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ON THE RATE OF CONVERGENCE OF A
POSITIVE APPROXIMATION PROCESS
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ABSTRACT. In this paper we are dealing with a class of summation in-
tegral operators on unbounded interval generated by a sequence $(L_{n})_{\mathfrak{n}\geq 1}$ of
linear and positive operators. We study the degree of approximation in terms
of the moduli of smoothness of first and second order. Also we present the
relationship between the local smoothness of functions and the local approxi-
mation. By using probabilistic methods, new features of $L_{n}f$ are pointed out
such as the approximation property at discontinuity points and the mono-
tonicity property under some additional assumptions of the function $f$ . Also
the rate of convergence of these operators for functions of bounded variation
is given.
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1. Introduction
In [7] Lupa\S proposed to study the following sequence of linear and positive operators

$(L_{n}f)(x)=2^{-\mathfrak{n}x}\sum_{k=0}^{\infty}\frac{(nx)_{k}}{2^{k}k!}f(\frac{k}{n})$ , $x\geq 0$ , $f$ : $[0, \infty$ ) $\rightarrow R$ , (1)

where $(\alpha)_{0}=1$ and $(\alpha)_{k}=\alpha(\alpha+1)\ldots(\alpha+k-1),$ $k\geq 1$ .
We can consider that $L_{n},$ $n\geq 1$ , are defined on $E$ where $E=\bigcup_{a>0}E_{a}$ and $E_{a}$

is the subspace of all real valued continuous functions $f$ on $[0, \infty$ ) such as $e(f;a)$ $:=$

$\sup_{x\geq 0}(\exp(-ax)|f(x)|)$ is finite. The space $E_{a}$ is endowed with the norm $\Vert f||_{a}=e(f;a)$

with respect to which it becomes a Banach lattice.
Concerning the raised problem, in [1] some quatitative estimates for the rate of con-

vergence were given. Among the results below we mention the following.
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Let $b$ be a positive number.

(i) $|(L_{n}f)(.r)-f(x)|\leq(3+2b\max(1, b/n))\omega_{2}(f;1/\sqrt{n}),$ $x\in[0, b]$ ;

(ii) If $f$ has a continuous derivative on $[0, b]$ then

$|(L_{n}f)(x)-f(x)|\leq\sqrt{2b}(\sqrt{2b}+1)n^{-1/2}\omega_{1}(f^{\prime};1/\sqrt{n})$ , $x\in[0,b]$ ;

(iii) $\lim_{n\rightarrow\infty}L_{n}f=f$ uniformly on $[0,b]$ .
We recall the usual first and second moduli of smoothness of a function $g$ as defined

by

$\omega_{1}(g;\delta)=\sup_{0<h\leq\delta}\sup_{x\geq 0}|g(x+h)-g(x)|$
respectively

$\omega_{2}(g;\delta)=\sup_{0<h\leq\delta}\sup_{x\geq}|g(x)-2g(x+h)+g(x+2h)|$
, $\delta>0$ .

In the present paper we modify the operators defined by (1) into integral form in
Kantorovich sense, see also G.G. Lorentz [6, Ch.II, p.30]. Actually, we replace $f(k/n)$ by

an integral mean of $f(x)$ over a small interval around the point $k/n$ as follows

$(T_{\mathfrak{n}}f)(x)=n\sum_{k=0}^{\infty}l_{n,k}(x)\int_{k/n}^{\{k+1)/n}f(t)dt$ , (2)

where
$l_{n,k}(x)=2^{-\mathfrak{n}x}\frac{(nx)_{k}}{2^{k}k!}$ , $k\in N_{0}$ , $ x\in[0, \infty$ ),

and $f$ belongs to the class of local integrable functions defined on $[0, \infty$ ).

The focus of the paper is to investigate these linear and positive operators.

Section 2 provided results in connection with the rate of convergence for $T_{\mathfrak{n}}f$ under

different assumptions of the function $f$ . In section 3 we present new properties of $L_{\mathfrak{n}}$

operator.

2. Approximation properties
In what follows, for any integer $s\geq 0$ we denote by $e_{s}$ the test function, $e_{s}(x)=x^{s}$ ,

$x\geq 0$ , and we also introduce the s-th order central moment of the operator $T_{\mathfrak{n}}$ , that is

$\Omega_{n,s}(x)=(T_{n}\psi_{x,s})(x)$ where $\psi_{x,s}(t)=(t-x)^{s}$ , $x\geq 0$ , $t\geq 0$ .

Lemma 1. The operators $T_{\mathfrak{n}},$ $n\in N_{2}$ defined by (2) verify

$(T_{\mathfrak{n}}e_{0})(x)=1$ , $(T_{\mathfrak{n}}e_{1})(x)=x+\frac{1}{2n}$ , $(T_{\mathfrak{n}}e_{2})(x)=x^{2}+\frac{3x}{n}+\frac{1}{3n^{2}}$ .
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Proof. Starting from the identity

$2^{nx}=\sum_{k=0}^{\infty}\frac{(nx)_{k}}{k!}2^{-k}$ (3)

the following relations $L_{n}e_{0}=e_{0},$ $L_{n}e_{1}=e_{1},$ $L_{n}e_{2}=e_{2}+2e_{1}/n$ are valid [1].

In this respect we have $T_{n}e_{0}=L_{n}e_{0},$ $T_{n}e_{1}=L_{n}e_{1}+(2n)^{-1},$ $T_{n}e_{2}=L_{n}e_{2}+n^{-1}L_{n}e_{1}+$

$(3n^{2})^{-1}$ . Our assertions follow. $\square $

Lemma 1 implies the following identities

$\Omega_{n,0}(x)=1$ , $\Omega_{n,1}(x)=\frac{1}{2n}$ , $\Omega_{n,2}(x)=\frac{6nx+1}{3n^{2}}$ (4)

Theorem 1. Let $T_{n}$ be defined by (2). Then $ forf\in C[0, \infty$ ) one has

$\lim_{n\rightarrow\infty}T_{n}f=f$ uniformly on any compact $ K\subset[0, \infty$ ).

Proof. By making use of Lemma 1 we have $\lim_{n\rightarrow\infty}T_{n}e_{r}=e_{r},$ $r=0,1,2$ , uniformly on any
compact $ K\subset[0, \infty$ ). Consequently, our assertion follows directly from the well-known
theorem of Bohman-Korovkin. $\square $

Theorem 2. If $T_{n}$ is defined by (2) then for each $x\geq 0$ the following inequality

$|(T_{n}f)(x)-f(x)|\leq\frac{4}{3}\omega_{1}(f;\frac{\sqrt{6nx+1}}{n})$

holds.

Proof. Since $(T_{n}e_{0})(x)=1$ and $l_{n,k}(x)\geq 0$ we can write

$|(T_{n}f)(x)-f(x)|\leq n\sum_{k=0}^{\infty}l_{n,k}(x)\int_{k/n}^{\langle k+1)/n}|f(t)-f(x)|dt$ . (5)

On the other hand $|f(t)-f(x)|\leq\omega_{1}(f;|t-x|)\leq(1+\delta^{-2}(t-x)^{2})\omega_{1}(f;\delta)$ . For
$|t-x|<\delta$ the last increase is clear. For $|t-x|\geq\delta$ we use the following properties

$\omega_{1}(f;\lambda\delta)\leq(1+\lambda)\omega_{1}(f;\delta)\leq(1+\lambda^{2})\omega_{1}(f;\delta)$

where we choose $\lambda=\delta^{-1}|t-x|$ . This way the relation (5) implies

$|(T_{n}f)(x)-f(x)|\leq n\sum_{k=0}^{\infty}l_{n,k}(x)\int_{k/n}^{\langle k+1)/n}(1+\delta^{-2}(x-t)^{2})\omega_{1}(f;\delta)dt=$

$=(\Omega_{n,0}(x)+\delta^{-2}\Omega_{n,2}(x))\omega_{1}(f;\delta)$ .
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Taking into account (4) and choosing $\delta=(3\Omega_{n,2}(x))^{1/2}$ we obtain the desired result. $\square $

Further, we estimate the rate of convergence for smooth functions.
Theorem 3. Let $T_{\mathfrak{n}}$ be defined by (2). Then for $ f\in C^{1}[0, \infty$ ) and $a>0$ one has

$|(T_{n}f)(x)-f(x)|\leq\frac{1}{2n}(\Vert f^{\prime}||_{C[0,a]}+\alpha_{n}\omega_{1}(f^{\prime};\frac{1}{\sqrt{n}}))$ ,

(6)

Proof. We can write

$f(x)-f(t)=(x-t)f^{\prime}(x)+(x-t)(f^{\prime}(\xi)-f^{\prime}(x))$ ,

where $\xi=\xi(t,x)$ is a point of the interval determinated by $x$ and $t$ . If we multiply both

members of this inequality by $nl_{\mathfrak{n},k}(x)\int_{k/\mathfrak{n}}^{\langle k+1)/\mathfrak{n}}dt$ and sum over $k$ , there follows

$|(T_{n}f)(x)-f(x)|\leq|f^{\prime}(x)|\Omega_{\mathfrak{n},1}(x)+n\sum_{k=0}^{\infty}l_{\mathfrak{n},k}(x)\int_{k/\mathfrak{n}}^{\langle k+1)/n}|x-t|\cdot|f^{\prime}(\xi)-f^{\prime}(t)|dt\leq$

$\leq\frac{1}{2n}\max_{x\in[0,a]}|f^{\prime}(x)|+n\sum_{k=0}^{\infty}l_{\mathfrak{n},k}(x)\int_{k/\mathfrak{n}}^{(k+1)/\mathfrak{n}}|x-t|(1+\delta^{-1}|t-x|)\omega_{1}(f^{\prime};\delta)dt$ .

According to Cauchy’s inequality we have

$ n\sum_{k=0}^{\infty}l_{\mathfrak{n},k}(x)\int_{k/n}^{(k+1)/n}|x-t|dt\leq\sqrt{n}\sum_{k=0}^{\infty}l_{\mathfrak{n},k}(x)\{\int_{k/\mathfrak{n}}^{(k+1)/\mathfrak{n}}(x-t)^{2}dt\}^{1/2}\leq$

$\leq\sqrt{n}\{(\sum_{k=0}^{\infty}l_{\mathfrak{n},k}(x))(\sum_{k=0}^{\infty}l_{n,k}(x)\int_{k/n}^{(k+1)/\mathfrak{n}}(x-t)^{2}dt)\}^{1/2}=\Omega_{n,2}^{1/2}(x)$ .

The above inequalities enable us to write

$|(T_{\mathfrak{n}}f)(x)-f(x)|\leq\frac{1}{2n}\Vert f^{\prime}||_{C[0,a]}+\Omega_{\mathfrak{n},2}^{1/2}(x)(1+\delta^{-1}\Omega_{\mathfrak{n},2}^{1/2}(x))\omega_{1}(f^{\prime};\delta)$ .

Inserting $\delta=1/\sqrt{n}$ and using $\Omega_{n,x}^{1/2}(x)<\frac{\sqrt{2na+1}}{n},$ $x\in[0,a]$ , the proof of our theorem
is complete. $\square $

Since the operators defined by (1) verify $(L_{n}\psi_{x,2})(x)=2x/n$ we introduce the function
$\varphi,$

$\varphi(x)=\sqrt{2x},$ $x\geq 0$ , representing the step weight function of the Lupa\S operators and
controling their rate of convergence. For $T_{\mathfrak{n}}$ we can prove another estimation of the rate
of convergence which implies the function $\varphi$ .
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Theorem 4. Let $T_{n}$ be defined by (2). Then for $ f\in C^{2}[0, \infty$ ) such that $f^{\prime}$ and $\varphi^{2}f^{\prime/}$

are bounded on $[0, \infty$ ) one has

$|(T_{n}f)(x)-f(x)|\leq\frac{4}{3n}(\Vert f^{\prime}\Vert_{\infty}+\Vert\varphi^{2}f^{\prime\prime}\Vert_{\infty})$ , $x\geq 0$ ,

where $||\cdot||_{\infty}$ is defined by
$||h||_{\infty}=\sup_{x\geq 0}|h(x)|$ .

Proof. Case 1. $\varphi^{2}(x)\geq 1/n$ . We start from the identity

$f(t)=f^{\prime}(x)(t-x)+\int_{x}^{t}(t-v)f^{\prime\prime}(v)dv$ . (7)

For every $v$ situated between the positive numbers $t$ and $x$ we have

$\frac{|t-v|}{\varphi^{2}(v)}\leq\frac{|t-x|}{\varphi^{2}(x)}$ . (8)

The identities (7) and (4) lead us to the following relation

$|(T_{\mathfrak{n}}f)(x)-f(x)|\leq\frac{1}{n}|f^{\prime}(x)|+T_{n}(|\int_{xc_{O}}^{e_{1}}(e_{1}-ve_{0})f^{\prime\prime}(v)dv|$ ; $x)$ .

Using (8) we have

$|\int_{x}^{t}(t-v)f^{\prime\prime}(v)dv|\leq|\int_{x}^{\ell}\frac{\varphi^{2}(v)}{\varphi^{2}(x)}|t-x||f^{\prime\prime}(v)|dv|\leq\frac{||\varphi^{2}f^{\prime\prime}||_{\infty}}{\varphi^{2}(x)}(t-x)^{2}$ ,

and consequently

$|(T_{\mathfrak{n}}f)(x)-f(x)|\leq\frac{1}{n}||f^{\prime}\Vert_{\infty}+\frac{||\varphi^{2}f^{\prime\prime}||_{\infty}}{\varphi^{2}(x)}\Omega_{n,2}(x)=$

$=\frac{1}{n}||f^{\prime}||_{\infty}+||\varphi^{2}f^{\prime/}\Vert_{\infty}(\frac{1}{n}+\frac{1}{3n^{2}\varphi^{2}(x)})\leq\frac{1}{n}||f^{\prime}||_{\infty}+\frac{4}{3n}||\varphi^{2}f^{\prime\prime}||_{\infty}$ .

Case 2. $\varphi^{2}(x)<1/n$ . We can write successively

$|(T_{n}f)(x)-f(x)|=(T_{n}(\int_{xe_{0}}^{\epsilon_{1}}f^{l}(v)dv;x)|\leq||f^{\prime}||_{\infty}T_{\mathfrak{n}}(|e_{1}-xe_{0}|;x)\leq$

$\leq\Vert f^{\prime}||_{\infty}\Omega_{n,2}^{1/2}(x)\leq\frac{2}{\sqrt{3}n}\Vert f^{\prime}||_{\infty}$ .

We have also used the relation (6).

Analysing the two above cases the conclusion of our theorem follows. $\square $

Further, it is easy to notice that $T_{n}$ can be written as a singular integral of the type

$(T_{n}f)(x)=\int_{0}^{\infty}H_{\mathfrak{n}}(x,t)f(t)dt$ , $x\geq 0$ ,
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with the non-negative kernel $H_{n}(x, t)=nl_{n,k}(x)$ for $k/n\leq t<(k+1)/n,$ $k\in N0$ .
Lemma 1 guarantees that our kernel satisfies

$\int_{0}^{\infty}H_{n}(x, t)dt=\sum_{k=0}^{\infty}l_{n,k}(x)=1$ . (9)

We present a direct result of H\"older’s inequality.
Lemma 2. If $T_{n}$ is defined by (2) then for every $0<\alpha\leq 1$ and $h\geq 0$ we have

$T_{n}(h^{\alpha};x)\leq(T_{n}(h^{2};x))^{\alpha/2}$ .

Proof. Considering $r$ $:=2/\alpha$ in the relation $1/r+1/s=1,$ $r>0,$ $s>0$ , which

characterizes H\"older’s inequality, from (9) we get the claimed result. $\square $

As a consequence of Lemma 2 we obtain

$T_{n}(|e_{1}-xe_{0}|^{\alpha};x)\leq\Omega_{\mathfrak{n},2}^{\alpha/2}(x)$ , $x\geq 0$ . (10)

At this point we recall that a continuous function $f$ defined on $J$ is locally $ Lip\alpha$ on $E$

$(0<\alpha\leq 1, E\subset J)$ if it satisfies the condition

$|f(x)-f(y)|\leq M_{f}|x-y|^{\alpha},$ $(\forall)(x,y)\in J\times E$ , (11)

where $M_{f}$ is a constant depending only on $a$ and $f$ .
Theorem 5. Let $T_{n}$ be given by (2), $0<\alpha\leq 1$ and $E$ be any subset of $[0, \infty$ ). If $f$ is

locally Lipa on $E$ then we have

$|(T_{n}f)(x)-f(x)|\leq M_{f}(\lambda_{n}(x, \alpha)n^{-\alpha/2}+2d^{\alpha}(x, E))$ ,

where $\lambda_{\mathfrak{n}}(x, \alpha)=(2x)^{\alpha/2}+(3n)^{-\alpha/2}$ and $d(x, E)$ is the distance between $x$ and $E$ defined
as $d(x, E)=\inf\{|x-y| : y\in E\}$ .

Proof. By using the continuity of $f$ it is obvious that (11) holds for any $x\geq 0$ and
$y\in\overline{E}$, the closure in $R$ of the set $E$ . Let $(x, x_{0})\in[0, \infty)\times\overline{E}$ be such that $|x-x_{0}|=d(x, E)$ .
On the other hand, we can write $|f-f(x)|\leq|f-f(x_{0})|+|f(x_{0})-f(x)|$ and applying
the linear and positive operator $T_{n}$ we have

$|(T_{n}f)(x)-f(x)|\leq T_{n}(|f-f(x_{0})|;x)+|f(x)-f(x_{0})|\leq$

$\leq T_{n}(M_{f}|e_{1}-x_{0}e_{0}|^{\alpha};x)+M_{f}|x-x_{0}|^{\alpha}$ . (12)
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In the classical inequality $(a+b)^{\alpha}\leq a^{\alpha}+b^{\alpha}(a\geq 0, b\geq 0,0<a\leq 1)$ we put
$a=|t-x|,$ $b=|x-x_{0}|$ and further by using (10) we have

$ T_{n}(M_{f}|e_{1}-x_{0}e_{0}|^{\alpha};x)\leq M_{f}(T_{n}|e_{1}-xe_{0}|^{\alpha};x)+|x-x_{0}|^{\alpha})\leq$

$\leq M_{f}(\Omega_{n,2}^{\alpha/2}(x)+|x-x_{0}|^{\alpha})\leq M_{f}((\frac{2x}{n})^{\alpha/2}+(\frac{1}{3n^{2}})^{\alpha/2}+|x-x_{0}|^{\alpha})$ .

${\rm Re} turning$ to (12), we obtain the aimed result. $\square $

In particular, when $ E=[0, \infty$ ) the following proposition can be stated.
Corollary. Let $T_{n}$ be given by (2) and $0<a\leq 1$ . If $f$ satisfies $\omega_{1}(f, t)=\mathcal{O}(t^{\alpha})$ then

it exists a constant $M_{f}$ independent of $n$ and $x$ such that

$|(T_{n}f)(x)-f(x)|\leq M_{f}((2nx)^{\alpha/2}+1)n^{-\alpha}$ , $x\geq 0$ . (13)

Remark. The inverse result given by this Corollary is not true, which can be seen from
the following example. Let $f$ be defined by $f(x)=(x+1)(\ln(x+1)-1),$ $x\geq 0$ . Then
$\omega_{1}(f;t)\neq \mathcal{O}(t^{\alpha})$ for $a=1/2$ . However (13) is satisfied. For $x\geq 1/n$ we have

$|(T_{n}f)(x)-f(x)|=|f^{\prime}(x)T_{n}(e_{1}-xe_{0};x)+T_{n}(\int_{xe_{0}}^{e_{1}}(e_{1}-ue_{0})f^{\prime\prime}(u)du;x)|\leq$

$\leq\frac{\ln(x+1)}{2n}+||e_{1}f^{\prime J}||_{\infty}T_{n}(\frac{(e_{1}-xe_{0})^{2}}{x};x)\leq\frac{C_{1}x^{1/4}}{n}+\frac{2}{n}+\frac{1}{3n^{2}x}\leq C_{2}((2nx)^{1/4}+1)n^{-1/2}$ .

For $x<1/n$ we have

$|(T_{n}f)(x)-f(x)|=|T_{n}(\int_{xe_{0}}^{e_{1}}\ln(u+1)du;x)|\leq T_{n}(\int_{xe_{0}}^{e_{1}}udu;x)\leq$

$\leq T_{n}(e_{2}+x^{2}e_{0};x)=2x^{2}+\frac{3x}{n}+\frac{1}{3n^{2}}\leq C_{3}((2nx)^{1/4}+1)n^{-1/2}$ .

Here $C_{1},$ $C_{2},$ $C_{3}$ are constants independent of $n$ and $x$ .

3. A probabilistic look over $L_{n}$

In this section we return to the operator $L_{n}$ and by using probabilistic tools we present
further approximation properties different from those quoted in the first section of this
paper.

It is known that many classical linear and positive operators such as Bernstein, Sz\’asz,
Baskakov, Gamma and Weierstrass are special cases of an operator due to Feller [2]. To
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define the Feller operator let $(X_{n})_{n\geq 1}$ be a sequence of random variables having distribu-
tion function $F_{n,x}^{*}$ with expectation $EX_{n}=x$ and variance $Var(X_{n})=\sigma_{n}^{2}(x)$ where $x\in I$

is a real parameter. For a continuous function $f$ on the real line define the operator

$F_{n}(f;x)=Ef(X_{n})=\int_{R}f(t)dF_{\mathfrak{n},x}^{*}(t)$ if $ E|f(X_{\mathfrak{n}})|<\infty$ .

Let $Y_{1},$ $Y_{2},$
$\ldots$ be independent and identically distributed random variables with mean

$x\in I$ and variance $\sigma^{2}(x)$ and set $S_{n}=\sum_{1=1}^{\mathfrak{n}}$ Y. Then Feller operator is equivalent to

$F_{\mathfrak{n}}(f;x)=Ef(S_{\mathfrak{n}}/n)=\int_{R}f(t/n)dF_{\mathfrak{n},x}(t)$ , (14)

where $F_{n,x}$ is the distribution function of $S_{\mathfrak{n}}$ .
We point out that the approximation properties of $F_{n}$ for continuous function were

investigated by D.D. Stancu [8].

If we take
$P(Y_{1}=k)=2^{-x-k_{\frac{(x)_{k}}{k!}}}$ , $k=0,1,$ $\ldots$ , $x\geq 0$ , (15)

then (14) reduces to the operator defined at (1).
Lemma 3. Let $Y_{1},$ $Y_{2},$

$\ldots$ be independent and identically distributed random variables
with the distribution given by (15). For $j\in N$ the following relations

$E(Y_{j})=x$ , $E(Y_{j}^{2})=x^{2}+2x$ , $E(Y_{j}^{3})=x^{3}+6x^{2}+6x$ ,

hold.

Proof. Taking into account the relation (3) and the recurrence formula
$(\alpha)_{k}=\alpha(\alpha+1)_{k-1},$ $k\geq 1$ , after few calculations our identities follow. $\square $

Theorem 6. Let $L_{\mathfrak{n}}$ be defined by (1).
(i) If $x_{0}>0$ is a discontinuity point of the first kind for $f$ then

$\lim_{n\rightarrow\infty}(L_{n}f)(x_{0})=\frac{1}{2}(f(x_{0}^{+})+f(x_{0}))$ .

(ii) If $f$ is a continuous convex and bounded function then

$(L_{n}f)(x)\geq(L_{n+1}f)(x)\geq\ldots\geq f(x)$ .

Proof. (i) In view of Lemma 3, our statement is a consequence of a result due to B.
Levikson [5, Theorem 1].
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(ii) Based on the identity $E(n^{-1}S_{n}|S_{n+1})=(n+1)^{-1}S_{n+1}$ a.s., R.A. Khan [4] had
given an elementary probabilistic proof of monotonic convergence for the Feller operator.
Our assertion follows. $\square $

Using probabilistic approach we give an estimate of the rate of convergence for $L_{n}$

operators for a function $f$ of bounded variation $(f\in BV[0, \infty))$ . We denote by $V_{[a,b]}(h)$

the total variation of $h$ on $[a, b]$ .
Theorem 7. Let $L_{n}$ be defined by (1) and $ f\in BV[0, \infty$ ). For every $x>0$ and all

$n=1,2,$ $\ldots$ we have

$|(L_{n}f)(x)-\frac{1}{2}(f(x^{+})+f(x^{-}))|\leq\frac{1}{n}\{(4x+1)\sum_{k=0}^{n}V_{I_{k}}(g_{x})+\sqrt{\frac{2n}{x}}(4x^{2}+6x+3)f(x)\}$ ,

where $I_{0}=(-\infty, \infty),$ $I_{k}=[x-1/\sqrt{k},$ $x+1/\sqrt{k}],$ $k=1,2,$ $\ldots$ , $n,$ $f(x)=|f(x^{+})-f(x^{-})|$

and

$g_{x}(t)=\left\{\begin{array}{ll}f(t)-f(x^{+}), & t>x\\0, & t=x\\f(t)-f(x^{-}), & t<x.\end{array}\right.$

Proof. If $ f\in BV[0, \infty$ ) then one can extend $f$ over $(-\infty, \infty)$ by $f(t)=f(O)$ for $t<0$ .
Therefore the extended $f$ belongs to $BV(-\infty, \infty)$ . Throughout we shall use the notation
$f$ for both $f$ and its extended version. Clearly, $\tilde{f}(x)$ indicates the size of the saltus of $f$

at $x$ . At this point we need a result established by S.S. Guo and M.K. Khan [3, Theorem
2]. For the Feller operator (14) we have

$|(F_{n}f)(x)-\frac{1}{2}(f(x^{+})+f(x^{-}))|\leq\frac{2\sigma^{2}(x)+1}{n}\sum_{k=0}^{n}V_{I_{k}}(g_{x})+\frac{2E|Y_{1}-x|^{3}}{\sqrt{n}\sigma^{3}(x)}\tilde{f}(x)$ , (16)

where $\sigma^{2}(x)=Var(Y_{1})$ .
In our case Lemma 3 implies $\sigma^{3}(x)=E(Y_{1}^{2})-E^{2}(Y_{1})=2x,$ $x>0$ , and for $E|Y_{1}-x|^{3}$

we can give the following simple bound

$E|Y_{1}-x|^{3}\leq E(Y_{1}^{3})+3xE(Y_{1}^{2})+3x^{2}E(Y_{1})+x^{3}=8x^{3}+12x^{2}+6x$ .

Thus, the relation (16) leads us to the aimed result. $\square $
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