A_{e_{2\mathfrak{n}+2}}=A_{Je_{2n+1}}$ .
We may assume that $\{e_{1}, e_{2}, e_{3}\}$ diagonalize the shape operator $A_{Je_{3}}$ such that $Je_{1}=e_{2}$ ,

$A_{Je_{3}}e_{1}=\alpha e_{1}$ and $A_{Je_{3}}e_{2}=\beta e_{2}$ . From (3.9) and proposition 4, we have $2\alpha\beta=\mu_{4}(\alpha+\beta)$ and
$\alpha+\beta=\mu_{4}$ . This implies that $\alpha=\beta=0$ . Then by applying (3.7), we have

$<\nabla_{e_{1}}e_{2}-\nabla_{e_{2}}e_{1},$ $e_{3}>=<\nabla_{e_{1}}e_{3},$ $e_{2}>-<\nabla_{e_{2}}e_{3},$ $e_{1}>$

$=<J(A_{e_{3}}e_{1}),$ $e_{2}>-<J(A_{e_{3}}e_{2}),$ $e_{1}>=0$ . (3.10)

Therefore $\mathcal{H}=Span\{e_{1}, e_{2}\}$ is integrable. Hence $M$ is a CR-product(cf. [2]) by proposition 4 and
$th\infty rem9.3$ in [4]. Since the integral curve of $e_{3}$ is an open portion of real line $R$ and $M$ is normal,
$M$ is an open portion of $C\times R$ in $C^{m}$ .
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Next, we consider the case where $\eta\in L$ . We may assume that $\eta=e_{1}$ and $J\eta=e_{4}$ . It follows
from (3.8) and proposition 4 that $A_{\xi}=0$ for $\xi\in v$ .

It is known that $M$ is normal if and only if $PA_{Je_{1}}=A_{Je_{1}}P$ ([1]). From this fact and proposition
4, we have $A_{Je_{1}}e_{1}=0,$ $A_{Je_{1}}e_{2}=\mu_{4}e_{2}$ , and $A_{Je_{1}}e_{3}=\mu_{4}e_{3}$ . Thus we find

$(\overline{\nabla}_{e_{2}}h)(e_{3}, e_{1})=-<\nabla_{e_{2}}e_{1},$ $e_{3}>\mu_{4}Je_{1}$ ,
(V $e_{3}h$ ) $(e_{2}, e_{1})=-<\nabla_{e_{3}}e_{1},$ $e_{2}>\mu_{4}$ Je 1 $\cdot$ (3.11)

The equation of Codazzi and (3.11) implies that $<\nabla_{e_{2}}e_{3}-\nabla_{e_{3}}e_{2},$ $e_{1}>\mu_{4}=0$ . If we put $W=$
$\{p\in M:\mu_{4}(p)\neq 0\}$ , the above relation yields $<\nabla_{e_{2}}e_{3}-\nabla_{e_{3}}e_{2},$ $e_{1}>=0$ on $W$ , which implies that
$\mathcal{H}=Span\{e_{2}, e_{3}\}$ is integrable on $W$ . Hence $W$ is an open portion of a CR-product $C\times R$ and
$\mu_{4}=0$ . It is a contradiction. Consequently we conclude that $W$ is empty and $M$ is an open portion
of a totally geodesic submanifold $C\times R$ .

Case 2: $c=1$ . In this case, a unit vector field $\eta\in \mathcal{H}^{\perp}$ lies in $L$ . Similarly to the proof in case
1, we have $A_{\zeta}=0$ for $\xi\in\nu$ . Hence, using

$-A_{Je_{3}}X+D_{X}(Je_{3})=\tilde{\nabla}_{X}(Je_{3})=J(\nabla_{X}e_{3})+Jh(X, e_{3})$ , (3.12)

$D_{X}(Je_{3})=0$ for any $X\in TM$ .
Therefore, $M$ is contained in a totally geodesic $\tilde{M}^{2}(4)$ . Since $M$ is normal, we have $A_{Je_{1}}e_{1}=0$ ,

$A_{Je_{1}}e_{2}=\mu_{4}e_{2}$ , and $A_{Je_{1}}e_{3}=\mu_{4}e_{3}$ . This implies that $M$ is a Hopf hypersurface. By virtue of
theorem 8 in [5], $M$ is an open portion of a geodesic sphere of radius $\frac{\pi}{4}$ of $\tilde{M}^{2}(4)$ . This completes
the proof of theorem 1.

In the same way as in the proof in case 1, by using (3.9), we obtain the following result.

Proposition 6 Let $M$ be a $(2n+1)$ -dimensional CR-submanifold with dim $\mathcal{H}^{\perp}=1$ in $C^{m}$ satisfying
the equality case of (3.1). Then $Ric=S(e_{2n+1}, e_{2n+1})$ for $e_{2n+1}\in \mathcal{H}^{\perp}if$ and only if $M$ is an open
portion of a product submanifold $N^{2n}\times R$ in $C^{m-1}\times C$ , where $N^{2n}$ is a Kaehler submanifold in
$C^{m-1}$

4 The proof of Theorem 2

In the same way as $[8, 14]$ , we have the following result using (3.8).

Lemma 7 Let $x:M\rightarrow CH^{m}(-4)$ be a $(2n+1)$ -dimensional CR-submanifold with $dim\mathcal{H}^{\perp}=1$ . If
$M$ satisfies the equality case of (3.2), then the mean curwature vector $\not\supset lies$ in $J\mathcal{H}^{\perp}$ .

Proof of Theorem 2
Let $\{e_{1}, \ldots, e_{2m}\}$ be an orthonormal frame field on $M$ mentioned in proposition 4 such that $e_{2n+2}$

is parallel to the mean curvature vector field and $\{e_{1}, \ldots, e_{2n+1}\}$ diagonalize the shape operator
$A_{2n+2}$ with respect to $e_{2n+2}$ and moreover $e_{2l}=Je_{2l-1}(l=1, \ldots, n)$ . Under the hypothesis, we
have fi $\in J\mathcal{H}^{\perp}$ from Lemma 7. Without loss of generality we may assume that $Je_{2n+1}=e_{2n+2}$ .
Then, in the same way as the proof of lemma 5.4 in [14] we obtain that Je$2n+1$ is a parallel normal
vector field i.e., $D(Je_{2n+1})=0$ . By choosing $Y=e_{2n+1}$ in (3.9), we get

$X\mu_{2n+1}=\omega^{1}(X)e_{2n+1}\mu_{2n+2}$ . (4.1)

Now, by differentiating (4.1) and using $(\nabla_{Y}\omega^{1})(X)=\langle PA_{2n+2}Y, X\rangle$ , we obtain

$Y(e_{2n+1}\mu_{2n+2})\omega^{1}(X)-X(e_{2n+1}\mu_{2n+2})\omega^{1}(Y)$

$+e_{2n+1}\mu_{2n+2}\langle(PA_{2n+2}+A_{2n+2}P)Y, X\rangle=0$ . (4.2)
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By choosing $Y=e_{2n+1}$ in (4.2), we have $X(e_{2n+1}\mu_{2n+2})=e2n+1(e2n+1\mu 2n+2)\omega^{1}(X)$ . Combining
this and (4.2) yield

$(e_{2n+1}\mu_{2n+2})\langle(PA_{2n+2}+A_{2n+2}P)Y, X\rangle=0$ . (4.3)

By choosing $X=\sum_{l=1}^{n}$ Je$2l-1$ and $Y=\sum_{I=1}^{n}e_{2l-1}$ in (4.3), we have $e_{2n+1}\mu_{2n+2}trace(A_{1}^{2n+1})=0$ .
If $M$ is nonminimal, we have $e_{2n+1}\mu_{2\mathfrak{n}+2}=0$ , since trace $(A_{1}^{2n+1})\neq 0$ . Therefore this implies that
$\mu_{2n+2}$ is constant. Hence we obtain $D\not\supset=0$ . I

5 The proof of Theorem 3

Let $\{e_{1}, \ldots, e_{2n+1}\}$ be an orthonormal basis mentioned in the proof of theorem 2. From now on
we shall assume that all principal curvatures of $A_{2n+2}$ are constant. Then we have the following
lemmas.

Lemma 8 Let $\{e_{1}, \ldots, e_{2n}\}$ be an orthonormal frame field of $\mathcal{H}$ with $A_{2n+2}e_{i}=\lambda_{i}e_{i}$ . Then we have
for any $i\in\{1, \ldots, 2n\}$ ,

$\sum_{j=1,\lambda_{j}\neq\lambda}^{2n}$. $(\frac{-1+\lambda_{i}\lambda_{j}}{\lambda_{i}-\lambda_{j}}(1+2\langle Pe_{i}, e_{j}\rangle)^{2}+\frac{1}{\lambda_{i}-\lambda_{j}}\sum_{2n+3}^{m}(h_{ii}^{r}h_{jj}^{r}-(h_{ij}^{r})^{2}))=0$ . (5.1)

where $ h_{ij}^{r}=\langle A_{r}e_{i}, e_{j}\rangle$ .

Proof: The proof is in the same way as the proof of lemma 2 in [3]. 1

Lemma 9 $A_{2n+2}$ has at most three distinct principal curvatures.

Proof: The proof is separated into two cases.
Case 1: $\mu_{2n+2}^{2}=4$ . We denote by $\sigma(\mathcal{H})$ the spectrum of $A_{2n+2}|\mathcal{H}$ , and for $\lambda\in\sigma(\mathcal{H})$ by $T_{\lambda}$ the

subbundle of $\mathcal{H}$ formed by the eigenspace corresponding to the eigenvalue $\lambda$ . From (3.9) we obtain
for $\lambda\in\sigma(\mathcal{H}),$ $X\in T_{\lambda}$ ,

$(2\lambda-\mu 2n+2)A2n+2PX=(-2+\lambda\mu 2n+2)PX$ . (5.2)

Assume that there exists $\lambda\in\sigma(\mathcal{H})$ with $\lambda\neq$ ;. We obtain from (5.2) that $A_{2n+2}PX=\frac{a}{2}PX$ for
$X\in T_{\lambda}.$ Hence $\frac{\alpha}{2}$ is an eigenvalue. We denote by $E_{j}$ the eigenvectors corresponding to $\lambda_{j}\neq\frac{\alpha}{2}$

By the way, we have $\tilde{R}$($X,$ $Y$ ; Je $2\mathfrak{n}+1,$
$\xi$) $=R^{D}$ ($X,$ $Y$ ; Je$2n+1,$ $\xi$) $=0$ for any $\xi\in\nu$ by virtue of

$D(Je_{2n+2})=0$ . Hence, the equation of Ricci yields

$[A_{2n+2}, A_{\zeta}]=0$ . (5.3)

Relation (3.8) and (5.3) imply that $\langle A_{r}E_{j}, E_{j}\rangle\langle A_{r}X, X\rangle-\langle A_{r}E_{j}, X\rangle^{2}=0$ for eigenvector $ X\in$

$T_{\frac{\alpha}{2}}$ . Hence we have

$\sum_{j=1,\lambda_{j}\neq\frac{a}{2}}^{2n}\frac{-1+\frac{\alpha}{2}\lambda_{j}}{\frac{\alpha}{2}-\lambda_{j}}(1+2\langle PX, E_{j}\rangle^{2})=-\frac{\alpha}{2}\sum_{j=1,\lambda_{j}\neq\frac{a}{2}}^{2n}(1+2\langle PX, E_{j}\rangle^{2})\neq 0$ , (5.4)

which contradicts (5.1). Therefore we obtain that $\sigma(\mathcal{H})=\{\frac{\alpha}{2}\}$ .
Case 2: $\mu_{2n+2}^{2}\neq 4$ .
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Assume that $\#\sigma(\mathcal{H})\geq 2$ . Then we have the following orthogonal decomposition:

$\mathcal{H}=T_{\alpha_{1}}\oplus JT_{\alpha_{1}}\oplus\cdots T_{\alpha_{s}}\oplus JT_{\alpha_{s}}\oplus T_{\lambda}\oplus T_{\mu_{2n+2}-\lambda}$ , (5.5)

where $JT_{\alpha_{i}}$ is the eigenspace corresponding to $\frac{-2+\alpha_{i}\mu_{2n+2}}{2\alpha_{i}-\mu_{2n+2}}$ and $\lambda=\frac{\mu_{\mathfrak{n}+2}+\sqrt{\mu_{n+2}^{2}-4}}{2}$ moreover $T_{\lambda}$

and $T_{\mu_{2n+2}-\lambda}$ are J-invariant, and $\lambda\neq\alpha_{j}$ from (5.2). We may assume that we can choose the
eigenvalue $\beta\in\sigma(\mathcal{H})$ with $\beta>0$ and that there are no further eigenvalues between $\beta$ and $\frac{1}{\beta}$ Hence,
for all eigenvalues $\gamma\in\sigma(\mathcal{H})$ , we have

$\frac{-1+\beta\gamma}{\beta-\gamma}\leq 0$ . (5.6)

On the other hand by virtue of (3.8) and (5.3), we get

$\sum_{j=1,\lambda_{j}\neq\alpha_{l}}^{2n}\sum_{r=2n+3}^{m}\frac{1}{a_{l}-\lambda_{j}}(\langle A_{r}X, X\rangle\langle A_{r}e_{j}, e_{j}\rangle-\langle A_{r}e_{j}, X\rangle^{2})=0$ (5.7)

for each eigenvector $X$ corresponding to $\alpha_{l}(l=1, \ldots, s)$ , and moreover, for each eigenvector $Y$

corresponding to $\lambda$

$\sum_{j=1,\lambda_{j}\neq\lambda}^{2n}\sum_{r=2n+3}^{m}\frac{1}{\lambda-\lambda_{j}}(\langle A_{r}Y, Y\rangle\langle A_{r}e_{j}, e_{j}\rangle-\langle A_{r}Y, e_{j}\rangle^{2})$

$=\sum_{r=2n+3}^{m}(\frac{1}{2\lambda-\mu_{2n+2}}\langle A_{r}Y, Y\rangle\sum_{j=1,\lambda_{\dot{f}}\neq\lambda}^{t}\langle A_{r}\tilde{E}_{j},\tilde{E}_{j}\rangle)=0$ , (5.8)

where $\tilde{E}_{j}$ are eigenvectors corresponding to $\mu_{2n+2}-\lambda$ and $t=\dim T_{\mu_{2n+2}-\lambda}$ . Similarly, for each
eigenvector $Z$ corresponding to $\mu_{2n+2}-\lambda$

$j=1,$

$\lambda_{j}\neq\mu_{2\mathfrak{n}+2}\sum_{-\lambda}^{2n}\sum_{r=2n+3}^{m}\frac{1}{\mu_{2n+2}-\lambda-\lambda_{j}}(\langle A_{r}Z, Z\rangle\langle A_{r}e_{j}, e_{j}\rangle-\langle A_{r}Z, e_{j}\rangle^{2})$

$=\sum_{r=2n+3}^{m}(\frac{1}{\mu_{2n+2}-2\lambda}\langle A_{r}Z, Z\rangle\sum_{\lambda_{j}j=1,\neq\mu_{2n+2}-\lambda}^{s}\langle A_{r}\overline{E}_{j},\overline{E}_{j}\rangle)=0$ , (5.9)

where $\overline{E}_{j}$ are eigenvectors corresponding to $\lambda$ and $s=\dim T_{\lambda}$ . We obtain from (5.1), (5.6), (5.7),
(5.8) and (5.9) $that-1+\beta\gamma=0$ . Therefore $\#\sigma(\mathcal{H})=2.1$

Lemma 10 If $m>n+1$ and $M$ is linearly full, then with respect to some suitable orthonormal
frame field $\{e_{1}, \ldots, e_{2m}\}$ , the second fundamental $fom$ of $M$ in $CH^{m}(-4)$ satisfies

$h(e_{2r-1}, e_{2r-1})=\sqrt{\frac{1}{2n-1}}Je_{2n+1}+\phi_{r}\xi_{r}$ , (5.10)

$h(e_{2r}, e_{2r})=\sqrt{\frac{1}{2n-1}}$Je$2n+1-\phi_{r}\xi_{r}$ , (5.11)

$h(e_{2r-1}, e_{2r})=\phi_{r}J\xi_{r}$ , $h(e_{2n+1}, e_{2n+1})=\frac{2n}{\sqrt{2n-1}}Je_{2n+1}$ (5.12)

$h(f, e_{2n+1})=0$ , (5.13)

where $r=1,$ $\ldots,$ $n,$ $\phi_{r}$ are functions, $\xi_{r}\in v$ and $f\in L:=Span\{e_{1}, \ldots, e_{2n}\}$ .
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Proof.$\cdot$ Suppose that $\mathcal{H}=T_{\lambda}\oplus T_{\mu_{2n+2}-\lambda}$ . Let $l$ and $m(l>m)$ be the dimension of $T_{\lambda}$ and $T_{\mu_{2\mathfrak{n}+2}-\lambda}$ ,
respectively. Then we get $(l-m)\sqrt{\mu_{2n+2}^{2}-4}=(2-l-m)\mu_{2n+2}$ . But it does not hold, since $l$ ,
$m>2$ .

Suppose that $\mathcal{H}=T_{\alpha_{1}}\oplus JT_{\alpha_{1}}$ , where $\alpha_{1}\neq\mu_{2n+2},$ $\lambda,$ $\mu_{2n+2}-\lambda$ . Then by using (3.8) and (5.3),
we obtain that $M$ is contained in a totally geodesic complex hyperebolic space $CH^{n+1}(-4)$ , since
$Je_{2n+1}$ is parallel. This is a contradiction.

Therefore, $A_{2n+2}$ has exactly two distinct eigenvalues. We denote the eigenvector corresponding
to the second eigenvalue $\alpha\neq\mu_{2n+2}$ by $X$ . It follows from (5.2) that $PX$ is also an eigenvector
corresponding to the eigenvalue $\beta=\frac{-2+\alpha\mu_{2\mathfrak{n}+2}}{2\alpha-\mu_{2n+2}}$ Since $A_{2n+2}$ has exactly two distinct eigenvalues,
we have $\beta=\mu_{2n+2}$ or $\beta=\alpha$ .

We divide the proof into two cases.
First, let us suppose that $A_{2n+2}$ has two distinct eigenvalues $\mu_{2n+2}$ and $\frac{-2+\mu_{2\mathfrak{n}+2}^{2}}{\mu_{2\mathfrak{n}+2}}$ i.e. $\mu_{2n+2}=\beta$ .

Then, using (3.8) and (5.3), we obtain that $M$ is contained in a totally geodesic complex hyperebolic
space $CH^{n+1}(-4)$ . This is a contaradiction.

Next, we consider the case where $A_{2n+2}$ has two distinct eigenvalues $\mu_{2n+2}$ and $\alpha=\beta$ . Then
from (5.5) we have $\mathcal{H}=T_{\lambda}$ or $T_{\mu_{2n+2}-\lambda}$ .

Consequentry, $hom$ proposition 3, replace $e_{2n+1}$ by $-e_{2n+1}$ if necessary, we obtain that $\alpha=$

$\frac{1}{\sqrt 2\mathfrak{n}-1}$ and $\mu_{2\mathfrak{n}+2}=\sqrt{2n-1}^{2n}$ . I

Let $\hat{M}=\pi^{-1}(M)$ denote the inverse image of $M$ via the Hopf fibration $\pi$ : $H_{1}^{2m+1}\rightarrow CH^{m}(-4)$ .
Then $\hat{M}$ is a principal circle bundle over $M$ with time-like totally geodesic fibers. Let $z$ : $\hat{M}\rightarrow$

$H_{1}^{2m+1}(-1)\subset C_{1}^{m+1}$ denote the immersion of $\hat{M}$ in $C_{1}^{m+1}$ . Let $\tilde{\nabla}$ and $\hat{\nabla}$ denote the metric connec-
tions of $C_{1}^{m+1}$ and $\hat{M}$ , respectively. We denote by $X^{*}$ the horizontal lift of a tangent vector $X$ of
$CH^{m}(-4)$ . Then we have (cf. [9])

$\tilde{\nabla}_{X}\cdot Y^{*}=(\nabla_{X}Y)^{*}+(h(X, Y))^{*}+\langle JX,$ $Y$) $V+\langle X,$ $Y$) $z$ , (5.14)
$\overline{\nabla}_{X}\cdot V=\tilde{\nabla}_{V}X^{*}=(JX)^{*}$ , (5.15)
$\tilde{\nabla}_{V}V=-z$ , (5.16)

for vector fields $X,$ $Y$ tangent to $M$ , where $z$ is the position vector of $\hat{M}$ in $C_{1}^{2m+1}$ and $ V=iz\in$
$T_{z}H_{1}^{2m+1}(-1)$ .

Let $E_{1},$
$\ldots,$

$E_{2n+1},\xi_{r}^{*}$ be the horizontal $1i$fts of $e_{1},$
$\ldots,$ $e_{2n+1},$ $\xi_{r}$ , respectively and let $E_{2n+2}=iz$ ,

and let $\{j_{1}\}$ be connection forms of $\hat{M}$ . Then, from lemma 10, (5.14), (5.15) and (5.16), we obtain

$\tilde{\nabla}_{E_{2r-1}}E_{2r-1}=\sum_{j=1}^{2n}j_{2r-1}(E_{2r-1})E_{j}+\alpha iE_{2n+1}+\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ , (5.17)

$\tilde{\nabla}_{E_{2r-1}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{;}(E_{2r-1})E_{j}-\alpha E_{2n+1}+i\phi_{r}\xi_{r}^{*}+E_{2n+2}$ , (5.18)

$\tilde{\nabla}_{E_{2r}}E_{2r-1}=\sum_{j=1}^{2n}j_{2r-1}(E_{2r})E_{j}+\alpha E_{2\mathfrak{n}+1}+i\phi_{r}\xi_{r}^{*}-E_{2n+2}$ , (5.19)

$\tilde{\nabla}_{E_{2r}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{j}(E_{2r})E_{j}+i\alpha E_{2n+1}-\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ , (5.20)

$\tilde{\nabla}_{E_{2r-1}}E_{2\mathfrak{n}+1}=\alpha E_{2r}$ , (5.21)
$\tilde{\nabla}_{E_{2r}}E_{2\mathfrak{n}+1}=-\alpha E_{2r-1}$ , (5.22)
$\tilde{\nabla}_{E_{2\mathfrak{n}+1}}E_{2n+1}=2n\alpha iE_{2n+1}-iE_{2n+2}$ , (5.23)
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$\tilde{\nabla}_{E_{2r-1}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r-1}=E_{2r}$ ,
$\tilde{\nabla}_{E_{2r}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r}=-E_{2r-1}$ ,
$\tilde{\nabla}_{E_{2n+1}}E2n+2=\tilde{\nabla}E_{2n+2}E2n+1=iE2n+1$ ,

V$E_{2n+2}E_{2n+2}=iE_{2n+2}$ ,

(5.24)

(5.25)

(5.26)

(5.27)

where $r=1,$ $\ldots,$ $n,$ $\alpha=\sqrt{\frac{1}{2n-1}}$ and
By using the above equations, we obtain the following lemma.

Lemma 11 $\hat{M}$ is a Riemannian product $\hat{M}_{1}\times\hat{M}_{2}$ , where $M_{1},$ $M_{2}$ are integral submanifolds of
$D_{1}$ $:=Span\{E_{1}, \ldots, E_{2n}, \alpha E_{2n+1}-E_{2n+2}\}$ and $D_{2}$ $:=Span\{E_{2n+1}-\alpha E_{2n+2}\}$ , respectively.

Proof: For $X^{\prime},$ $Y^{\prime}\in D_{1}$ , we have

$\hat{\nabla}_{X^{\prime}}(E_{2n+1}-\alpha E_{2n+2})=0$ , $\hat{\nabla}_{E_{2n+1}-\alpha E_{2\mathfrak{n}+2}}(E_{2n+1}-\alpha E_{2n+2})=0$ ,
$\hat{\nabla}_{X^{\prime}}Y^{\prime}\in D_{1}$ , $\hat{\nabla}_{E_{2n+1}-\alpha E_{2n+2}}X^{\prime}\in D_{1}$ .

Hence, $D_{1}$ and $D_{2}$ are totally geodesic in $\hat{M}$ and parallel. 1

Moreover we obtain from (5.21)-(5.27) that

$\tilde{\nabla}_{E_{2r-1}}(E_{2n+1}-\alpha E_{2n+2})=\tilde{\nabla}_{E_{2r}}(E_{2n+1}-\alpha E_{2n+2})=0$ ,

V$\alpha E_{2n+1}-E_{2n+2}(E_{2n+1}-aE_{2n+2})=(2n\alpha^{2}-\alpha^{2}-1)iE_{2n+1}=0$ .

Hence, $Z$ $:=E_{2n+1}-\alpha E_{2n+2}$ is a constant vector in $C_{1}^{m+1}$ along each integral manifold $\hat{M}_{1}$ of $D_{1}$ .
From lemma 11, there exist coordinates $\{s, t, x_{1}, y_{1}, \ldots, x_{n}, y_{n}\}$ such that $T_{S}’ K_{1}$”

$ W_{\mathfrak{n}}\partial\partial\ldots\partial$ are
tangent to integral manifolds $\hat{M}_{1}$ of $D_{1},$ $\frac{\partial}{\partial s}=\alpha E_{2n+1}-E_{2n+2}$ and $\frac{\partial}{\partial t}=E_{2n+1}-\alpha E_{2n+2}$ . Without
loss of generality, we may assume that $\hat{M}_{1}$ is defined by $t=0$ . We put $Z_{0}$ $:=Z|_{t=0}$ .

Then we may assume $Z_{0}=(0, \ldots, 0, \sqrt{1-\alpha^{2}})$ , up to rigid motions. Since $(z, Z_{0})$ is constant
along $\hat{M}_{1}$ , we can write

$z(s, 0, x_{1}, y_{1}, \ldots, x_{n}, y_{n})=(\Psi_{1}, \ldots, \Psi_{m}, c)$ , (5.28)

where $c$ is a constant determined by the initial conditions and $\Psi_{1},$
$\ldots,$

$\Psi_{m}$ are functions.
Since $z_{s}+(1-\alpha^{2})iz=\alpha E_{2n+1}-E_{2n+2}+(1-\alpha^{2})E_{2n+2}=\alpha(E_{2n+1}-aE_{2n+2})=\alpha Z$ , we have

$\frac{\partial\Psi_{j}}{\partial s}+(1-\alpha^{2})i\Psi_{j}=0$ , $c(1-\alpha^{2})i=\alpha^{\sqrt{1-\alpha^{2}}}$, $(1-\alpha^{2})iz_{2}=\alpha\frac{\partial z_{2}}{\partial t}$ , (5.29)

where $z_{2}$ is a position vector of $\hat{M}_{2}$ in $C_{1}^{m+1}$ . Thus we have

$z=(g(x_{1}, \ldots, y_{n})e^{-(1-\alpha^{2})is}, \frac{a\sqrt{1-\alpha^{2}}}{1-\alpha^{2}}e^{\frac{1-\alpha^{2}}{\alpha}it})$ (5.30)

Since $(z, z)=-1$ , we have
$-|g|^{2}+\frac{\alpha^{2}}{1-\alpha^{2}}=-1$ . (5.31)

We put $\tilde{E}_{2\mathfrak{n}+1}=\mapsto^{1}1-\alpha(\alpha E_{2n+1}-E_{2n+2})$ and $\tilde{E}_{2n+2}=\frac{1}{\sqrt 1-\alpha^{2}}(E_{2n+1}-\alpha E_{2n+2})$ . It follows from

(5.17)-(5.27) that $\hat{M}_{1}$ is a CR-submanifold of $C_{1}^{m}$ such that the unit totally real vector field $is$

1 $\partial$

$\overline{\sqrt 1-\alpha^{2}}Ts$
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Conversely, we consider the immersion mentioned in Theorem 3. We put $\tilde{E}_{2n+2}=(0, \sqrt{2n-2}\frac{\partial}{\partial t})$ ,
$\tilde{E}_{2n+1}=(-\sqrt{\frac{2n-2}{2n-1}}\frac{\partial}{\partial s}, 0),$ $E_{2n+1}=-\sqrt{\frac{1}{2n-2}}\tilde{E}_{2n+1}+\sqrt{\frac{2n-1}{2n-2}}\tilde{E}_{2n+2}$ and $E_{2n+2}=-\sqrt{\frac{2n-1}{2n-2}}\tilde{E}_{2n+1}+$

$\sqrt{\frac{1}{2n-2}}\tilde{E}_{2n+2}$ . Then by straight-forward computaions we can see that $\{E_{1}, \ldots, EE, E2n+2\}$

is an orthonormal basis of $z(R^{2}\times U)$ and the second fundamental form of $z(R^{2}\times U)$ in $C_{1}^{m+1}$

satisfies

$\tilde{h}(E_{2r-1}, E_{2r-1})=\sqrt{\frac{1}{2n-1}}iE_{2n+1}-iE_{2n+2}+\phi_{r}\tilde{\xi}_{r}$ , (5.32)

$\tilde{h}(E_{2r-1}, E_{2r-1})=\sqrt{\frac{1}{2n-1}}iE_{2n+1}-iE_{2n+2}-\phi_{r}\tilde{\xi}_{r}$ , (5.33)

$\tilde{h}(E_{2r-1}, E_{2r-1})=i\phi_{r}\overline{\xi}_{r}$ , $\tilde{h}(X, E_{2n+1})=0$ , (5.34)

$\tilde{h}(E_{2\mathfrak{n}+1}, E_{2n+1})=\frac{2n}{\sqrt{2n-1}}iE_{2n+1}-iE_{2n+2}$ , (5.35)

$X\in Span\{E_{1}, \ldots, E_{2n}\},$ $\phi_{r}$ are functions and $\tilde{\xi}_{r}$ are unit normal vector fields perpendicular to
$iE_{2n+1},$ $iE_{2\mathfrak{n}+2}$ .

Since $iz$ is always tangent to $z(R^{2}xU)$ , the image is invariant under the action of $H_{1}^{1}$ . Hence,
$z(R^{2}\times U)$ is projectable via $\pi$ . The image $\pi(z(R^{2}\times U))$ is a $(2n+1)$-dimensional proper CR-
submanifold of $CH^{m}(-4)$ whose holomorphic ditribution $\mathcal{H}$ is spanned by $e_{1}=\pi_{*}(E_{1}),$

$\ldots,$ $e_{n}=$

$\pi_{*}(E_{2n})$ and $\mathcal{H}^{\perp}$ is spanned by $e_{2\mathfrak{n}+1}=\pi_{*}(E_{2n+1})$ . From $(5.32)-(5.35)$ , we obtain that $e_{1},$
$\ldots,$

$e_{n},$ $e_{2n+1}$

and $\xi_{r}=\pi_{*}(\xi_{r})$ satisfy $(5.10)-(5.13)$ . This completes the proof of theorem 2.

In the rest of this section we shall determine normal CR-submanifolds in a complex hyperbolic
space satisfying the equality case of (3.2).

Corollary 12 In case $n>1$ and $m>n+1$ , every linearly full $(2n+1)$ -dimensional norrteal CR-
submanifold unth dim $\mathcal{H}^{\perp}=1$ in $CH^{m}(-4)$ satisfying the equality case of (3.2) is obtain$ed$ in the
same way as in theorem 3.

Proof: By using (3.9) and relation $PA_{2n+2}=AP_{2n+2}$ , we obtain that the shape operator $A_{2n+2}$ has
at most three distinct constant eigenvalues $\mu_{2n+2},$

$\frac{\mu_{n+2}+\sqrt{\mu_{\mathfrak{n}+2}^{2}-4}}{2}$ and $\frac{\mu_{\mathfrak{n}+2}-\sqrt{\mu_{\mathfrak{n}+2}^{2}-4}}{2}$ The assertion
follows immediatly from theorem 3. 1

6 CR-submanifolds in the nearly Kaehler six-sphere
It is well known that the unit six-sphere $S^{6}(1)$ has a nearly Kaehler structure $J$ in the sense
that $(\tilde{\nabla}_{X}J)(X)=0$ , for any vector field $X$ tangent to $S^{6}(1)$ , where $\tilde{\nabla}$ denote the Levi-Civita
connection related to the standard metric on $S^{6}(1)$ ([10]). For the maximum Ricci curvature $Ric$ of
a 3-dimensional submanifold in $S^{6}(1)$ , we have

$\overline{Ric}\leq 2+\frac{9}{4}H^{2}$ . (6.1)

F. Dillen and L. Vrancken have completely classified totally real submanifolds in the nearly Kaehler
six-sphere satisfying the equality case of (6.1) ([11]). An n-dimensional Riemannian manifold is
called quasi-Einstein if Ricci tensor has an eigenvalue of multiplicity at least $n-1$ . R. Deszcz,
F. Dillen, L. Verstraelen and L. Vrancken proved that 3-dimensional totally real submanifolds in
$S^{6}(1)$ satisfying the equality case of (6.1) are quasi-Einstein ([12]). For proper CR-submanifolds,
we obtained the following.
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Theorem 13 Let $M^{3}$ be a 3-dimensional proper CR-submanifold in $S^{6}(1)$ . If $M^{3}$ satisfies the
equality case of (6.1), then $M^{3}$ is minimal quasi-Einstein.

Proof: By virtue of main theorem in [14], $Ric\neq S(\eta, \eta)$ for a unit vector field $\eta\in \mathcal{H}^{\perp}$ . Let
$\{e_{1}, e_{2}, e_{3}\}$ be an orthonormal frame field on $M^{3}$ such that $Ric=S(e_{3}, e_{3})$ . We may assume that
$\eta=e_{2}$ . Since $\langle A_{\xi}JX, X\rangle=-\langle A_{\xi}X, X\rangle$ for any vector field $X\in \mathcal{H}^{\perp}$ and $\xi\in v$ , we obtain that the
second fundamental form satisfies

$h(e_{1}, e_{1})=aJe_{2}$ , $h(e_{2}, e_{2})=bJe_{2}$ , $h(e_{3}, e_{3})=(a+b)Je_{2}$ , (6.2)
$ h(e_{1}, e_{2})=cJe_{2}+d\xi$ , $h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ , (6.3)

where a $,$

$b,$ $c$ and $d$ are functions and $\xi\in v$ . From $(\overline{\nabla}_{e_{2}}h)(e_{1}, e_{3})=(\overline{\nabla}_{e_{1}}h)(e_{2}, e_{3})$ , we get

$\langle\nabla_{e_{2}}e_{3}, e_{2}\rangle d=\langle\nabla_{e_{1}}e_{3}, e_{1}\rangle d$ , (6.4)
$\langle\nabla_{e_{1}}e_{2}-\nabla_{e_{2}}e_{1}, e_{3}\rangle h(e_{3}, e_{3})-\langle\nabla_{e_{2}}e_{3}, e_{1}\rangle h(e_{1}, e_{1})+(\nabla_{e_{1}}e_{3},$ $ e_{2}\rangle$ $h(e_{2}, e_{2})=0$ . (6.5)

By using $(\tilde{\nabla}_{X}J)(Y)=-(\tilde{\nabla}_{Y}J)(X)$ , we have the following:

$-A_{Je_{2}}e_{1}+D_{e_{1}}Je_{2}=\tilde{\nabla}_{e_{1}}(Je_{2})=-\nabla_{e_{2}}e_{3}+J(\nabla_{e_{2}}e_{1}+\nabla_{e_{1}}e_{2}+2h(e_{1}, e_{2}))$ , (6.6)
$-A_{Je_{2}}e_{3}+D_{e_{3}}Je_{2}=\tilde{\nabla}_{e_{3}}(Je_{2})=\nabla_{e_{2}}e_{1}+h(e_{1}, e_{2})+J(\nabla_{e_{2}}e_{3}+\nabla_{e_{3}}e_{2})$ , (6.7)
$J(\nabla_{e_{2}}e_{2})+Jh(e_{2}, e_{2})=\tilde{\nabla}_{e_{2}}(Je_{2})=-A_{Je_{2}}e_{2}+D_{e_{2}}Je_{2}$ . (6.8)

It follows from (6.6), (6.7) and (6.8) that an orthonormal basis $\{e_{1}, e_{2}, e_{3}\}$ satisfies

$\langle\nabla_{e_{2}}e_{1}, e_{3}\rangle=0$ , $\langle\nabla_{e_{1}}e_{2}, e_{1}\rangle=0$ , $\langle\nabla_{e_{1}}e_{2}, e_{3}\rangle=-a$ , $\langle\nabla_{e_{2}}e_{3}, e_{2}\rangle=-c$ ,
$\langle\nabla_{e_{3}}e_{2}, e_{3}\rangle=0$ , $\langle\nabla_{e_{3}}e_{2}, e_{1}\rangle=-a-b$ , $D_{e_{3}}Je_{2}=0$ . (6.9)

From $(\overline{\nabla}_{e_{1}}h)(e_{3}, e_{3})=(\overline{\nabla}_{e_{3}}h)(e_{1}, e_{3})$ , we obtain

$(a+b)D_{e_{1}}Je_{2}=0$ , $e_{1}(a+b)Je_{2}=-\langle\nabla_{e_{3}}e_{1}, e_{3}\rangle(a+b)Je_{3}-\langle\nabla_{e_{3}}e_{3}, e_{1}\rangle h(e_{1}, e_{1})$ . (6.10)

We put $M_{0}$ $:=\{p\in M^{3}|(a+b)(p)\neq 0\}$ . Then $D_{e_{1}}Je_{2}=0$ on $M_{0}$ , which implies that
$h(e_{1}, e_{2})=d\xi=0$ by (6.6). If $d=0,$ $(6.7)$ yields $DJe_{2}=0$ . Since $h(X, Y)\in Span\{Je_{2}\}$ for any
tangent vector $X,$ $Y$ , we obtain that $M_{0}$ is contained in a totally geodesic $S^{4}(1)$ . Hence $TS^{4}(1)|_{M_{O}}$

is spanned by $\{e_{1}, e_{2}, e_{3}, Je_{2}\}$ . A result of Gray in [13] shows that this is impossible. Therefore,
$a+b=0$ on $M^{3}$ . Moreover by using (V $e_{3}h$) $(e_{1}, e_{1})=(\overline{\nabla}_{e_{1}}h)(e_{3}, e_{1})$ , we have $ac=0$ . It follows
from the equation of Gauss that $c=0,$ $a^{2}=d^{2}=1$ and $ S(X, Y)=2\langle X, e_{3}\rangle\langle Y, e_{3}\rangle$ for any tangent
vector $X$ , Y. This proves the required result. 1
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