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An extended class of nonlinear groups and its applications to
the generalized Kortweg-deVries equations

Paul GEORGESCU, Shinnosuke OHARU and Tadayasu TAKAHASHI

ABSTRACT. The initial value problem for the generalized Kortweg-deVries equa-
tion
'U,t + (f(u))m + Uzzz - 0, t, T G ]R

is treated in terms of a recent theory of nonlinear operator semigroups associated
with semilinear evolution equations in Banach spaces. Two operators A and B
are introduced to represent the linear and nonlinear differential operators in the
equation and convert the initial-value problem to a semilinear evolution problem

(SP) W (@t)=(A+B)u(t), t>0; u(0)=v

in the Sobolev space H2?(R). Five energy functionals are then employed to restrict
stability properties of A + B as well as the growth of mild solutions to (SP). The
solution operators to (SP) are obtained by applying a generation theorem for groups

of locally Lipschitzian operators. Here the main point of our argument is to make
‘ a precise investigation of the resolvents of A + B and construct a group of locally
| Lipschitzian operators G(t) on H2(R) which provides mild solutxons to the problem.
Also, regularized equations of the form

us + (f(u))z + Uzgr — PUtzr = 0, t,z€R,

1 being a positive parameter, are studied by means of the same approach and the
convergence of the associated groups G, (t) to the group G(t) is discussed.
1 Introduction

This paper is concerned with the initial value problem for the generalized Kortweg-
deVries equations

U + (f ('U,))z + Ugge = 0, t, T e IR;
u(0,z) =v(z), z € R,
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where f is a nonlinear function of class € (R) which satisfies the normalization conditions
f(0) = 0 and the growth condition

llli—m f'(u)/|ufP <oo forsome pe€[0,4),

and v is a given initial function in the Sobolev space H? (R).

In the case of f (u) = u+ u%/2, the above equation is known as the Kortweg-deVries
equation (usually, abbreviated to K-dV equation), which is understood to be a general
model for the unidirectional propagation of long waves of small amplitude. In fact, u
represents the height of a wave at position z and time ¢ with respect to the standard
level. The K-dV equation is also formulated to describe nonlinear phenomena such as
magnetohydrodynamical waves and interaction of solitons.

In this paper, we convert the initial-value problem for the generalized K-dV equation
to a semilinear evolution problem of the form

(SP) d(t)=(A+B)ut), teR  u(0)=v,

and treat the initial value problem in an operator theoretic fashion. Here A represents the
third-order differential operator —82 and B stands for the nonlinear first-order differential
operator —3; o f. We then apply a recent theory for evolution equations goverend by
nonlinear quasidissipative operators developped in (7], {14], [17], [18] to this semilinear
operator A+ B and construct a group G = {G(t); t € R} of nonlinear operators on H*(R)
which provides mild solutions to (SP) in the sense that

Gty =U(t)v+ /t U(t — s)BG(s)vds

for t € R and v € H2(R), where U is the unitary group generated in L*(R) by A. One
of the main features of our argument is that we make use of five energy functionals ¢,
k = 0,1,2,3,4 and investigate the growth of the mild solutions and their qualitative
properties. More precisely, we show that the group G enjoys exponential type growth
conditions with respect to the functionals ¢, and that the regularity of the mild solutions
u(t) = G(t)v is obtained by means of ¢. In order to apply a recent theory for groups
of locally Lipschitzian operators, we necessitate investigating the ranges of I — A(A + B),
IA| < Xo and their resolvents (I — A(A + B))™! in the Sobolev space H*(R) of higher
order through a fixed point argument. The aimed group G(t) is constructed through the
exponential formula

G(tyv = H*- Jim (1 - XA+ B)) ¥y, +t>0,v € H:(R).

We next consider the initial value problem for the pseudoparabolic regularization of
the generalized Kortweg-deVries equations

ut+(f (u))z'*'uzz:c — PUizz = 0, t,zeR
1 (0,z) = v (z), z € R,
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where u is a positive parameter. Because of the regularizing effect of the term —puy,., a
nonlinear group of Fréchet differentiable operators which provides mild solutions to the
regularized problem is constructed on H'(R). For this problem it is assumed that u > 0,
f is a nonlinear function of class €* (R) satisfying f (0) = 0 and v is an initial function
given in H'(R). We also discuss the convergence of the groups G, to G as u — 0.

2 A generation theorem for nonlinear groups

It is widely recognized that the theory of semilinear evolution equations plays an
important role in the systematic studies of many important problems arising from various
fields. In this section, we follow the lines of [7], and make an attempt to outline a
generation theory for nonlinear groups of locally Lipschitzian operators associated with a
general class of semilinear evolution problems. For the related Hille-Yosida type theorems
in the semilinear case, we refer to [14], [17] and [18]. See also {12], [13], [21] for the
generation theory for nonlinear evolution operators under more general assumptions.

Let (X, |-]) be a real Banach space, D a subset of X and ¢ : X — [0,00] a ls.c.
functional such that D C D (¢) = {v € X; ¢ (v) < co}. We denote by X* the dual of X,
and given v € X and v* € X*, the value of v* at v is written as (v,v*). We also denote
by D, = {v € D;¢(v) < a} a level set of D with respect to ¢. The duality mapping of
X is the function F : X — 2% defined by

Fv={v* € X* (v,v*) = [v> = ]’u*lz}.

This is well-defined by the Hahn-Banach theorem.
We then define the lower and upper inner products (-,-); and (-,+), on X x X by

(w,v); = inf {{w,v*) ,v* € Fuv},
and

(w,v), = sup {(w,v*) ,v* € Fv}, respectively.

A nonlinear operator B : D C X — X is said to be locally quasidissipative (respec-
tively, strongly locally quasidissipative) on D(B) with respect to ¢ if for each a: > 0 there
exists w, € R such that :

(Bv— Bw,v — w); L wg|v —w|® for v,w € Dy,

(respectively, (Bv — Bw,v — w), < welv —w|? for v,w € D,).
For basic properties of the duality mapping and those of quasidissipative operators, see
[6] and [20].
By a locally Lipschitzian group on D with respect to ¢, we mean a one-parameter
family G = {G(¢);t € R} of (possibly nonlinear) operators from D into itself such that
the following three conditions hold:

(Gl) Frve Dand s,teR, G({)G(s)v=G(t+s)v and G(0)v=v.
(G2) Forve D, G(-)v e € (R; X).
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(G3) For each a > 0 and each 7 > 0 there exists w = w (e, 7) € R such that
|G (t)v — G () w| < e |v — w|

for v, w € Do = {v € D;p(v) <a}and t€[0,7]

We now consider the semilinear evolution problem
(SP) o (t) = (A+ B)u(t), teR; u(0)=veD,

where we impose the following hypotheses on the operators A, B and the class of initial
data D:

(A) A : D(A) € X — X generates a (Co)-group U = {U(t);t € R} such that
|U(t)v] < e“t|v| for v e X, t € R and some w € R.

(B) The level set D, is closed for each « > 0 and B : D C X — X is continuous on
each D,.

Since the semilinear problem (SP) does not necessarily admit strong solutions, the
variation of constants formula is employed to introduce solutions in a generalized sense.
We say that a function u(-) € €(R); X) is a mild solution to (SP) if u(t) € D for ¢t 2 0,
Bu(-) € €(R); X) and u(-) satisfies the integral equation

u(t) =U(t)v+ ft U(t — s)Bu(s)ds
0

for all t € R. We also say that a group G is associated with (SP), if it provides mild
solutions to (SP) in the sense that for each v € D the function u(-) = G(-)v is a mild
solution to (SP).

Under the above hypotheses one can obtain a semilinear Hille-Yosida theorem for
loca.lly'Lipschitzia.n groups associated with (SP) as follows.

Theorem 2.1. Let a,b > 0, A a linear operator in X satisfing condition (A), and let
B be a nonlinear operator on D which satisfies condition (B) with respect to an Ls.c.
functional ¢ on X with D C D(yp). Then the following statements are equivalent:

(I) There is a group G = {G (t) ;t € R} of locally Lipschitzian operators on D satisfying
the conditions below:

t
11) G(@)v= U(t)v+/ U(t—s)BG(s)vds forteR andv € D.
0
(1.2) For o > 0 and T > 0 there is w = w(a,T) € R such that
|G () v — G (t) w| < e @M |y — w)

for v, w € D,.
(1.3) @(G(t)v) < e (p(v) +blt]) fort €R and v € D.

(II) The subtangential condition and semilinear stability condition are satisfied in the
following sense:

— 14 —



(IL1) Forv € D and e > O there exist (hy,vn,) € (0,€] x D and (ha,vs,) € [—€,0) x D
such that

(1/h) U (i) v + hiBv — v, | <€, @ (vp) < el () +(b+e)h), i=1,2.
(I1.2) For each a > 0 there is wy € R such that

}1%%(1/ IA) [IU (R) (v — w) + h (Bv — Bw)| — |v — w|] < wa |v — w]

forv, w € D,.

If in particular D and ¢ are both convez, then the above statements are equivalent to:

(III) The following denseness, quasidissipativity and range conditions are satisfied:
(II1.1) D(A) N D is dense in D.
(II1.2) For o > 0 there is w, € R such that

((A+ B)v — (A+ B)w,v — w); < wq |v —w|?,

((A+ B)v — (A+ B)w,v — w), > —wa |v —w|.

(IT1.3) To a > 0 and € > 0 there corresponds A\ = Ag (@) > 0 and for v € Dy and
A € R with |A| < Ao (a) there ezist vy € D(A)N D and z, € X such that |2,| < ¢,

v —A(A+B)vy =v+Azy and cp(ﬁ,\) <(1—=|Ma) (e +(B+e)|A]).

It should be noted here that the implication from (III) to (I) does not require the
convexity of D and ¢. Also, if X is a Hilbert space and (Av,v) = 0 for each v € D(Az
as in the case of K-dV equation, only the inequality |(Bv — Bw,v — w)| < wg (@) |v — w|
should be checked to verify (III.2). Moreover, if B is a locally Lipschitzian operator, then
the denseness condition (I11.1) is not necessary for the derivation of (I) from (III).

3 Semilinear evolution problems for the generalized
Kortweg-deVries equations

In this section we construct a nonlinear group which provides mild solutions to the
initial value problem for the generalized K-dV equation

(3.1) u+ (f (W), + Uz =0, t,z€ER,
(3.2) u(0,z) =v(x), z € R.

Here R=(—00,00), f in (3.1) is a nonlinear function of class ¢ (R) satisfying f (0) = 0
and v in (3.2) is an initial function given in H2(R). We also assume that f satisfies the
growth condition

(3.3) |,;l|i—_.n—1mfl (u) / [uff < oo
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for some real number p € [0,4), where f’ denotes the derivative of f.

For studies in K-dV equations and their generalizations through compactness methods,
we refer the reader to, for instance, Kametaka [11], Tsutsumi and Mukasa [24], Bona and
Smith [5]. See also [8] for a discussion on K-dV equation through the related methods. In
this paper we apply the generation theorem stated in the previous section and establish an
existence and uniqueness theorem for a nonlinear group of locally Lipschitzian operators
on H?(R) which provides mild solutions to the initial-value problem (3.1)-(3.2).

In what follows, H* stands for the Sobolev space H* (R) for each nonnegative integer
k. The inner product and norm of H* are expressed by (-, ), and |-|,, respectively.

In particular, H° denotes the ordinary Lebesgue space L? = L? (R) with inner product
(-,-) and norm |-|. By ¥ (R, H*) is meant the space of H*-valued continuous functions on
R. For each positive integer m we write €™ (IR; H ") for the space of H*—valued functions
which are m times continuously differentiable on R. Also €°(R) represents the space
of infinitely many times differentiable functions with compact supports in R. In what
follows, we write w,, — w in H* if a sequence {w,} in H* converges strongly in H* to w.
Likewise, we wite w, — w in H* converges weakly in H* to w.

Let V be the differential operator d/dz from H! into L2. It is obvious that

(3.4) (Vv,w) = — (v, Vw) and (Vv,v) =0 for v, w € H.

The following inequality is well-known, see [22].

Lemma 3.1. Let 2 < g < 00. For v € H!, the inequality

(3.5) [0l < 27 [Vo" fol*"

is valid, where r = (q — 2) /2q and |-|,, denotes the norm of the Lebesgue space L (R).

Since we aim to reformulate equation (3.1) as an abstract semilinear evolution equation
in L? of the form

(3.6) (d/dt)u(t) = (A+ B)u(t) teR,
we first introduce a densely defined and closed linear operator from H?3 into L? by
(3.7) Av=-V3%  forve H3.

It is seen that A is the infinitesimal generator of a group % = {U (t);t > 0} of linear
isometries on L2. More precisely, each of U (t) maps H* into itself and satisfies the
identities
(3.8) \U (t) v], = |vli for ve H* and k > 0.

Secondly, we define a nonlinear operator B from H! into L? by

(3.9) Bv=-Vf@w)=—-f(v)Vv forve H.

The idea which motivates this approach is that B, as a lower order differential operator,
may be regarded as a continuous perturbation of A via restrictions to appropriate subsets
of H*. The same viewpoint is also appropriate for showing quasidissipativity, as seen in
the following result.
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Proposition 3.1. The following assertions hold:
(i) Let v € H' and let {v,}n>1 be a sequence in H' such that sup |v,|, < 0o0. Ifv, — v
n>1

in L?, then Bv,, — Bv in L2
(ii) Let v € H? and let {v,}n>1 be a sequence in H? such that sup |v,|, < 00. Ifv, — v
n>1

in L2, then Bv, — Bv in L2

(iii) For each o > 0, there is a number wo (o) > 0 such that
(3.10) |(Bv — Bw,v — w)| < wg (@) |v — w|®

for v, w € H? with |v|, < a and |w|, < a.
(iv) For each a > 0, there is a number w; (a) > 0 such that

(3.11) |(Bv — Bw,v — w)|, < w; (a) |v —w|?
for v, w € H? with |v|; < a and |w|; < o.

Proof. First, for each u € H!, we have

uz(m)=/x u(s)u’(s)ds—-/oou(s)u’(s)ds for a.e. T € R,

—00

and so

I (z)] < f lu(s)] | (s)] ds < [u] |u] for ae. = € R,

which implies (] < (1/v/2) |ul,. In what follows, we use the inequality
(3.12) |4 e < |ul, for each u € H'

for the sake of simplicity.
(i): Let v € H' and {vn}n>1 & sequence in H! such that sup |v,|, < 0o and v, — v in L2
n>1

Denoting sup |v,|; by M, a simple computation implies
n>1

2
|an|2=/l;|f,(vn)vvnl2dxs (SUP lfl(s)l) /R|V'vn|2d$,

|s|<M;

from which we infer that sup |Bv,| < oo and v, — v in the Fréchet space L (R).

n>1
Put K; = sup{|f'(s)| : |s| < My} and let ¢ € L% Since €= (R) is dense in L?,
one may construct a sequence {¢m},,>; such that o € €° (R) and <pm — @ in L? as
m — oo. In view of this, we see from (3.4) that

(B'Un — Bv, ‘Pm> = (f ('Un) i ('U) aV‘Pm)
= /C (f (Wn) = f (v)) Vipmdz
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<|f(we) - f (U)lm(c,.,) |v<Pm|L2(Cm)
<K, I'U - 'UnILz(Cm) vam|L2(Cm) )

where m is an arbitrary nonnegative integer, C,, denotes the (compact) support of ¢,
for each fixed m € N. Thus it follows that for each m € N

(3.13) (Bv, — By, py,) — 00 as n — 00.
Since
(Bv, — Bv, @) = (Bvy, — Bv, go'— Ym) + (Bun — Bv, )
< (suplBunl +1Bol ) Iy = gl + (B = B, o)
thé desired result now follows from (3.13).
(ii): Let v € H? and {vn}n>1 a sequence in H? such that M, = sup |vnl, < 0o and

v, — vin L? as n — oo. Put Ky = max{supig<a, | ()], SuP|5|gM: |lf "(€)|}. Since
|f (vn) — f (v)| < K3 |v, — v] for n > 1, we infer that f(va,) — f (v) in L2. In view of the
estimate

(3.14) |Bua — Bol* < |f (v) = £ (va)| [V2f (va) = V2F ()],

it is sufficient to show that sup |V2f (v,) — V2f (v)| < 0co. To this end, we first observe
n>1

that

|V2f (Un)l = If” (vn) (V'Un)2 +f (vn) V2Un|
< If” (vn) (V'Un)2| + If’ (vn) V2Un|
< sup |f"(€)|Vonlze + sup |f(€)]V?on-
KI<Ma [€1<Ma
Since
V3£ (o)) < K (| V%00 ] |V0n*? + [V20n) ),
by Lemma 3.1 and since {v,}n>1 is bounded in H?, it follows that

(3.15) sup |V2f (va) — V*f (v)] < o0.
n>1 .

Combining (3.14) and (3.15), we obtain the desired result.
(iii): Let > 0 and define wyp (a) by

(3.16) wp (@) = (1/2) sup {1 " (0) V0| peogy 50 € H, [0l < a} .

Suppose that v, w € H?, |v|, < @, |w|, < a, and 6 € [0,1]. Let 2¢(-) = Ov(-)+(1 — 8) w(:).
Then by (3.4) and integration by parts we have

(Bv—Bw,v—w) =(f(v)—f(w),V(v—w))
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_ (/01 d/do (f (z9)) d8, ¥V (v — w))
_ (/01 £ (2) d6,V (1/2 (v w)z))
= -1/2) ([ 1) (Van) a0, 0= w?).

From this relation we deduce that |(Bv — Bw,v — w)| < wp (a) |[v — w|?. This proves the
third assertion.
(iv): Let o > 0 and define w; () by

(3.17) wi (@) = max {wo (@), (sup | (v)| =) (UP |V )?
+ (sup | /" (v)| seo) (5P | V20| o) + (3/2) (sup | (v)| o) (suP V) }

where the suprema are taken over the set {v € H3, |v|, < a}. As the first step, we observe
that

(V(Bv— Bw),V(v—-w)) = (f' (v) Vo — f' (w) Vw, V2 (v — w))
_ ( /0 " (/d9) (F' (z0) V20) dB, V2 (v — w))

= (/: F" (20) (v — w) V2d, V2 (v — w)) + (/01 f' (2z6) (Vv — Vw) d8, V% (v — 'w)) ,

where zg = 6v + (1 — #)w. We denote the first and second terms on the right-hand side of
the above inequality by J; and J;, respectively. In view of (3.4), J; and J; are estimated

as
1| = ((/01 £ (z) Vzode) (w—w), V(v — w))‘
- (v ((/01 £ (20) VZéd0> (- w)) V(v w)> |
< ((/01 £ (20) (V26)? d9> (v —w),V (v— w)) l |
+ ‘((/01 £ (20) V2z9d0) (w—w),V (- w)) \
(( /0 1 f”(zg)Vzgd9> V(v —w), V(v— w))

< [(sup " (v)| =) (5UP [Vl ) + (5P " (v) ) (5UP |V*¥] )]
x [v = w] |V (v —w)| + (sup | " (v)| ;) (5UP V0] 1) [V (v — w)”

ol = 1(</olf’(zo)d9>V(v—w),Vz(v—w))‘
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- '(/01 £ (26)d6,(1/2) V (V (v —w))2))’

1
= (1/2) ‘ ( [ 1" G Va8, (9 (0 - w))z)
< (1/2) (5up | " (0)] ) (60 [V g) [V (v — ) P

Since |V (v — w)|? and |w — v| |V (v — w)| are bounded by |v — w|?, we obtain the desired
result. a

From the above proposition, it is seen that the nonlinear differential operator B is
continuous and quasidissipative on bounded sets {v € H?;|v|, < a}, @ > 0, in H2. In
view of this fact, we can employ the notion of mild solution as defined in Section 2.

Let v € H? and u(-) € C (R; H?). As easily seen, u(-) is a mild solution of (3.6) with
u (0) = v if and only if it satisfies the integral equations

¢
(3.18) (u(t),w) = (v,w) +/(; {(V?u(s),Vw) — (VS (u(s)),w)} ds

for t € R and w € H!. By Theorem 2.1 and Proposition 3.1, we obtain the following
result which guarantees the uniqueness of mild solutions.

Proposition 3.2. Letu(-),4(-) be mild solutions of (3.6) with initial data u(0) = v and
1(0) = 0, respectively. Then for each T > 0 we have

(3.19) lu(t) — @ (t)] < e |y — ) forte[-7,7].

where a is chosen such that |u(t)|, < a and |G (t)|, < a for each t € [—7,7] and wy ()
is the constant given for a by Lemma 3.1.

Next, in order to construct a nonlinear group of locally Lipschitzian operators on H?
which provide mild solutions to (3.6), we employ five energy functionals that are ls.c.
functionals ¢y : H* = R, k =0, --- ,4. It should be mentioned that these functionals are
also applied to discuss regularity properties of mild solutions. We define

(3.20) @0 (v) = |v], veL?
0o v(z)

o1 = /2ol = [~ [T @ deds, v enh

02 (v) = (1/2) |[V%|* + (5/6) (f (v), V),  veHY

@3 (v) = |[VP + V£ (v)], ve H

pa (v) = |[V3f (v) + V£ ()], v € H.

Proposition 3.1 asserts the continuity and quasidissipativity of B on bounded sets of H?
with respect to the standard Sobolev norm. We then show that the boundedness with
respect to o, {wo, 1}, {¥o,¥1,¥2} are equivalent to the boundedness with respect to
the Sobolev norms |- |o, |- |1 and |- |2, respectively. However, the functionals ¢, appear to
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be more intimately related to the physical structure of the model since, as will be seen in
Theorem 4.2, ¢, and ¢, are invariants for the generalized Kortweg-deVries equation (3.1).
On the other hand, it is also important to observe that 3 and ¢4 are rather abstract,
although these are useful for the regularity argument. In fact we obtain the following:

Lemma 3.2. (i) For ag, oy > 0, there is B, = Bi (a0, 1) = O such that v € HY,
o (v) < ag and ¢; (v) < a1 imply |Vv| < Br.

(i) For ap, oy, ag > 0 there is B2 = B (a0, 1, a2) > 0 such that if v € H?, o (v) <
ag, 1 (V) < oy and pa(v) < g, then |V < f,.

Proof. (i): In view of the growth condition (3.3), one finds constants C; and C; € R
such that f'(s) < C, + C;|s|P for s € R. Using f(0) = 0 and integrating both sides,
we have [ f(£)d€ < C, |s|* + Cz |s|P*? for s € R and some constants C; and C;. The
application of Lemma 3.1 implies the estimate

oo v(zx)
(3.21) / £ (6) dédz < Ci Juf? + s o2,

—o0 JO

<C |v|2 + 6'22”/2 IVvlp/2 |v|(p+4)/2

for each v € H!. Invoking Young’s inequality, one obtains

4/(4—p)
2?2 [Vl [o] 972 < (1/4) [Vl + (1/4) (4 — p) (Ca (4p)* o] /)

Hence we get the estimate

' 4/(4-p)
(3.22) Vo] < 4(oy + Ciop)? + (4 — p) (02 (4p)p/4 a(()p+4)/2)

b

from which the desired result follows.
(ii): From (3.4) and (3.20) it is seen that

[V20]* = 20, () — (5/3) (F (v), (V0)?),
and therefore
(3:23) |V20[® < 20 + (5/3) C3%

Here, C; = Cs (f, ao, 1) denotes a positive constant which depends only on f, ag and
Pr- O

In view of Theorem 2.1, it is necessary to show that the range condition (III.3) is veri-
fied with respect to ¢ = 5. Therefore, to proceed further, we need the following technical
lemma, which gives an estimate for intermediate terms arising from the computation of
the values of .
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Lemma 3.3. For each ap > 0 and oy > 0 there exist a = a(ag, ;) 2 0 and b
b(ag, 1) = 0 such that :

(3.24)  |(1/6) (f" (v) (Vv)*, V) + (5/6) (f' (v) Vv, f' (w) V)| < aps (v) +b
for v, w € H? satisfying o (v) < ag, 1 (v) < a1, o (w) < ag and ¢ (w) < .

Proof. Let ap, o; be positive numbers and let v, w € H? satisfy po(v) < ag, po(w) <
ag, v1(v) £ a; and p;(w) < ;. First, inequality (3.12) now implies that there is

71 = 71(00, 1) so that |v|pe < 7, |W|Lee < 71. Put Cy = sup |f” (£)]. We have
€l<m

|(1/6) (£ (v) (Vv)*, V?v) + (5/6) (f' (v) V?v, f' (w) V)|
< (1/6) £ (v) (V0)*| [V?0] + (5/6) | £ (v) V0] |f (w) Vol

We denote by J; and J;, respectively, the first and second terms on the right hand side
of the above inequality. Then, by Lemma 3.2, there is 8; = £;(ao, @) = 0 such that

Jy = (1/6) | £ (v) (Vv)*| |[ V2| < (1/6) C3 [Vol3s [ V2o
< (1/3) Gy |[V20|* |V
< (1/3) G2 |Vl
and
J2 = (5/6) | ' (v) V0| | (w) V| < (5/6) CZ | V0| Vo
< (5/12) C34 (|V2f* + 1),

where Cs = Cs(f, 2, 01) = sup |f' (€)]. Using (3.23), one obtains

K€l<m

|(1/6) (£ (v) (V0)*, V) + (5/6) (f' (v) Vv, ' (w) V)]
< (2/3) (82 + (5/0 %, (2 (v) + (5/6) €2 + (5/12) B,
= a (oo, a1) 2 (v) + b (a0, ). '

4 Resolvents of the semilinear operator A + B

In this section we employ the five functionals g, 1, 2, 3 and ¢4 defined by (3.20).
The next result shows that a generalized form of the range condition is fulfilled for the
semilinear operator A + B.

Theorem 4.1. Let v € H3, € > 0 and suppose that ap, a1, > 0 are chosen so that
Yo (V) +€ < ag, 1 (v) + € < a1, and €2 (|2 (v)| + (b +€)) < az, where a = a(ap, 1)
and b = b(ap, ;) are numbers determined for apy and oy in Lemma 8.8. Then there
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is a number A\g = A (a1, g, a3,€) such that 0 < Ay < min{1,1/2a,1/we} and for each
X € (=)o, M) there is a unique element vy € H® satisfying

(4.1) v —A(A+ B)uy =,
and
(4.2) @0 (va) < o (v) + [Ae,

1 (va) < o1 (v) + A g,
@2 (1) < (1= A a) ™" (2 (v) + |\ (b+€)),
03 (v3) < (1= |Mwo) ™" 3 (v) .

Furthermore, if v € H* then vy € H* and satisfies the growth condition

pa (v2) < (1= |Mw1) ™" 4 (v) .

Proof. Let v € H3, € > 0 and suppose that ag, a;, as are numbers as indicated above.
By virtue of Lemma 3.2 we may choose (o, £1, B2 > 0 so that

(4.3) {we H? pp (W) < ax, k=10,1,2} C {w € H?, |[V*w| < B,k =0,1,2} .
We then write

(4.4) No = sup {|Buw|;w € H', |w| < fo, |[Vw| < br};
(4.5) N = sup {|VBuw|;w € H? |V*w| < B,k =0,1,2} .

Further, we fix any B3 > 0 satisfying |V3v| + 2Ny < (3 and set
(4.6) N, = sup {|V?Bw|;w € H3, |V*w| < B,k =0,1,2,3}.

By (4.3) and Proposition 3.1, there is a number § = § (|v|;,£) > 0 such that w € H3,
|w — v| < 6§ and |V’°w| < max {,Bk, |V’°'v| + Nk}, k =0,1,2, together imply

(4.7) |Bw — Bv| < €/2,

|f (w) — f (v)| Bs < /2,
|VBw — VBu| B3 < e/5, and

|f' (w) — f' (v)] (|V?]| + N2) Bs < €/5.

We now demonstrate through a fixed point argument that (4.1) and (4.2) are obtained
for |A| sufficient small. Set

(4.8) X =min{1, §/8s, €/ (283), 1/ (2a), 1/wo}
and let A € (=)Ao, Ao) \{0}. Let K be a subset of H3 defined by
(4.9) K = {we H% [w—v| < |G, |VF0| < B, k=0,1,2,3}.
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First, it is easily seen that K is convex, bounded and closed in L2. Since L? is reflexive,
K is weakly compact in L?. We then define a mapping I' : K — H? by

(4.10) Tw = (I = XA)™" (v + A\Bw) for w € K.

Since the resolvent (I — AA)™" is bounded and linear in L2, it is weakly continuous.
Hence Proposition 3.1 implies that ' is weakly continuous on K. We next show that '
maps K into itself. To this end, let w € K and put z = 'w. It is seen that

|z = v[> = (2 — v, A\A2) + (z — v, \Bw)
= (—v, A2) + (2 — v, \Bw)
= A(Av, 2) + A (2 — v, Bw)
< llz = v| (|V3| + |Bw|),

and so

(4.11) |2 =0l < M (V3] + No) < || .
Also, since

(4.12) Mz = 2z — v — ABuw,

by (4.10), it follows from (4.4) that
(4.13) |V32| < (1/1A]) |2 — v| + |Bw| < | V3| + 2N < Bs.

We next prove that |V"z| < IV"'vl + Ni for k = 0,1, 2, which enable us to apply the
estimates in (4.7). Using (3.4) again, we obtain

|z = (2,9 + Az + ABw) = (2,v) + A (2, Bw) < |z| (Jv| + |A| |Bw]).

This estimate, together with (4.4) and (4.8), implies |2| < |[v| + |A\| No. Repeating the
same argument as above, it is seen that

|Vz|* = (=V22,v + Az + ABw)
= — (V2%2,v+ ABw) = (Vz,Vv + AVBuw)
< V2| (|Vy] + || [VBw)),

and Hence that |Vz| < |Vv| + |A| N; by (4.5) and (4.8). Let z, € €= (R) and z, — 2z in
H?. Choose z, € €°(R) so that 2, — z in H2. By (3.4) and (4.12), we have

(4.14) (V22,V%2) = (V?2, V22 — V22,) + (V?2,V?2,)
< |V?%2| | V%2 — V22| + (v+ Az + ABw,V4z,).

Since Az € H?by (4.12), we infet from (3.4) that
(v+ Az + ABw, V*z,) — (V?v, V22) + A (V2 Az, V22) + A (V2Buw, V22)
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as n — 0o. Combining this with (4.14), one obtains |V2z| < |V2v| + N,. We next prove
that ¢ (2) < ay for £ =0, 1,2, and so that (4.3) would imply IV'“zI < By fork=0,1,2.
In view of (3.4), (4.12) and the fact that (Bz,2) = 0 for z € H' we obtain

|2> = (2,v + Mz + \Bw)
= (2,v) + A(z2, Bw — Bz)
< |zl (vl + |A|[Bw — Bz|),

and so

|z] < |v| + |A| (|Bw — Bv| + |Bz — Bvl).
Therefore, by (4.7), z satisfies the inequality
(4.15) 2] < |v| + M\ e < a.

We next give the estimate for ¢;(z). By (3.20) we have

o z(zx)
@16) (@)= ) =)V - a2l - [ e e
=(1/2) |[V%|* - (1/2) | V2|’
- /: /0 f(0z(z) + (1 — 0)'0(:1:)) d6 (z(z) — v (z)) dz.

Put wp (-) =02 (-) + (1 — @) v (-). From (4.8) we infer that
(4.17) lwe —v| =0 (z —v)| < |\|Bs <& forf € [0,1].
Since |{w — v| < 8, relation (4.7) leads us to the estimate
(4.18) |(f (wo) = f(w),2 —v)| < e/Bslz—v| < |A|e.
Therefore, by (4.16) and (4.18), it follows that

1 (2) — o1 (v) < (1/2) |V2]* = (1/2) |Vo]* = (f (w), 2 = v) + M e.
Since (f (w),z — w) = A(f (w), Az + Bw) and (f (w) , Bw) = 0, we have
(4.19) 01 (2) — o1 (V) < (1/2) [Vz]? — (1/2) |[Vv]? = A\(VBw, Vz) + || e

which implies that ¢, (2) < ¢; (v) + |A\| e < a.
To estimate p(2), we first observe by virtue of (3.4) that,

(4.20)
(f(z),sz) - (f('v) ,Vzv) = (f1 (2) = f (v) ,sz) + (f('v) ,V2z — Vzv)
1
- ( / F' (we) d6 (2 — v) ,v%) — (VBv,z—)
0
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= ([ 0= @) @G-, 9%) + (7 () =), 7
_ (VBv — VBuw,z—v) — (VBw, z — )
= /o 1 ((f' (ws) — £ (2)), V22 (2 —v)) dO + (f' (2) V2,2 — )
— (VBv — VBuw,z —v) — (VBw,z —v),
where wy denotes the convex combination 6z + (1 — 6)v. Since
(' (wo) — £/ (2), (V?2) (2 = )| < (If (we) = f' ()| +|f' (v) = ' (2)]) |[V22| |2 — 2],
the estimates in (4.17) imply
|f' (we) — f' (v)| < ¢/ (583 (|V?0| + N2)) ,

If' (2) = f' )| S €/ (5Bs (|V?0| + N2)) .

Hence |((f' (we) = f'(2)),(V22) (2 —v))| < 2¢|A|[V22|/((IV?v] + L)), for 6 € [0,1].
Since |V22| < |V?y| + N, we have

(4.21) |((f' (wo) = f' (2)), (V22) (2 —v))| < 2¢|A| /5.
From (4.7) and (4.11), we obtain
(4.22) [(VBv — VBw, z —v)| < |[VBv — VBuw||z —v| < €|}| /5.

We now estimate the term (f’ (z) V2z,z —v) — (VBw, z — v) on the right-hand side of
(4.20). Applying (3.4) and (4.12), we have

(f (2) V22,2 — v) — (VBw,z —v) = (f' (2) V22, A (Az + Bw)) — A (VBw, Az + Bw)
= A (f'(2) V?2,A (Az + Bw)) — A\(VBuw, Az)
= =X (f' (2) V22, V32 + f' (w) Vw) — A (VBuw, Az).

On the other hand,
(V2z, sz) = (sz, Viv + A\V2Az + )\VZBw)
= (V?2, V%) + X (V?2,V’Buw)
= (sz, Vz'v) + A (A2, VBw),

from which we infer that

(f' (2) V22,2 — v) + (VBw, z — v) = — A (f' (2) V22, V32 + f' (w) Vw)
+ (V22, V) — (V?2,V%2).

In order to estimate the right-hand side, we need the following useful identity
(4.23) 5(f' (2) V22, V3z) = (VBz, Az) + (f" (2) (V2)°, V22).

— 2 —



To prove this, we first observe that

(4.24) (f' (2) V22, V32) == (V(f (2) V?2), V?2)
= — (f"(2) V2V?2,V?2) — (f'(2) V32, V?z)
= — (f"(2) V2aV32,V?2) — (f'(2) V?2,V?2).
This implies
2 (f' (2) V?2,V22) = — (f" (2) V2V?z,V?2)
=—(1/2) (V (" (2) (V2)*) = " (2) (V2)*,V?2)
=(1/2) (f" (2) (V2)?,V32) + (1/2) (f" (2) (V2)?, V%2)
=(1/2) (V(f' (2) V2) = f'(2) V?2,V2)
+(1/2) (f" (2) (V2)*, V22)
= —(1/2) (VBz,V32) — (1/2) (' (2) V?2,V32)
+(1/2) (f"(2) (V2)*, V22),
from which the desired equality follows. Note that the formula (4.23) justifies the choice

of the functional ¢, in (3.20).
Thus it follows from (4.20) through (4.23) that

(f (2),V%2) — (f (v) , V2v)
< 3|Me/5—=A(f'(2) V22, f' (w) Vw) + (V?0, V2z) — (V?2,V?2)
— X ((1/5) (VBz, Az) + (f" (2) (V2)?,V?%2))
< 3|Ae/5 = (A/5) (VBz, A2) + (V?v, V?%2) — (V?2,V?2)
— (A/5) [(F'(2) V22, f' (w) Vw) + 5 (f" (2) (V2)*,V22)].

We now use the identity A (VBw, Az) = (V2z, V22) — (V2v, V2z) in the above esti-
mate, we have

(4.25) |
(f (2),V%2) = (f (v), V)
< 3|X\e/5— (A/5) [(F (2) V22, f' (w) Vw) + 5 (f" (2) (Vz)?, V22)]
— (A/5) (VBz — VBuw, Az) — (6/5) ((V?2, V?z) — (V?0,V?2)).

Also, we may apply (4.7) to get
(4.26) |(VBz — VBw, Az)| < (|VBz — VBv| + |VBv — VBw|) |Az| < 2¢/5.
We therefore infer from (4.25), (4.26) and Lemma 3.3 that

(f (2),V22) — (f v),V*) + (6/5) ((V22,V?2) — (V?v, V?2))
< e |A[+[Al(ap2 (2) +b) /5.



Since
(V22,V22) — (V0,V22) 2 (1/2) ((V?2, V22) — (V20, V?0)),
we have
P2 (2) — p2 (v) < (5/6) € |A| + |A| (a2 (2) +0) .

And so

2 (2) < (1— M a)™ (g2 (v) + (5/6) € |\ + X b)

<(1=a)7 (g2 (v) + A (b+€)).
Noting that (4.8) implies (1 — |\ a)™' < 14 2|\ a < €%, one obtains

(4.27) 02 (2) < € (lp2 (v)] + M| (b +€)) < 0,

which shows that z € K. Applying Tihonov’s Fixed Point Theorem, we get the existence
of a fixed point v, satisfying (4.1).

As seen from Proposition 3.1, the operator A + B — wpl is dissipative on the set
{v € H?|v|, < @2}. This implies the uniqueness of vy. Since A+ B, —A — B are also
quasidissipative, we see from (4.1) that

A3 (va) < (1= [Mwo) HA(A+ B)v] = A (1 = A wo) ™" 3 (v),

and so that @3 (vx) < (1 — |A|wo) ™" @3 (v). It is easily seen that if v € H* then vy € H*.
Finally, by the same reasoning as above, we have ¢4 (vy) < (1 — || w1)"! ¢4 (v). This
completes the proof. O

We can now employ the generation theorem stated in Section 2 and obtain the existence
of a nonlinear group of locally Lipschitzian operators on H? which provides mild solutions
to the initial-value problem for the generalized Kortweg-de Vries equation (3.1).

Theorem 4.2. There ezists a nonlinear group G = {G (t);t € R} on H? such that the
following properties are satisfied:

(i) For each v € H?, G (-)v € C (R; H?) and G (-) v satisfies
(4.28) G(t)v=U(t)v+ftU(t—s) BG (s) vds forteR.
0

(ii) o (G (t) v) = o (v) and ¢, (G (t)v) = ¢1 (v) fort € R and v € H?.
(iii) For each ap, > 0 there ezist positive numbers a = a(ag, 1) and b =1b (ao, 1)
such that

(4.29) w2 (G (2)v) < e (2 (v) +b]t])

fort € R and v € H? with ¢ (v) < ap and ¢ (v) < 0.
(iv) Each of G (t) maps H® into itself and H* into itself.
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(v) For any o > 0, k = 0,1,2, and any 7 > 0, there exists a positive number
w = w(ao, o1, g, T) such that

(4.30) 03 (G () v) < el (v)

fort € [-7,7] and v € H® with v (v) < o, k = 0,1,2. Therefore, if v € H3, then
G()veCR;H)NC(R; LY.

(vi) For any o > 0, k = 0,1,2,3, and any 7 > 0, there exists a positive number
W = w(ag, a1, a2, a3.T) such that

(4.31) 04 (G (t)v) < ey (v)

fort € [—7,7] and v € H* with ¢ (v) < og, k = 0,1,2,3. Therefore, for each v € H*,
G()v e € (R; HY)NE' (R; H!) and the function u (t,z) = [G (t)v] (z) satisfies equation
(3.1) pointwise on R x R.

Proof. Let v € H?. Since the range condition has been verified for v € H® in Theorem
4.1, we show that the domain D(A + B) is dense in H2. We first choose a sequence {v,}
in H3 such that v, - vin H2asn — 0o. Let e € (0,1) and choose oy, a1, az > 0 so that

sup @k (V) + € < ax, k=0,1 and e (sup |2 (va)| + (b + s)) < oy,
n>1

n>1

where a = a (ap, a1) and b = b (a, ;) are numbers as specified in Lemma 3.3. Applying
Theorem 4.1, one finds Ag > 0 such that to A € (—\g, A\o) and n > 1 there corresponds a
unique element vy , € K satisfying

(4.32) Uan — A(A + B)uyp = v,
and
(433) Yo ('UA,n) S %o (Un) + IAl g,

1 (van) < @1 (vn) + [N g
2 (Uan) < (1= A a) " (2 (va) + A (b +6)),
3 (van) < (1 — A wo) ™ s (va) .-

Since, as seen from Proposition 3.1, B is quasidissipative on bounded sets of H?, (4.32)
implies |vxn — Vam| < (1 — |\ wo) ™! |un — Um|, and so v, converges in L? to some wvy.
Since K is weakly compact in H3, one can extract a subsequence vy, such that vy ,, — va
in H3. We now prove that this implies vy, — v in H2. By (3.4), one obtains

(V (Uane = 012), V (Urne — V1)) = — (vamg — Ua, V2 (Uan, —¥2)) 5

which implies that |V (vxn, — va)| — 0 and hence vy ,, — vx in H!. Also,

(V2 (vk,nk - 'UX) ’Vz (va\,ﬂk - 'UA)) = - (V ('U,\,'nk - 'UX) 7v3 (vA,nk - 'U,\)) )
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from which we obtain the required convergence in H? of vy, to vx. From Proposition
3.1 (ii), we see that Avy,, — Avx and Bvy,, — Bv,. Passing to the limit as k — oo in
the relation vy n, — A (A + B) Uy n, = ¥Un,, We get

ux— A(A+ B)uy =w.

Moreover, ©o (Uan,) < o (Un,)+|A| € and v,, — vin H2. Hence g (vy) < o (v)+|\| &
We also infer from (4.33) that

© U, (2)
434)  (1/2)[Vorml - / / £ (€) ded
2 00 prun,(z)
<DV~ [~ [™ 1@ dede + e
Now, we have

va(z)
(4.35) / 1€ dede

”A,nk (z

/_00 (/0 f'(Bva (z) + (1 — O) vrp, (a:))da) (v () — VAn, () dz
| F (B0 () + (1= 0) tam, () dB

S_ I'U'A - ‘UA)nkl *

Since the first term on the right-hand side is uniformly bounded with respect to k, we let
k — oo in (4.34) to get

0o pur(z)
(4.36) (1/2) [Vor[? - / /o f (€) dede
oo pu(z)
< (1/2) |Vof* - / [ 1 ©deds+ e,

Thus, it follows that ¢; (vs) < @1 (v) + |\|e. We then demonstrate that py(vy) < (1 —
|Ala)~* (2(v)+|Al(b+€)). From (3.4) we have (5/6) (f (van) ) V?van,) = (5/6) (Bvrnys VUrn),
and so we may apply the continuity of B on bounded sets in H? to assert that

(4.37) (5/6) (f (vani) , Vuamn,) = (5/6) (f (v2), V*v)) as k — oo.

Combining (4.37) and (4.33), we deduce that @3 (va) < (1 — |A| @)™ (@2 (v) + |A| (b +€))
as required. Applying now Theorem 2.1 to the operator A + B, we conclude that there
exists a nonlinear group G = {G (t) ; t € R} of locally Lipschitz operators on H? such that
for each v € H? the function G (-) v € C (R; L?) satisfies (4.28) and the growth conditions

(4.38) v (G@#)v) <o (v), w1 (G(@)v) <p1(v)
forve H2 and t € R,
(4.39) @2 (G (t) v) < e (2 (v) +b]t])
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for t € R and v € H? with g (v) < ap, 1 (v) < ;.

We now show that G (-) v belongs to € (R; H?) for each v € H2. Let v € H?(R),
t € R and let {t,} be a sequence such that ¢, — t as n — co. By Lemma 3.2 (ii), (4.38)
and (4.39), there is B2 = B2 ({tn},t) such that |V2G (t,.) v| < B for n > 1. Since

IVG (ta) v — VG () v|* = |(V2G (t) v — VEG (£) v, G (ta) v — G (1) v) |
< M|G (ta)v =G (8)v],

it follows that G (-)v € € (R, H'). To show that G(-)v belongs to ¥ (R; H?), we first prove
its continuity with respect to the weak topology of H? and then use the exponential growth
condition (4.39) to prove the continuity of |[V2G(-)|. The desired strong continuity in H?
will then follow from a criterion for the strong convergence in uniformly convex spaces.
We first note that

(V3G (ta) v, %) = — (VG (ta) v, V) = — (VG (¢) v, V)
as n — oo, for each ¥ € € (R). Since (VG (t)v,Vy) = — (V3G (t)v, ), one can see
that G (t,)v — G (t)v in H? as n — 0o. Moreover, from (4.39) and the group property
of G, we obtain
02 (G (ta) v) = 92 (G (ta — t) G (£) v) < ¥~ (2 (G (t) v) + blta — t]).
Therefore we assert that
(440) T s (G (t)) S (G (1)),
On the other hand, G (t,) v — G (t)v in H?, G (t,)v — G (t)v in H' and
(5/6) (f (G (ta)v), V2G (ta) v) = (5/6) (BG (tn) v, VG (ta) v) .
Hence we have

(4.41) lim 5 (G (tn) v) 2 2 (G (t) ) .

n—o00

Combining (4.40) and (4.41) implies
lim 02 (G (ta) ) = 2 (G (6)0).
Since

02 (G (tn) v) = (1/2) |V2G (ta) v| + (5/6) (f (G (ta) v, V?G (ta) v))
= (1/2) | V3G (tn) v| + (5/6) (BG (tn) v, VG (ts) v),

and G (t,)v — G (t)v in H! as n — o0, it follows that

(4.42) |V2G (tn) 'u| — |V2G (¢) v| as n — 00.
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Since G (t,)v — G (t)v in H?, (4.42) implies via a criterion for the strong convergence
uniformly convex spaces that V2G (t,)v — V2G (t)v in L?, and so G (t,)v — G (t)v in
H? as requested. Also, the inequalities in (4.38) imply

%0 (G () v) < o (v) = o (G (=) G(t)v) < o (G (¢)v)
and
p1(G()v) <1 (v) = 01 (G(=t) G(t)v) < 1 (G () v),

hence ¢ (G (t) v) = @ (v) and ¢, (G (t) v) = ¢; (v) for each v € H?.
By Theorems 2.1 and 4.2, each of G (t) maps H?3 into itself and (4.32) easily implies
(4.36). Next, let us suppose that v € H3. It is seen that

e~ 0ln~toq (G (ta) v) < 3 (G (8) v) < elin~tpq (G (ta) v)

which implies in turn
(4.49 lim g (G (1)) = 9 (G (1))

Since

(V3G (ta) v + V£ (G (ta) v) ,¥) = — (V2 (ta) v + £ (G (tn) v), V)
for each ¢ € C® (R), using the H2-continuity of G (-) v one obtains that
V3G (ta) v+ V(G (ta)v) — V3G (t) v+ VS (G (t)v) as n — 00

and this, together with (4.43), implies
(4.44) V3G (ta) v + V£ (G (ta)v) = V3G () v+ Vf(C(E)v) asn— oo.

But V(G (t,)v) = —BG (t,) v — —BG (t)v = Vf (G () v), so

V3G (t,)v— V3G (t)v  as n — oo,

and therefore G € € (R; H3) N ¥ (R; L?). In the same way one can get that, for v € H*,

G € ¢ (R, H*) N €' (R; H'), and in this further case u (¢, z) satisfies the equation (3.1)
pointwise on R x R. O

Remark 4.1. It is easily seen that differentiating a solution of (3.1) with respect to ¢t one
reduces its regularity from € (R; H3) to € (R; L?), that is, with three z-derivatives. With
regard to this, it should be mentloned that if the function f in (3.1) is of class ¥ (R)

and satisfies (3.3), then G(-)v € ﬂ %™ (R; H*=3™) for each v € H* and for any integer

k > 3. It is also 1nterest1ng to note that the regularity of the group G = {G (t);t € R}
with respect to t is established with the aid of the l.s.c. functionals ¢, @3 and 4.
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5 Regularized dispersive equations

In this section we establish the existence of nonlinear groups G, = {G, (t);t € R}
of Fréchet differentiable operators on H! which provide mild solutions to the initial-value
problems for nonlinear dispersive equations of the form

(5.1) u + (f (v), + Uszz — PUtzz =0, L,z ER
(5.2) u(0,z) =v(x), z eR.

Here p > 0, f is merely a nonlinear function of class €* (R) satisfying f (0) = 0, and v
is an initial function given in H*'. The convergence of G, = {G, (t);t € R} to the group
G = {G(t) ;t € R} obtained in Theorem 4.2 will be also discussed in the next section.

Equation (5.1) is regarded as a pseudoparabolic regularization of the generalized K-dV
equation (3.1). An equation related to (5.1) is the long wave equation

(5.3) Up + Up + VUL — Uz = O,

which was proposed as a substitute for K-dV equation by Benjamin, Bona and Mahony
in [2]. A derivation of equation (5.3) is also described in Benjamin [3]. Since then,
tremendous work has been devoted to the study of equations of type (5.3). We refer the
reader to for instance Iwamiya, Oharu and Takahashi [10], Medeiros and Menzala [15],
Medeiros and Miranda [16]. See also Avrin and Goldstein [1], Goldstein, Kajikiya and
Oharu [9] for the discussions on equation (5.3) in several space variables, Tsutsumi and
Mukasa, [24] for the other types of parabolic regularizations of (3.1), Bona and Chen [4],
Bona and Smith [5] and Takahashi {23] for more problems related to (5.1). Also, initial-
boundary value problems for a class of equations which significantly generalize (5.3) were
treated in [19] by Oharu and Takahashi using nonlinear operator theory.

In order to derive a semilinear evolution equation in H! which is equivalent to (5.1),
we begin by defining some operators and stating their properties.

Let A be the one-dimensional Laplace operator defined by Av = Vv for v € H2.
Let > 0. It is easy to see that I — uA has a bounded inverse (I — uA)™! on L? which
satisfies the relation

(5.4) (I = pA) v,w) = (v, (] — pA)w), for v, w € L2
Moreover, by (3.4), |
((I = pAY ' Vv,0) = — ((I — pA) "' v, Vo) for v € HY,
and so (5.4) implies
(5.5) (I —pD) ' Vo,0) =0  forve H.
We then introduce a closed linear operator A, densely defined in L? by

(5.6) Aw = (1/p) (Vv — (I — pA) ™" Vo) for v € H*
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and a nonlinear operator B, from H! into H? defined by
(5.7) B =—(I—-pA)'Vf(v) for v e H.
Moreover, we define new scalar products on H! and H?, respectively, by

(u, V)1, = (u,v) + u(Vu, Vo) for u,v € H?,
(4, V)20 = (u,v) + 2u(Vu, Vv) + p2(Viu, V) for u,v € H?,

and the associated norms ||, , on H' and |-|, , on H2.

Let k be an arbitrary positive integer. It is easy to see that A, maps H**! into H*
and

(5.8) (VEAu, VFu) = (1/p) (V¥ e, Vru) — (1/p) (I — pd) ™ VhHy, VEu)

for u € H**!. Therefore it follows from (5.5) and (5.8) that (VEA,u, VEu) = 0 for
u € H**'. Hence (A,u,u), = 0 for each v € H*+!, and so A, is the generator of a
(Co)-group T, = {T,(t);t € R} on L? such that each of T, (t) maps H* into itself and
satisfies the identity

T, (t)v], =|vl, fort€eR and v e H*.
Also, we observe that

(5.9) I(I - uA)‘lwlz’“ =|w| forwe H2

Now equation (5.1) is rewritten as a semilinear evolution equation in (H L) “) of the
form

(5.10) (d/dt)u, (t) = (Ay + B,)u, (t), teR.

Our purpose is to construct a group of the solution operators to (5.10) on H! by
applying using the generation theorem stated in Section 2. To this end, we need to
establish further regularity properties of the operators B, stated in the next proposition.

Proposition 5.1. Let u € (0,1). For the nonlinear operator B,, the following statements
hold:

(i) For each a > 0 there is a number w = w (a, p) > 0 such that
|Buv — Bywl|, , S w v —w|

forv,w € H' with |v|, , < @ and |w|; , < .

(i) B, is continuously Fréchet differentiable on H! and its Fréchet derivative B;v at
v € H! is given by

B, (v)w= =V ((I — pA)7 (f (v) w)) forw e H!.
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Proof. Let a > 0 and set

w=psup {|f (0| : v € HY, ol < @}
By (3.4) and the definition of B, we see that
|Byv — Byw|? = (Buv — Byw, By — Byw) — (A (Buv — Byw) , Buv ~ B,w)
| =~ (Vf (v) = V/ (w), B — B,w)
= (f (v) = f (w),V (Buwv — Buw)).
Hence |B,v — B,;w]iﬂ < w|v — w|pt/? |V(Byv — B,w)|, from which the desired estimate
follows. To get (ii), we first observe that
|Bu (v +w) — By + V (I — p2)™ £ (v)wl;,
= — (B (v+w) = Bu () + V (I = p8) ™) f (o) w, VS (w+w) = V (v)
— (V(Bu(v+w) = VB + V(I —pA)™ f (v)w), f (v)w)
= (V(Bu(w+w) = Bu(v) = V (I — b)) f @) ), f (v +w) = f (v) = f' (v) w),
which implies
|Bu (v +w) = Byo = V(I = pA) ™ (f () w)|,, S p721f (v+w) ~ f (v) = f () w].

This shows that | B, (v +w) — B — V (I - pA) ™ (f' (v) w)|, , =0 (|w|1’“), and so
(ii) is proved.
O

We are now in a position to state the main result of this section.

Theorem 5.1. For each u > 0 there exists a nonlinear group G, = {G, (t);t € R} of
locally Lipschitzian operators on H' which has the properties below:

(i) If v € HY, then G, (-)v € € (R; H}) N ¢! (R; L?) and
) t
G (B)v="U,(t)v+ / U, (t — 5) B,G, (s) vds,
0

fort eR and v € H'. |
(i) If v € H?, then G,(-)v € C(R; H*) N C' (R; H') N C? (R; L?) and satisfies the
equation in C (R; H')

(d/dt) G, (t)v = (Au+ B.) G (t)v fort e R.

(iii) Each of G, (t) is continuously Fréchet differentiable on H'.
(iv) pou (G (t) V) = wo,u (v) fort € R andv € H*, where the functional o, is defined
by

wou (v) = vy, forve H.

(v) 01 (G (t)v) = @1 (v) fort € R and v € H', where ¢, is the functional on H'
defined by (3.20).
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Proof. One may show that A, + B, satisfies the following range condition: For each
o > 0 there is a number A\, = A (a) > 0 such that for v € H' with |v|; , < o and

A € (=X, Ay) there is an element vy € H! such that

va — A(AL+ By) v =,
®ou (Ua) < wou (V) + | A€,
w1 (va) < 1 (v) + A€

Therefore the proof is obtained in a way similar to that of Theorem 6.1, with the aid
of Theorem 2.1 and Proposition 5.1. O

Remark 5.1. Note that the differentiation of a solution reduces its Sobolev regularity
k
from @ (R; H') to € (R; L?). If in particular f € € (R), then G, (')v € ] €™ (R; H* ™)

m=0

for each v € H* and each integer k& > 1.

6 A convergence theorem for nonlinear groups

In the previous sections we have obtained the existence of the nonlinear groups G =
{G(t);t >0} and G, = {G,. (t);t > 0} of locally Lipschitzian operators on H? and H!,
respectively. The group {G(t)} provides mild solutions to the initial value problems for
the generalized K-dV equation (3.1) and thegroups {G,.(t)}, u# > 0, provide mild solutions
to its pseudoparabolic regularizations (5.1). Here we discuss the convergence of G, to G
under the assumption that the nonlinear function f is of class ¥ (R) and sa.tlsﬁes (3.3).

In what follows, ¢ ., £ = 0,1, 2,3 denote the functionals

(61)  pou () = ol = (o + Vo), v e HY,
v(z)
P11 (0) = 91 (4) = (1/2) [Vf* - / AIGL ve HY
2 (v) = (1/2) [ V2] + (1/12) [ V20| + (5/6) (£ (v), V?)
— (51/12) (' (), (V*)*), ve HY
@3 (V) = @3 (v) = [V + Vf (v)], v € H3.

Following the argument in Section 3, we first establish relations between ©k,u-boundedness
and norm boundedness.

Lemma 6.1. Let p € (0,1). For ag, oy, ag > 0, there is B = B3 (g, 1,02) > 0,
independent of p, such that v € H® and @o, (v) < ag, ¢1,. (v) < o and @2, (v) < oz
imply |V?v| < B, and p'/? |V3u| < B,.

Proof. Let 4 € (0,1), ag,a1,a0 > 0, and let v € H® be such that g, (v) < aq,
V1,4 (V) < a1, 2,4 (V) < . Then, in a way similar to the proof of Lemma 3.2, we see
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that there exist numbers By = £y (ag) > 0 and B; = B; (@, @1) > 0 such that |v| < Gy
and |Vv| < ;. We further note that

62)  C|V¥| <(1/2) (02 Vol + |V3v|2) for each v € H® and C € R,.
Since g, (v) < a2, (6.1) implies the estimate
(1/2) |[V20|? + (u/12) | V30
< ag+ (5/6) (' (v), (V0)?) + (5/12) (' (v), (V?0)*).

Since |w|r~ < |w|; for each w € H!, one finds a constant y; = ¥ (ap, 1) > 0 such
that |v|pe < 1. We then define

C =C(f,a0,01) =sup{|f' (z)];|z] < m}.
Therefore, combining (6.1) and (6.2) implies the following estimate:
(1/2) | V2| + (1/12) |V30[* < a3 + (5/6) C |Vo)* + (51/12) C |V
< az + (5/6) C |V + (5u/72) (902 IVol? + |V3'v|2) :
Thus
(1/2) |V20[* + (u/72) |V*|* < o + (5/24) CB2 (4 + 3C),
and the proof of Lemma 6.1 is complete. 0

In order to apply Theorem 2.1, we need the quasidissipativity of the operators B, on level
sets with respect to ¢, £ = 0,1, 2.

Lemma 6.2. Let u € (0,1). For ag, oy, as > 0 there exists a number wo = wo (ag, 01, @2),
independent of u, such that

(6.3) I(B,;u - Byw,v — w)l'”l < wp v —w)?
and
(6.4) |(B“'U — Byw,v—w), | Swolv— wl?

for v,w € H3® with ¢, (v) < ax and pi, (w) < o, £ =0,1,2.

Proof. Let ag, oy, a3 > 0 and let v, w € H3 be such that ¢, (v) < ax and @x, (w) < o,
k =0,1,2. It is clear that

(Byw — Byw,v —w), , = (I — p) (By — Byw) v — w)
= (f @) - f W),V (v —w))

and
(Buv — Buw,v —w), ,
= ((I — pd) (Byv — Buw) ,v —w) — p ((I — pA) (Byv = Byw) , V(v - w))
=(f@) = f@w),V(@©=-w)+p(V(f () - f @),V (v-w)).
From this we obtain the required conclusion. (]
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We next prove the range condition for the operators A, + B,,.

Theorem 6.1. Let ¢ > 0, v € H3, and suppose that oy, a1, a2 > 0 are chosen so that
wou (V) +€ < ag, 1, (V) +€ < a; and e {|pg, (V)| +1+€} < g forall p € (0,1). Let
a = a(ag,a;) and b = b(ap, ;) be positive numbers as specified in Lemma 8.8, and let
wo = wp (@0, 01, @3) be a positive number as stated in Lemma 6.2. Then there are numbers
po = o (o, 1,a2) > 0 and Ay = Ao (|v|5,€), such that 0 < A\ < min{1,1/2a,1/wp}
and for each p € (0, uo) and each \ € (-;\o,f\o) there erists a unique element v, , € H?
satisfying

(65) Unp — A (Ap, + Bp) Uru =9,
and
(6.6) Pou (Vap) < wou (v) + Mg,

1 () < 010 (v) + (A
Pau (Wa) < (1= N @)™ 2 (W) + A (B + 1 +6))],
Pau (Vau) < (1= N @) s (v).

Proof. The proof is obtained in a way similar to that of Theorem 4.1. We first choose
Br>0,k=0,1,2, so that

{we H% ¢, (w) <o, £=0,1,2} c {w e H; |V*w| < B, k=0,1,2}
for p € (0,1), and |V3v| + 2N,y < B3, where
Np = sup {|Bw|;w € H',|w| < fo, |Vw| < 6} .
We also employ the same bounds N; and N, as in the proof of Theorem 4.1 and put

(6.7) M, = sup {| f'(w)| e ; [w] < Bo, [Vw| < i},
(6.8) M; = sup {|f"(w)| = ; lw| < Bo, |Vw| < 61}
It follows that there exists a positive number § = §(|v|3, €) such that if w € H3, jw—v| < 6
and |V*w| < max {8, |V¥v| + Ny}, k£ =0, 1,2, then the inequalities in (4.7) are valid.
We now define A
A0 = min {17 5/ﬂ3a E/(2ﬂ3)1 l/wOa 1/(20‘)}

and o = po(ao, a1, o) to be a positive number such that 5uoM; /6 < 1 and

apo(4 + 25M23) /48 + 5Ma2ug/* (B2 + /> No) < 1,
where wy is a positive number as specified in Lemma 6.2.

Let A € (—5\0, 3\0), A#0, p € (0, o), and define a subset Ky, of H® by

(6.9) Ky = {w e H |v—w|z, < |ABs, |[VFw| < B, £=0,1,2,3}.
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We then define an operator I' . : Ki, — H® by
(6.10) Chpw= (- AL (v + ABuw) for w € K.

We wish to show that T, is a self map of K, and has a fixed point. To this end,
let w € K, and write z = I'y ,w for simplicity in notation. We have

(6.11) z2=v+ A2+ AB,w.
Since
(6.12) |2 = vla = |(T = &) (z — ),

it follows that

|2 = vl = A((I = pA) (z — v),, Az + Bu)
= =A((I — pA)v, Az) + A ((I — pd) (z —v), Bw).

Hence

|2 = vlou = A (Av, (I — pd) 2) + A((I — pd) (2 = v) , Bw)
= XA (Av, (I — pd) (2 =) + A ((I — pd) (2 —v) , Bw)
=AM - pb) (z —v), Av + Bw),

and, in view of (6.12), we deduce the estimate
1/2 -
(6.13) (|z —v+2u|V(z—v)* +p? V(2 - v)|2) < I\ (|V3] + No) < M| Ba.

On the other hand, |z —v|z, = (I — ud) A,z|*, and so the application of Minkowski’s
inequality implies

(6.14) |V32| =|A,uzl,,

< |)\|-—1 (|z - v|2’# + |B“w|2’“)
< IVS'UI -+ ZNO < ﬂa.

Since |B,w| < |Bw| for w € H', the estimates |V*2| < |VEv| + AN, k =0, 1, 2, are
obtained in the same way as in the proof of Theorem 4.1. By (5.6), (5.7) and (6.11), we
see that

(z=v,2) +p(V(z—v),Vz) = A(Aé—i—Bw,z).
Therefore, it follows from the relations (Az, z) = (Bz,2) = 0, that
(2,2) + p(Vz,Vz) = (v,2) + p(Vv,Vz) + A (Bw — Bz, 2) .
In view of V(4.7), we conclude that

(6.15) o (2) < G0 (V) + e,
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We then demonstrate that the second inequality in (6.6) is valid. Noting that

00 z(x) 0o
/ £ (€) ded - / f (w (@) (2 (2) - v (2)) de

—o0 Ju(x)

<

/lf(0v+(l—0)z)d9—f(w)
0

|Z - 'Ul ’
we may apply (6.13) to obtain the inequality

(vava)- [~ [ " £ (€) deds < (V0,2) - ] " 1€ dedm + e,
and hence
(6.16) P1u(2) < @1, (v) + A €.
We next derive the estimate
(6.17) P20 (2) < (1= N @) {n0 (v) + A b+ 1 +E)}

The application of the Mean-Value Theorem implies

(£(2),V22) = (f(v), V) = (f(2), V?2) = (f(v), VZ2) + (F(v), V22) — (f(v), V?v)
= (f'(wp) V22,2 —v) — (VBuv,z — v)

= ((f'(we) — f'(2)) V22,2 — v) + (f'(2)V?2, 2 — v)
+ (VBw — VBv, z —v) — (VBw, z —v),

where wg(-) = 6(-)z(-) + (1 — 0(-))v(-). In view of (4.23), it is easy to check that

(F'(2)V22,2 — v) —pu (f'(2) VP2, V22 — V)
= (f'(2)V?2, \(Az + Bw))
= (—=)/5) [6 (f'(2)V?2,V32) — (f"(2) (Vz)?,V?22)]
— (V) [(F(2) (V2)°, V22) +5 ((2) V2, F(w) Va)]

Furthermore, (3.4) and (6.11) together imply
(VBw, z —v) = A (V2B,w, V2z) = (V?2,V2z) — (V?2, V).
Since (VAuz, Az) = 0, this gives the identity
A (VEBuw, V3z) = — [(V22,V?2) — (V22,V?)] + A (VBw, V32) .

We are now ready to show the estimate (6.17). Applying (4.23) and Lemma 3.3, we obtain

(1= 1N @)02,(2) < @2u(v) + [N (b-+ ) + (50/12) (£'(2), (V22 = V70)?)



~ (1/2) [V22 = V2" + (5p/12) (£/(0) = £/(2), (V?0)°)
— (u/6) | V32 — V3u|* + (1/12) [N a [— V32" + 5 (f’(z), (\72;:)2)] .
From this inequality we obtain the estimate

(6.18)
(1= 1N @) @2(2) < @2(0) + N (b + ) + (1/12) N ap [ = |9°2] +5 (£(2), (V22)°) ]

+(5/12)Ap (/01 f"(6v+(1—6)2)do (Vzv)2,A,,z + B,;w) :

By (6.13), the last term on the right-hand side is estimated as

'(/ 100+ (1~ 0)2) 0 (V20)"  Aus + By )|
< MyB2u (|V3v] + No) < MaB3pt’ (B2 + p'/*INo)
and the second last term is estimated as
5 (£/(2), (V%2)") < 5M; |[V22]],
< 5\/1\—’11 |V3z|1/2 |V2z|3/2
< (1/2) (4 | V32| + 25/2M7 IV2z|3)
< |V32|* + 1+ 25/aM2 [V22|*.

Combining these estimates, we obtain the desired inequality (6.13). This shows that
I'y,v € Ky, The conclusion of this theorem is obtained in a way similar to that of
Theorem 4.1, noting that the last inequality in (6.6) follows from Lemma 6.2 and the
identity (5.9). a

By virtue of Theorems 2.1 and 6.1, one obtains a regularity result for the groups
Gu={Gu(t);t €R}.

Theorem 6.2. Let u € (0,1) and G, = {G,(t);t € R} the nonlinear group of locally
Lipschitzian operators obtained in Theorem 5.1. In addition to the properties stated in
Theorem 5.1, the following statements are valid:

(i) G.()v € ﬂ‘ém(]R H3 ™) forv € H® and G.()v € ﬂ‘f’"(R HY™™) for
m=0

v € H*. Ifin partzcular v € H%, then u(t,z) = [G, (t)v](z) satisfies equation (5.1)
pointwise on R x R.

(ii) For v € H? the exponential formula
Gu(t)v=H?-lim (I - (t/n) (Au+ Bu)) " v

holds for t € R and the convergence is uniform on bounded subintervals of R.
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(ili) For ap,a,az > 0 and 7 > 0, there exist numbers a = a(ag, ;) > 0, b =

B(ao, 1) >0, Wy = @ (g, a1, a2, 7) and py = po (o, 1, a2, 7) such that
(i) Pau(Cu(8)v) < e (3, (0) +5111),

for p € (0,p0), t € [-7,7] and v € H?® with o, (v) < ax, =0,1,2.
(iii-2) 3 (G, (t)v) < €™y (v),

for p € (0,p0), t € [—7,7] and v € H3 with o, (v) < o, k=0,1,2
(iii.3) [Gu(t)v—Gu(t)wl, < eoltl |y — wl,,

for p € (0, uo), t € [—7,7] and v € H? with ¢, (v) < ax, k =0,1,2 and ¢, (w) < o,
k=0,1,2.

We are now in a position to state the convergence theorem

Theorem 6.3. The following statements hold:
(i) (I - A(A+ B))'v=H?- lim (1~ A(Ay+ B) 'v

forv e H? and XA € R with |\ < min{/\o(lvlsb,e),xo(|v|3,e)}, where € > 0, Ay =

Xo (|vl3,€) is the number given in Theorem 2.1 and Jg = Ao (|vl5,€) is the number given
in Theorem 6.1.

(i) Ifve H? v, € H3, v, v in H  as p — 0 and u|V3v,)* < M as p — 0 for
some M > 0, then

G(t)v= H‘-’l‘in(l)G,‘ v, forteR
and the convergence is uniform on bounded subintervals of R. If in particular v € H3,
then

G(@t)v= Hl-‘l‘iH(I)G,‘ v forteR
and the convergence is uniform on bounded subinterval of R.

Proof. (i) Let v € H3, € > 0 and let A € R be such that |A\| < min {)\o,:\q}. If we

write vy = (I —A(A+ B)) ‘v and vy, = (I — A(A, + B,)) ' v, then v, satisfies (4.1)
and v, , makes sense and satisfies (6.5) for u > 0 sufficiently small. It is obvious that
P, (V) = i (va) as p | Oy, for k = 0,1,2. Therefore, we see from Lemma 6.2 that

(619) I((AIJ + B#) U — (Ap + By) Uny, U — 'UA)
+ u(V(Au+ Bu)vau — V(A + By v, V (va, — va)]
= |(prk,u - prz\) U — ‘UA) + M (VByvA,p - VB/.;'UA’ \Y ('U)\,y - 'Uz\))l

< @o |va, — waf®.
An easy computation yields

(6.20) A ((A,, + B,)vax — (A + B) vy, vau — va — uV? (vap — 'UA))
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= A ((Ay + Bp) Uy — (A“ + By) Unpr Unp — ’U)‘)
+ u (V (A” + B“) Uy — v (A,_L + Bp,) U, p9 \VJ (’U)‘,# - 'U,\))
+ |oau — oal® + 1|V (s — 02) 7,
combining (6.19) and (6.20), we obtain

(6.21) (1 —|Aldo) juap — ual? |
< M (Ay + Bu) va — (A+ B) vy |UA,u — vy — uV? (VA — UA)' .

Since (A, + Bu)ux — (A+ B)wy in L? as u | 0 and %Iv&ula < 00, it follows that
A

va, — vx in L? as p | 0. Noting that |[Vuw| < |w|*? |V2w|'? and |V2w| < |w|*/? |V3w|*/?
for w € H3, we conclude that vy, — vy in H2 as p | 04. Thus assertion (i) is obtained.
We next prove (ii). If v € H3, it is easy to see that G, (t) v converges to G (t) v in H?
as u | 0.
If v € H?, we construct {v,} C H3, v, — v as p — 0 and p|V3v,|> < M for some
M > 0. Let {v\} be any sequence in H? such that vy — v as A — 0 and A |V3v,|* < M,
for some M; > 0. Then

IGu (@) v =G () 0], SIG)v = G()wal, + G () va— Gu(t)wal,
+ |Gu (B)va—G, (t) 'Uul,‘
<|IG(@t)v—G(t) 'Uz\l1 + |G (t)va — G, (t) 'U»\|1

+ e""°|t‘ |'U>‘ — ’U,,ly

provided that o, (va) < ax, pr,u (vu) < o for k=0,1,2.
From the above relation it is seen that G, (t)v, — G (t)v in L? as p — 0. We also
have

o (Gu (t) v) < o, (vy),
P16 (G (8) vu) < 1,0 (V)

@20 (G () 0) < €™ (s () + Bt

and so g, (Gu () v.) < Yk, for some v € R, £ =0,1,2 and t € [-7,7], 7 > 0. In view
of this, one finds B > 0 such that |V2G,, (t) v,| < B for each u > 0 and t € [—7,7]. Since

IV (G () v — G () ) [? < |V2G,. (£) v, — V2G (£) v] |G (£) v — G (8) 0],

it follows that G, (t)v, — G (t)v in H' as u — 0. This complete the proof. O
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