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Abstract. Let $F$ be a nonzero function in $H^{2}(D^{n})$ such that if $\phi$ is a function in
$L^{\infty}(T^{\mathfrak{n}})$ and $\phi F$ is in $H^{2}(D^{n})$ , then $\phi$ belongs to $H^{\infty}(D$“ $)$ . We study the set of multipliers
of an invariant subspace $M$ of $H^{2}(D^{\mathfrak{n}})$ whose common zero set of $M$ is just a zero set of
$F$ .

\S 1. Introduction

Let $D$“ be the open unit polydisc in $C^{n}$ and $T^{n}$ be its distinguished boundary.
The normalized Lebesgue measure on $T^{\mathfrak{n}}$ is denoted by $dm$ . For $0<p\leq\infty,$ $H^{p}(D^{n})$ is the
Hardy space and $L^{p}(T^{\mathfrak{n}})$ is the Lebesgue space on $T^{n}$ . Let $N(D^{n})$ denote the Nevanlinna
class. Each $f$ in $N(D$“

$)$ has radial limits $f^{*}$ defined on $T^{n}$ $a.e.$ . Moreover, there is
a singular measure $d\sigma_{f}$ on $T$“ determined by $f$ such that the least harmonic majorant
$u(\log|f|)$ of log $|f|$ is given by $u(\log|f|)(z)=P_{z}(\log|f^{*}|+d\sigma_{j})$ where $P_{z}$ denotes Poisson
integration and $z=(z_{1}, z_{2}, \cdots, z_{\mathfrak{n}})\in D^{n}$ . Put $N_{*}(D^{n})=\{f\in N(D^{n}) ; d\sigma_{f}\leq 0\}$ , then
$H^{p}(D^{n})\subset N.(D^{n})\subset N(D^{n})$ and $H^{p}(D^{n})=N.(D^{n})\cap L^{p}(T^{n})\subseteq N(D^{n})\cap L^{p}(T^{n})$ . These
facts are shown in [10, Theorem 3.3.5].

A closed subspace $M$ of $H^{p}(D^{n})$ is said to be invariant if $z_{j}M\subset M$ for $j=$

$1,2,$ $\cdots,$ $n$ . For an invariant subspace $M$ of $H^{2}(D^{n})$ , set

$\mathcal{M}(M)=\{\phi\in L^{\infty}(T^{n}) ; \phi M\subseteq H^{2}(D^{\mathfrak{n}})\}$ .

$\mathcal{M}(M)$ is called the set of multipliers of $M$ and $\mathcal{M}(M)\supseteq H^{\infty}(D^{\mathfrak{n}})$ . $\mathcal{M}(M)$ has been
studied in $[1],[2],[3],[7],[8]$ and [9]. In the previous paper [7], the author studied $\mathcal{M}(M)$

in general and gave a necessary and sufficient condition for $\mathcal{M}(M)=H^{\infty}(D^{\mathfrak{n}})$ . It is
easy to see that $\mathcal{M}(M)=H^{\infty}(D^{\mathfrak{n}})$ when the condimension of $M$ in $H^{2}(D^{n})$ is finite.
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R.G.Douglas and K.Yan [1] generalized this result. They introduced the common zero set
$Z(M)$ and the singular measure $Z_{\partial}(M)$ for an invariant subspace $M$ of $H^{2}(D^{n})$ , that is,

$Z(M)=$ { $z\in D^{\mathfrak{n}}$ ; $f(z)=0$ for $f\in M$ }

and
$Z_{\partial}(M)=\inf\{-d\sigma_{f} ; f\in M,f\neq 0\}$ .

If $F$ is a nonzero function in $H^{2}(D^{\mathfrak{n}})$ and $M_{F}$ is an invariant subspace generated by $F$ ,
then

$Z(M_{F})=\{z\in D^{\mathfrak{n}} ; F(z)=0\}=Z(F)$

and $Z_{\partial}(M_{F})=-d\sigma_{F}$ . If $h_{2\mathfrak{n}-2}(Z(M))=0$ and $Z_{\partial}(M)=0$ , then $\mathcal{M}(M)=H^{\infty}(D^{n})$

where $h_{2n-2}$ is real $2n-2$ dimensional Hausdorff measure [1]: In the previous paper [8],
the author studied an invariant subspace whose common zero set is the common zero set of
the kernel of a slice map. The real $2n-2$ dimensional Hausdorff measure of such a common
zero set may be positive when $n=2$ . K.Izuchi [2] showed that $\mathcal{M}(M_{F})=H^{\infty}(D^{\mathfrak{n}})$ for
an outer function $F$ . In this case, $ Z(M_{F})=\emptyset$ and $Z_{\partial}(M_{F})=0$ . In the previous paper
[9], the author studied the function $F$ with $\mathcal{M}(M_{F})=H^{\infty}(D^{\mathfrak{n}})$ when $n=2$ . He gave
two necessary and sufficient conditions for $\mathcal{M}(M_{F})=H^{\infty}(D^{2})$ . Moreover he showed that
some function $F$ (it is neither an outer function nor a weakly outer function) satisfies
$\mathcal{M}(M_{F})=H^{\infty}(D^{2})$ .

In Section 2, we give several factorization lemmas which will be used in the latter
sections. In Section 3, we generalize (3) of Theorem 4 in [9] to an arbitrary $n$ . Moreover
we study when a function $f$ with $d\sigma_{J}=0$ satisfies $M(M_{f})=H^{\infty}(D^{n})$ under a condition
on $Z(f)$ . Fix $\alpha\in\overline{D^{\mathfrak{n}}}$. For $f$ in $H^{2}(D^{\mathfrak{n}})$ , put

$(\Phi_{\alpha}f)(\lambda)=f(\alpha_{1}\lambda,\cdots,\alpha_{n}\lambda)$ $(\lambda\in D)$ .
$\Phi_{\alpha}$ is called a slice map. When $n=2,$ $\Phi_{\alpha}$ maps $H^{2}(D^{n})$ into $L_{a}^{2}(D)$ , where $L_{a}^{2}(D)$ is
the Bergman space (cf. [10, $p.53],[8]$ ). In Section 4, in case $n\geq 3$ , we show that if
$M$ is an invariant subspace with $Z(M)=Z(ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$ , then $\mathcal{M}(M)=$

$H^{\infty}(D^{n})$ . In case $n=2$ , we determine $\alpha$ with $\mathcal{M}(M)=H^{\infty}(D^{n})$ when $M$ is finitely
generated, $Z(M)=Z(ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$ . This improves Theorem 4 in [8]. When
$n=2,$ $Z(ker\Phi_{\alpha})=Z(F)$ for $F(z)=\alpha_{2}z_{1}-\alpha_{1}z_{2}$ . Let $F$ be a homogeneous polynomial
of arbitrary degree. We are interested in $\mathcal{M}(M)$ when $M$ is an invariant subspace with
$Z(M)=Z(M_{F})$ and $Z_{\partial}(M)=0$ . In Section 5, we study it when $F$ is a Weierstrass
polynomial.

In this paper, we use the following notations.
$z=(z_{j},z_{j}^{\prime}),$ $z_{j}^{\prime}=(z_{1}, \cdots, z_{j-1},z_{j+1}, \cdots,z_{\mathfrak{n}})$ .
$D^{\mathfrak{n}}=D_{j}\times D_{j}^{\prime},D_{j}^{\prime}=\Pi_{l\neq j}Dp$ where $D‘‘=\Pi_{l=1}^{n}D_{\ell}$ and $D_{\ell}=D$ .
$T^{\mathfrak{n}}=T_{j}xT_{j}^{\prime},$ $T_{j}^{\prime}=\Pi_{p\neq j}\tau_{p}$ where $T^{n}=\Pi_{p}^{\mathfrak{n}}=1T_{\ell}$ and $T_{\ell}=T$ .
$m=m_{j}xm_{j}^{\prime},$ $m_{j}^{\prime}=\Pi_{p\neq i}m_{\ell}$ where $m=\Pi_{\ell=1}^{n}m_{\ell}$ and $m_{l}$ is the normalized

Lebesgue measure on $T_{l}$ .
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\S 2. Factorization lemmas

For $f$ in $N(D^{n}),$ $f(z)=\sum_{j=0}^{\infty}F_{j}(z)$ is a homogeneous expansion of $f$ and $F_{j}$ is a
$polyno\iota nial$ which is homogeneous of degree $j$ . The smallest $j=j(f)$ such that $F_{j}$ is not
the zero-polynomial is called the order of the zero which $f$ has at $(0, \cdots, 0)$ . For $p\in D^{n}$ ,
the order of the zero of $f$ at $p,$ $O(f,p)$ , is simply the order of the zero of $f_{p}(z)=f(z+p)$

at $z=(0, \cdots, 0)$ . In this section, we give a factorization of $f$ under a condition on
$O(f,p)(p\in D^{n})$ . This will be used in the latter sections. Put

$F(z)=z_{1}^{\ell}+a_{l-1}(z_{1}^{\prime})z_{1}^{\ell-1}+\cdots+a_{1}(z_{1}^{\prime})z_{1}+a_{0}(z_{1}^{\prime})$

where $\{a_{j}\}_{j=0}^{\ell-1}$ are analytic on $D_{1}^{\prime}$ and $a_{j}(0, \cdots,0)=0$ for $0\leq j\leq\ell-1$ , then we cal $F$ a
Weierstrass polynomial of degree $\ell$. In this section we give several factorization lemmas
which will be used in this paper. Lemma 1 is well known. In fact, it is valid for simply
connected regions which are Cousin II domain (cf. $[4],[5]$).

Lemma 1. Let $F$ and $f$ be nonzero holomorphic functions on $D^{n}$ . If $ O(F,p)\leq$

$O(f,p)$ for every $p\in D^{\mathfrak{n}}$ then $f=Fg$ where $g$ is holomorphic on $D^{\mathfrak{n}}$ . $m_{enO(F,p)}=$
$O(f,p)$ for every $p\in D^{n},$ $ Z(g)=\emptyset$ .

Lemma 2. Let $F$ and $f$ be nonzero functions in $N(D^{n})$ .
(1) $O(F,p)=O(f,p)$ for every $p\in D^{n}$ , then $f=Fg$ where $g$ and $g^{-1}$ are in

$N(D^{n})$ .
$(l)$ If $O(F,p)=O(f,p)$ for every $p\in D^{n}$ and $d\sigma_{F}\geq d\sigma_{f}$ , then $f=Fg$ where $g$

is in $N_{*}(D^{\mathfrak{n}})$ .
Proof. By Lemma 1, we have a factorization $f=Fg$ . Hence

$\int_{T^{n}}|\log|g(rz)|dm\leq\int_{T^{\mathfrak{n}}}|\log|f(rz)||dm+\int_{T^{\mathfrak{n}}}|\log|F(rz)||dm$

implies that $g$ belongs to $N(D^{\mathfrak{n}})$ . This implies (1). Since $d\sigma_{f}=d\sigma_{F}+d\sigma_{g}$ , if $d\sigma_{F}\geq d\sigma_{f}$

then $d\sigma_{9}\leq 0$ and so $g$ belongs to $N_{*}(D^{n})$ . This implies (2).

Lemma 3. Let $F$ be a function in $N.(D^{n})$ and $d\sigma_{F}=0$ . If $f$ is a nonzero
function in $N(D^{n})(N_{*}(D^{\mathfrak{n}}))$ and $O(F,p)\leq O(f,p)$ for every $p\in D^{n}$ , then $f=Fg$ where
$g$ is in $N(D^{\mathfrak{n}})(N_{*}(D^{\mathfrak{n}}))$ .

Proof. By Lemma 1, we have a factorization $f=Fg$ . By the proof of Lemma 2,
$g$ belongs to $N(D^{n})$ . Since $d\sigma_{F}=0,$ $d\sigma_{9}=d\sigma_{J}\leq 0$ and so $g$ belongs to $N.(D^{n})$ if $f$ is in
$N_{*}(D^{\mathfrak{n}})$ .

Lemma 4. Let $F$ be a Weierstrass polynomial of degree 1 in the Nevanlinna
class and $d\sigma_{F}=0$ . If $f$ is a nonzero function in $N(D^{n})(N_{*}(D^{n}))$ such that $f_{p}(z_{1},0‘)$ has
a zero of order $O(f,p)$ at $z_{1}=0$ for each $p$ in $Z(f),$ $Z(f)\subseteq Z(F)$ and $ Z(f)\neq\emptyset$ then
$f=F^{p}g$ where $g$ is in $N(D^{\mathfrak{n}})(N_{*}(D^{\mathfrak{n}}))$ and $\ell$ is a positive integer.

Proof. Suppose $F(z)=z_{1}-\alpha(z_{1}^{\prime})$ is a Weierstrass polynomial. By hypothesis,
there exists $f\in N(D^{\mathfrak{n}})(N_{*}(D^{N}))$ such that $f_{p}(z_{1},0^{\prime})$ has a zero of order $O(f,p)\neq 0$
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at $z_{1}=0$ and so by the Weierstrass preparation theorem, there exists a polydisc $\triangle$ in
$C^{n}$ , centered at $(0, \cdots, 0)$ , such that $f_{p}(z)=w(z)h(z)$ for $ z\in\triangle$ , where $h$ is analytic in
$\triangle,$ $h$ has no zero in $\triangle$ and $w(z)$ is a Weierstrass polynomial of degree $\ell$ . We can write
$w(z)=\Pi_{j=1}^{p}(z_{1}-\alpha_{j}(z_{1}^{\prime}))$ for $ z=(z_{1}, z_{1}^{\prime})\in\triangle$ . Since $Z(f)\subseteq Z(F)$ , if $(\alpha_{j}(z_{1}^{\prime}), z_{1}^{\prime})\in\triangle$ ,
then $\alpha_{j}(z_{1}^{\prime})=\alpha(z_{1}^{\prime}+p_{1}^{\prime})-p_{1}$ . Hence $w(z)=(z_{1}-\alpha(z_{1}^{\prime}+p_{1}^{j})+p_{1})^{\ell}$ on some polydisc $\triangle\sim$

which is contained in $\triangle$ . Hence $f(z)=F(z)^{p}h(z-p)$ for $z\in\triangle\sim+p$ . This implies Lemma
4.

Lemma 5. Let $F$ be a nonzero homogeneous polynomial such that $F(z)=$
$F(z_{1}, z_{2})$ . If $f$ is a nonzero function in $N(D^{n})(N_{*}(D^{n}))$ such that $Z(F)=Z(f)$ and
$ Z(f)\neq\emptyset$, then there exists a homogeneous polynomial $Q(z)=Q(z_{1}, z_{2})$ of degree 1 such
that $f=Qg$ and $F=QG$ where $g$ is in $N(D^{n})(N_{*}(D^{\mathfrak{n}}))$ \‘and $G(z)=G(z_{1}, z_{2})$ is a
homogeneous polynomial. When $n=2$ , the same conclusion is valid under the weaker
condition : $Z(F)\supseteq Z(f)$ and $ Z(f)\neq\emptyset$ .

Proof. Since $F(z)=\sum_{j=0}^{p}a_{j}z_{1}^{p-j}z_{2}^{j}$ because $F(z)=F(z_{1}, z_{2})$ ,

$F(z)$ $=$ $z_{1}^{p}\sum_{j=0}^{p}a_{j}(\frac{z_{2}}{z_{1}})^{j}$

$c\prod_{j=0}^{\ell}(b_{j}z_{2}-c_{j}z_{1})$ where $b_{j}=1$ or $c_{j}=1$ , and $|b_{j}|\leq 1,$ $|c_{j}|\leq 1$ .

Let $Q(z)=b_{0}z_{2}-c_{0}z_{1}$ , then $Z(Q)\subseteq Z(F)=Z(f)$ . Hence $O(Q,p)\leq O(f,p)$ for every
$p\in D^{n}$ . Lemma 3 implies this lemma. Suppose $n=2$ and $ Z(F)\supseteq Z(f)\neq\emptyset$ . For each
$j$ , put

$h_{j}(\lambda)=f(b_{j}\lambda,c_{j}\lambda)$ $(\lambda\in D)$ ,
then $h_{j}\equiv 0$ on $D$ or $Z(h_{j})$ is a descrete set in $D$ . If there exist at least a $j(0\leq j\leq\ell)$

such that $h_{j}\equiv 0$ on $D$ , then $O(f,p)\geq O(F_{j},p)$ for every $p\in D^{2}$ and $F_{j}(z)=b_{j}z_{2}-c_{j}z_{1}$ .
Then as $Q=F_{j}$ the lemma follows. If there does not exist any $j$ such that $h_{j}\equiv 0$ on

$D$ , then $\bigcup_{j=0}^{\ell}Z(h_{j})$ is descrete. Since $Z(f)\subseteq Z(F)$ , this implies that $Z(f)$ is descrete and

hence $ Z(f)=\emptyset$ . This contradicts $ Z(f)\neq\emptyset$ .

\S 3. $M(M_{F})=H^{\infty}(D^{n})$

Let $F$ be a nonzero function in $H^{2}(D^{\mathfrak{n}})$ . Then $\mathcal{M}(M_{F})=H^{\infty}(D^{n})$ if and only
if $F$ has the following property: If $|F|\geq|f|$ $a.e$ . on $T^{n}$ and $f$ is a function in $H^{2}(D^{\mathfrak{n}})$ ,
then $|F|\geq|f|$ on $D^{n}$ .

This was shown in [9, (1) of Theorem 4] only for $n=2$ but the proof works for
arbitrary $n\geq 2$ . In this section, we study a function $F$ with $\mathcal{M}(M_{F})=H^{\infty}(D^{n})$ . Put
for each $1\leq j\leq n$ ,
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$H_{j}^{p}=$ { $f\in L^{p}(T^{n})$ ; $f(m_{j},m_{j}^{\prime})=0$ if $m_{j}<0$ } and $H_{j}^{p}\cap\overline{H}_{j}^{p}=\mathcal{L}_{(j)}^{p}$ ,

then $H_{j}^{\infty}\cap\overline{H}_{j}^{\infty}=\mathcal{L}_{(j)}^{\infty}$ is a commutative von Neumann algebra. If $\mathcal{E}^{(j)}$ denotes the
conditional expectation from $L^{\infty}(T^{n})$ to $\mathcal{L}_{\langle j)}^{\infty}$ , then $\mathcal{E}^{(j)}$ is multiplicative on $H_{j}^{\infty}$ and $H_{j}^{\infty}+$

$E1_{j}^{\infty}$ is weak star dense in $L^{\infty}(T^{n})$ . This implies that $H_{j}^{\infty}$ is an extended $weak-*Dirichlet$

algebra with respect to $\mathcal{E}^{\langle j)}$ . Hence we can use the general theory of an extended weak-
$*Dirichlet$ algebra in [6].

Suppose $h$ is a nonzero function in $H^{p}(D^{n})$ . For some measurable set $E$ in $T_{j}^{\prime}$ , if
$h$ satisfies the following equality;

$\int_{T_{j}xE}\log|h|dm=\int_{E}(\log|\int_{T_{j}}hdm_{j}|)dm_{j}^{\prime}$ ,

$h$ is called j-outer for $E\subset T_{j}^{\prime}$ . The left side in the above equality is always bigger than
or equal to the right one for arbitrary function in $H^{p}(D^{\mathfrak{n}})$ . $h$ is j-outer for $E\subset T_{i}^{\prime}$ if and
only if

$\mathcal{E}^{(j)}(\log|h|)=\log|\mathcal{E}^{(j)}(h)|$ $a.e$ . on $T_{j}\times E$ .
We call $h$ simply j-outer when $E=T_{j}^{\prime}$ . The following Theorem 1 is a generalization of
(3) of Theorem 4 in [9] for arbitrary $n$ . The proof is parallel to that in [9].

Theorem 1. Suppose $h$ is a function in $H^{p}(D^{\mathfrak{n}})$ . If $h$ is $\ell$-outer for any $\ell(\neq j)$

and j-outer for $E\subset T_{j}^{\prime}$ with $m_{j}^{\prime}(E)>0$ , then $\mathcal{M}(M_{h})=H^{\infty}(D^{m})$ .

If $h=\prod_{l=1}^{\ell}hp$ and each $h_{\ell}$ in $H^{\infty}(D^{\mathfrak{n}})$ satisfies $\mathcal{M}(M_{hp})=H^{\infty}(D^{n})$ , then it is clear

that $\mathcal{M}(M_{h})=H^{\infty}(D^{\mathfrak{n}})$ . By [9, p.495] there exists a function $h$ in $H^{\infty}(D^{n})$ which does
not satisfy the conditon in Theorem 4 but $\mathcal{M}(M_{h})=H^{\infty}(D^{\mathfrak{n}})$ . This was pointed to me
privately by Professor K.Takahashi.

Lemma 6. ([1, Corollary 4]). For a function $\phi$ in $N(D^{n})\cap L^{\infty}(T^{n})$ and an
invariant subspace $M$ of $H^{2}(D^{n})$ , we have $\phi\in \mathcal{M}(M)$ if and only if $d\sigma_{\phi}\leq Z_{\partial}(M)$ .

Theorem 2. Suppose $F$ is a nonzero function in $H^{\infty}(D^{\mathfrak{n}})$ and $M(M_{F})=$
$H^{\infty}(D^{\mathfrak{n}})$ . If $f$ is a nonzero function in $H^{2}(D^{n})$ and it satisfies one of the following
(1) $\sim(3)$ , then $\mathcal{M}(M_{f})=H^{\infty}(D^{n})$ .

(1) $O(F,p)=O(f,p)$ for every $p\in D^{\mathfrak{n}}$ and $d\sigma_{f}=0$

(2) $n=2$ and $F$ is a homogeneous polynomial with $Z(F)\supseteq Z(f)$ and $d\sigma_{f}=0$ .
(3) $F$ is a Weierstrass polynomial of degree 1, $Z(F)\supseteq Z(f),$ $d\sigma_{f}=0$ and

$f_{p}(z_{1},0^{\prime})$ has a zero of order $O(f,p)$ at $z_{1}=0$ for each $p$ in $Z(f)$ .
Proof. (1) If $\phi\in \mathcal{M}(M_{f})$ , then $\phi f\in H^{2}(D^{n})$ and so by Lemma 2, $\phi Fg\in$

$H^{2}(D^{n})$ where $g$ and $g^{-1}$ are in $N(D^{n})$ . Hence $\psi=\phi F$ is analytic on $D^{n}$ and so $\psi\in$

$N(D^{\mathfrak{n}})\cap L^{\infty}(T^{n})$ . $\psi$ is also in $\mathcal{M}(M_{f})$ because $F\in H^{\infty}(D^{n})$ . By Lemma 6,

$d\sigma_{\psi}\leq Z_{\partial}(M_{f})=d\sigma_{f}=0$
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by hypothesis on $f$ and so $\psi$ belongs to $H^{\infty}(D^{n})$ . Thus $F\mathcal{M}(M_{f})\subseteq H^{\infty}(D^{n})$ and so
$\mathcal{M}(M_{f})=H^{\infty}(D^{n})$ because $M(M_{F})=H^{\infty}(D^{n})$ .

(2) We may assume that $ Z(f)\neq\emptyset$ by [1]. Since $n=2$ and $F$ is a homoge-

neous polynomial, by the proof of Lemma 5, $F(z)=c\prod_{j=0}^{p}(b_{j}z_{2}-c_{j}z_{1}),$ $|b_{j}|=1$ or $|c_{j}|=$

$1$ and $|b_{j}|\leq 1,$ $|c_{j}|\leq 1$ . By Lemma 5, there exists at least $j(0\leq j\leq\ell)$ such that
$f=(b_{j}z_{2}-c_{j}z_{1})g_{j}$ and $d\sigma_{g_{j}}=0$ . If $Z(g_{j})$ is not empty, then $Z(g_{j})\subseteq Z(F)$ . By repeating

the argument above, we can prove that $f=\prod_{j=0}^{p}(b_{j}z_{2}-c_{j}z_{1})^{\ell(j)}g$ where $ Z(g)=\emptyset$ and $\ell(j)$

is a nonnegative integer $(0\leq j\leq\ell)$ . Since $\mathcal{M}(M_{F})=H^{\infty}(D^{n}),$ $|b_{j}|=|c_{j}|\neq 0$ for any
$j(0\leq j\leq\ell)$ . For if there exists a $j$ such that $|b_{j}|\neq|c_{j}|,$ $then\cdot(b_{j}z_{2}-c_{j}z_{1})^{-1}\not\in H^{\infty}(D^{\mathfrak{n}})$ ,
and $(b_{j}z_{2}-c_{j}z_{1})^{-1}\in \mathcal{M}(M_{F})$ . This contradicts that $\mathcal{M}(M_{F})=H^{\infty}(D^{\mathfrak{n}})$ . By [8,

(4) of Proposition 3], $M(M_{Q})=H^{\infty}(D^{n})$ where $Q=\prod_{j=0}^{\ell}(b_{j}z_{2}-c_{j}z_{1})^{\ell(j)}$ . By (1),

$M(M_{f})=H^{\infty}(D^{n})$ because $f=Qg$ and $ Z(g)=\emptyset$ .
(3) By Lemma 4, $f=F^{j}g$ and $g\in N(D^{\mathfrak{n}})$ . If $Z(g)$ is not empty, $Z(g)\subseteq Z(F)$

and so by Lemma 4, $g=F^{k}g^{\prime}$ . We can repeat this process and get $f=F^{\ell}h$ for some
positive integer $\ell$ where $h$ and $h^{-1}$ are in $N(D^{\mathfrak{n}})$ . We can prove (3) as in the proof of (1)
and (2).

\S 4. Slice map

In this section, when $Z(M)=Z(ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$ , we give a necessary
and sufficient condition for that $M(M)=H^{\infty}(D^{\mathfrak{n}})$ .

Theorem 3. Suppose $n\geq 3$ . Let $\alpha=(\alpha_{1}, \cdots,\alpha_{\mathfrak{n}})\in\overline{D}^{\mathfrak{n}}$ and $M$ be an invariant
subspace in $H^{2}(D^{\mathfrak{n}})$ .

(1) If $M\supseteq ker\Phi.$ , then $\mathcal{M}(M)=H^{\infty}(D^{n})$ .
(2) If $Z(M)=Z(ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$ , then $\mathcal{M}(M)=H^{\infty}(D^{n})$ .
Proof. If $\alpha=(\alpha_{1}, \cdots,\alpha_{n})=(0, \cdots,0)$ , then $ z_{1}\in$ ker $\Phi_{\alpha}$ and ker $\Phi_{a}=\{f\in$

$H^{2}(D^{n})$ ; $f(0, \cdots,0)=0$ }. Hence $Z(ker\Phi_{\alpha})=\{(0, \cdots,0)\}$ and $Z_{\theta}(ker\Phi_{\alpha})=0$ . If $\alpha=$

$(\alpha_{1}, \cdots, \alpha_{\mathfrak{n}})\neq(0, \cdots , 0)$ , then there exists some $\alpha_{j}\neq 0,\alpha_{j}z_{i}-\alpha_{i}z_{j}\in ker\Phi_{\alpha}$ for $i\neq j$ , and
$Z(ker\Phi_{\alpha})=\{(\alpha_{1}\lambda, \cdots, \alpha_{n}\lambda)\in D^{\mathfrak{n}} ; \lambda\in C\}$ . Therefore for any $\alpha\in\overline{D}^{\mathfrak{n}},$ $Z_{\partial}(ker\Phi_{\alpha})=0$

and the real $2n-2$ dimensional Hausdorff measure of $Z(ker\Phi_{\alpha})$ is zero. Now a theorem
of R.G.Douglas and K.Yan [1, Theorem 1] shows (1) and (2).

Theorem 4. Suppose $n=2$ . Let $\alpha=(\alpha_{1},\alpha_{2})\in\overline{D^{2}}$ and $M$ be an invartant
subspace in $H^{2}(D^{2})$ .

(1) If $ M\supset\neq$ ker $\Phi_{\alpha}$ , then $M(M)=H^{\infty}(D^{2})$ .
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(2) Let $\ell$ be a finite positive integer. Suppose there exists a function $f$ in $M$

such that $ 1\leq O(f,p)\leq\ell$ for each $p$ in $Z(M)$ . When $Z(M)=Z(ker\Phi_{\alpha})$ and $Z_{\partial}(M)=$

$0,$ $\mathcal{M}(M)=H^{\infty}(D^{2})$ if and only if $|\alpha_{1}|=|\alpha_{2}|$ .
Proof. (1) is proved in [8, (6) of Proposition 3].
(2) We have that $Z(ker\Phi_{\alpha})=\{(\alpha_{1}\lambda, \alpha_{2}\lambda)\in D^{2} ; \lambda\in C\}$ . If $\alpha=(\alpha_{1}, \alpha_{2})=$

$(0,0)$ , then $Z(M)=\{(0,0)\}$ and so $\mathcal{M}(M)=H^{\infty}(D^{2})$ by [1, Theorem 1]. We assume
$\alpha=(\alpha_{1}, \alpha_{2})\neq(0,0)$ . Since $M\subseteq ker\Phi_{\alpha}$ , if $|\alpha_{1}|\neq|\alpha_{2}|$ then $\mathcal{M}(ker\Phi_{\alpha})\neq H^{\infty}(D^{2})$ by [8,
(4) of Proposition 3] and so $\mathcal{M}(M)\neq H^{\infty}(D^{2})$ . Assuming $|\alpha_{1}|=|\alpha_{2}|>0$ , we will show
that $\mathcal{M}(M)=H^{\infty}(D^{2})$ . Note that

$Z(M)=\cap\{Z(f_{\beta});f_{\beta}\in M\}$ .

Since $Z(M)=Z(\alpha_{1}z_{2}-\alpha_{2}z_{1})$ and $f_{\beta}\in M,Z(f_{\beta})\supseteq Z(\alpha_{1}z_{2}-\alpha_{2}z_{1})$ . By Lemma 3,

$ f_{\beta}=(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{p(\beta)}h\rho$

where $h_{\beta}\in N(D^{2}),$ $h_{\beta}(\alpha_{1}\lambda,\alpha_{2}\lambda)\not\equiv 0$ on $D$ for each $\beta$ and $\ell(\beta)$ is a positive integer. Since
$Z(f_{\beta})\supseteq Z(h_{\beta}),$

$Z(M)\supseteq\bigcap_{\beta}Z(h_{\beta})$
. If

$\bigcap_{\beta}Z(h_{\beta})$
is not discrete, then $h_{\beta}(\alpha_{1}\lambda, \alpha_{2}\lambda)\equiv 0$ on

$D$ because
$Z(h_{\beta})\supseteq\bigcap_{\beta}Z(h_{\beta})$

and $Z(M)=Z(\alpha_{1}z_{2}-\alpha_{2}z_{1})$ .
Suppose $\phi\in \mathcal{M}(M)$ , then by definition $\phi f_{\beta}=(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{\ell\langle\beta)}\phi h_{\beta}$ belongs

to $H^{2}(D^{2})$ . Hence $(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{\ell\langle\beta)}\phi$ is analytic on $D^{2}\backslash Z(h_{\beta})$ and $\ell(\beta)\leq\ell$ . Since
$\cap Z(h_{\beta})$ is discrete, $\psi=(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{\ell}\phi$ is analytic on $D^{2}$ . For a nonzero function $f$ in

$\beta$

$M,$ $\psi f=(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{p}\phi f\in H^{2}(D^{2})$ . By the proof of [1, Theorem 1], $\psi\in N(D^{2})\cap L^{\infty}(T^{2})$

and by Lemma 6 $d\sigma_{\psi}\leq Z_{\partial}(M)=0$ . By [1, Proposition 2] $\psi$ belongs to $H^{\infty}(D^{2})$ . Thus,
since $F=(\alpha_{1}z_{2}-\alpha_{2}z_{1})^{\ell}$ is weakly outer and $\phi\in \mathcal{M}(M_{F}),$ $\phi$ belongs to $H^{\infty}(D^{2})$ because
$\mathcal{M}(M_{F})=H^{\infty}(D^{2})$ by Theorem 4.

In the previous paper, (2) of Theorem 4 was proved under the condition $\ell=1$ .
When $Z(M)=\bigcap_{j=1}^{N}\{Z(f_{j}) : f_{j}\in M\}$ and $ N<\infty$ , it is clear that there exists a function

$f$ in $M$ such that $ 1\leq O(f,p)\leq\ell$ for each $p$ in $Z(M)$ .

\S 5. $\mathcal{M}(M)=H^{\infty}(D^{\mathfrak{n}})$ .

When $F$ is a nonzero function in $H^{2}(D^{\mathfrak{n}})$ , it is interesting to study the set of
multipliers of an invariant subspace $M$ of $H^{2}(D^{n})$ whose common zero set of $M$ is just
a zero set of $F$ . In Section 3 and 4, we studied such a problem in very special cases. In
Theorem 2, it was studied when $M$ has a single generator. In (2) of Theorem 4, it was
studied when $M$ is finitely generated, $n=2$ and $F$ is a Weierstrass polynomial of degree 1
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such that $F(z)=\alpha_{2}z_{1}-\alpha_{1}z_{2}$ . In this section, we are interested in when $F$ is an arbitrary
Weierstrass polynomial.

Theorem 5. Suppose $F$ is a Weierstrass polynomial of degree $\ell$ and $M$ is an
invariant subspace of $H^{2}(D^{\mathfrak{n}})$ such that $Z(M)=Z(F)$ and $Z_{\partial}(M)=0$ . If for each $p$ in
$Z(M)$ , there exists a function $f$ in $M$ such that $f_{p}(z_{1},0^{\prime})$ has a zero of order $\ell$ at $z_{1}=0$ ,
then the following (1) and (2) are true.

(1) $F\mathcal{M}(M)\subseteq H^{\infty}(D^{\mathfrak{n}})$ .
$(Z)$ If $\mathcal{M}(M_{F})=H^{\infty}(D^{n})$ , then $\mathcal{M}(M)=H^{\infty}(D^{n})$ .
Proof. It is necessary to show only (1). Suppose $F(z)=z_{1}^{p}+a_{\ell-1}(z_{1}^{\prime})z_{1}^{\ell-1}+\cdots+$

$a_{1}(z_{1}^{\prime})z_{1}+a_{0}(z_{1}^{\prime})$ is a Weierstrass polynomial, then for each $z_{1}^{\prime}\in D^{n-1}$ ,

$F(z)=\prod_{j=1}^{\ell}(z_{1}-\alpha_{j}(z_{1}^{\prime}))$ .

Let $\triangle_{1}$ an $\triangle_{1}^{\prime}$ be polydiscs in $C$ and $C^{n-1}$ , respectively such that $\triangle=\triangle_{1}\times\triangle_{1}^{\prime}$ . Suppose
$p$ is arbitrary point in $Z(M)$ and $f$ is a function in $M$ such that $f_{p}(z_{1},0, \cdots,0)$ has a zero
of order $\ell$ at $z_{1}=0$ , by the Weierstrass preparation theorem, there exists a polydisc $\triangle$

in $C^{\mathfrak{n}}$ , center at $(0, \cdots, 0)$ , such that $f_{p}(z)=W(z)h(z)$ for $ z\in\triangle$ , where $h$ is analytic in
$\triangle,$ $h$ has no zero in $\triangle$ ,

$W(z_{1}, z_{1}^{\prime})=z_{1}^{p}+b_{\ell-1}(z_{1}^{\prime})z_{1}^{p-1}+\cdots+b_{1}(z_{1}^{\prime})z_{1}+h(z_{1}^{j})$

where $z=(z_{1}, z_{1}^{\prime}),$ $\{b_{j}\}_{j=0}^{p-1}$ are analytic on $\triangle^{\prime}$ and $b_{j}(0, \cdots,0)=0$ for $0\leq j\leq\ell-1$ . Since
$F(p)=0$ , we may assume that $p=(p_{1},p_{1}^{\prime})$ and $p_{1}=\alpha_{1}(p_{1}^{\prime})$ . Let $\beta_{1}(z_{1}^{\prime}),$

$\cdots,$
$\beta_{\ell}(z_{1}^{\prime})\ell$ be

the zeros of $f_{p}(\cdot, z_{1}^{j})$ in $\triangle^{\prime}$ , counted according to multiplicities. Then $W(z)=\prod_{j=1}(z_{1}-$

$\beta_{j}(z_{1}^{\prime}))$ $(z\in C\times\triangle^{\prime})$ ($see[10$ ,p.ll]). If $z_{1}+p_{1}-\alpha_{j}(z_{1}^{\prime}+p_{1}^{\prime})=0$ and $ z\in\triangle$ , then
$f(z+p)=0$ . Hence we can assume that $\beta_{j}(z_{1}^{\prime})=\alpha_{j}(z_{1}^{\prime}+p_{1}^{\prime})-p_{1}$ . Thus $W(z)=F(z+p)$
on $\triangle$ because $O(W,0)=O(f,p)=O(F,p)$ . Suppose $\phi\in \mathcal{M}(M)$ , then $\phi f$ belongs to
$H^{2}(D^{n})$ and so

$\phi(z+p)f(z+p)=\phi(z+p)F(z+p)h(z)$

on $\triangle_{p}\sim$ by what was just proved. Hence $\phi F$ is analytic on $\triangle_{p}\sim+p$ . Since $p$ is arbitrary
point in $Z(M),$ $\phi F$ is analytic on $D^{\mathfrak{n}}$ . $\phi F$ belongs to $\mathcal{M}(M)$ because $F\in H^{\infty}(D^{n})$ and
$\phi F\in N(D^{n})\cap L^{\infty}(T^{\mathfrak{n}})$ . Now Lemma 6 and $Z_{\partial}(M)=0$ imply (1).

The author would like to thank the referee for several suggestions.
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