Nihonkai Math. J.
Vol.10 (1999), 187-194

ON ALGEBRAICALLY TOTAL *-PARANORMALITY

YOUNGOH YANG

ABSTRACT. In this paper, we introduce the notion of algebraically *-T PN
operators on a Hilbert space H as : An operator T is algebraically *-T PN if
there exists a nonconstant complex polynomial p such that p(T) is totally *-
paranormal. In particular, we prove that this class of *-T' PN (or equivalently,
totally *-paranormal) operators forms a proper subclass of algebraically *-
T PN operators. Also we prove that Weyl’s theorem and the spectral mapping
theorem hold for algebraically * — T PN operators. Finally, we prove that
if T is algebraically *-T PN, then f(T) satisfies Weyl’s theorem where f is
analytic on an open neighborhood of o(T').

0. Introduction

Let H be an infinite dimensional complex Hilbert space and L(H) denote
the space of all bounded linear operators from H to H. f T € L(H), we write
N(T) and R(T) for the null space and range of T; o(T) for the spectrum
of T and 0(T) for the essential spectrum of 7. Recall that an operator
T € L(H) is Fredholm if its range R(T) is closed and both the null spaces
N(T) and N(T*) are finite dimensional. The indez of a Fredholm operator
T, denoted by ind(T'), is defined by

ind(T) = dim N(T) — dim N(T*)(= dim N(T) — dim R(T)Y).

An operator T € L(H) is called Weyl if T is a Fredholm operator of index
zero. The Weyl spectrum of T, denoted by w(T'), is defined by the formula

w(T) = {) € C: T — A is not Weyl}.
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Note that for any operator T, w(T) is a nonempty compact subset of C
([3],[4]). We say that Weyl’s theorem holds for T if

o(T)\w(T) = moo(T)

where mgo(T) denotes the set of isolated points of o(T') that are eigenvalues
of finite multiplicity. An operator T € L(H) is called isoloid if every isolated
point of o(T') is an eigenvalue of T'([3], [10]). An operator is called Browder
if it is Fredholm of finite ascent and descent([6]). :

H. Weyl examined the spectra of all compact perturbations T' + K of a
single hermitian operator T' and discovered that A € o(T + K) for every
compact operator K if and only if A is not an isolated eigenvalue of finite
multiplicity in o(T). Today this result is known as Weyl’s theorem, and it
has been extended from hermitian operators to hyponormal operators and to
Toeplitz operators by L. Coburn [4], to several classes of operators including
hyponormal operators by S. Berberian [2], [3].

In this paper, we introduce the notion of algebraically *-TPN operators
on a Hilbert space H as follows: An operator T is algebraically *-TPN
if there exists a nonconstant complex polynomial p such that p(T) is to-
tally *-paranormal. In particular, we prove that this class of *-TPN (or
equivalently, totally *-paranormal) operators forms a proper subclass of al-
gebraically *-TPN operators. Also we prove that Weyl’s theorem and the
spectral mapping theorem hold for algebraically *-T' PN operators. Finally,
we prove that if T' is algebraically *-T'PN, then f(T') satisfies Weyl’s theorem
where f is analytic on an open neighborhood of o(T).

1. Weyl’s theorem and Spectral mapping theorem

Recall that an operator T' € L(H) is said to be hyponormal if TT* <
T*T, or equivalently, ||T*h| < ||Th|| for every h € H. A larger class of
operators related to hyponormal operators is the following: An operator T'
is *-paranormal if || T*A||?> < ||T?h||||k|| for every h € H. It is known in [1]
that T is *-paranormal if and only if T*2T2% — 2rTT* + 12 > 0 for each r > 0.
This class of operators was introduced and studied by S. M. Patel(cf. [1])
under the title ‘Operators of class (M)’. An operator T € L(H) is called
totally *-paranormal(or shortly, *-TPN) if T — Al is *-paranormal for every

— 188 —



A € C, or equivalently, |[(T — AI)*k||? < ||(T — AI)?h||||]| for all h € H and
all A € C([8]). It was known ([8]) that this class forms a proper subclass
of the x-paranormal operators and that the class of hyponormal operators
forms a proper subclass of totally *-paranormal operators.
The following facts ([8]) follow from the above definition and the well-
known facts of x-paranormal operators.
(a) If T € L(H) is *-TPN, then so is T — Al for each A € C.
(b) If T € L(H) is »-TPN and M C H is invariant under T, then T|p is
*TPN.
(c) If T € L(H) is *-TPN and quasinilpotent, then T is zero.
(d) Let T be a weighted shift with weighs {an}52,. If T is *-TPN, then
|an—1|% < 2|an|? for each positive integer n.

We shall introduce the notion of an algebraically x-T'PN operator:

Definition. An operator T € B(H) is called algebraically *-T' PN if there
exists a nonconstant complex polynomial p such that p(T) is totally *-
paranormal. ~

Evidently, *-TPN C algebraically *-T'PN, and the following example
provides us with the class of *-T PN operators as the proper subclass of
algebraically *-TPN.

Let {€,}52, be the canonical orthonormal basis for I3, let {an}52, be
a bounded sequence of nonnegative numbers and let W, be the (unilateral)
weighted shift with the weights @ = {a,} defined by

Waen = anensy1  (n>0).

It is well-known that W, is hyponormal if and only if the weight sequence
{an} is monotonically increasing. A straightforward calculation shows that
WP is hyponormal for p € N if and only if the weight sequence {a,} satisfies
that for each m =0,1,--- ,p — 1,

p+m—1 2p+m-—1 3p+m—1
(2.1) [ as< O] s II o=
j=m j=p+m Jj=2p+m
Ezample. Let a9 = 1,1 = %, and ag = a3 = a4 = as = --- = 1. Then

W, is not hyponormal since {a,} is not monotonically increasing. Since
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lag|? = 1 > 2|ay|? = 1, by the above remark (d), Wy is not +TPN. But
W2 is hyponormal and so W2 is *-TPN i.e., W, is algebraically +TPN.
Hence the set of all totally *-paranormal operators is a proper subset of the
set of all algebraically x-T'PN operators.

The following facts follow from the above definition and the well-known
facts of *-T' PN operators.
(a) f T € B(H) is algebraically +TPN and M C H is invariant under T,
then T|,, is algebraically -T'PN.
(b) Unitary equivalence preserves algebraic *—TPN.

LEMMA 1. IfT € L(H) is algebraically *-TPN and quasinilpotent, then
T is nilpotent.

Proof. Suppose p(T') is *-T PN for some nonconstant polynomial p. Since
total *-paranormality is translation-invariant, we may assume p(0) = 0. Thus
we can write p(A) = agA™(A — Ay) - (A = Ap) (m # 0,); # 0 for every 1 <
¢ < n ). If T is quasinilpotent, then o(p(T)) = p(a(T)) = p({0}) = {0}, so
that p(T') is also quasinilpotent. Since the only *-paranormal quasinilpotent
operator is zero, it follows that

aon(T— /\1[)(T— /\nI) = 0.

Since T — A;I is invertible for every 1 < i < n, we have T™ = 0. O

Note that if T' is *-paranormal, then N(T') = N(T?).

LEMMA 2. IfT is algebraically x-TPN, then T has finite ascent.

Proof. Suppose p(T') is *-T PN for some nonconstant polynomial p. We
may assume p(0) = 0. If p(A\) = aoA™, then N(T™) = N(T?™) because
*-paranormal operators are of ascent 1. Thus we write

PA) = aodA™(A = A1) (A=Xn) (m#0,A#0 for 1<i<n).

We then claim that
(2.2) N(T™) = N(T™*)
To show (2.2), let z(# 0) € N(T™*!). Then we can write

p(T)z = (—1)"agA; -+ - A\ T™zx
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Thus we have

| aoAs -+ An [P |IT™2|* = (p(T)z, p(T)z) = (p(T)*p(T)z, )
< Ip(T)*p(T)z |||l

< (Ip(T)zllllp(T)zll) |l
=0

since ||p(T)*z|| = ||ad(T — M I)®-- - (T — A I)3T3™z|| = 0. Hence z € N(T™)
and so N(T™*') C N(T™). Also the reverse inclusion is evident. This
completes the proof. O

LEMMA 3. If T € B(H) is algebraically *-TPN, then T is isoloid.

Proof. Suppose p(T') is *-T PN for some nonconstant polynomial p. Let
A € isoo(T'). Then using the spectral decomposition, we can represent T as
the direct sum T' = T @ T3, where 6(T1) = {A\} and o(T3) = o(T)\{A}. Note
that T7 — Al is also algebraically *-TPN . Since Ty — A\ is quasinilpotent, by
Lemma 1, Ty — AI is nilpotent. Therefore A € mo(T1) and hence A € mo(T).
This shows that T is isoloid. a

THEOREM 4. Weyl’s theorem holds for every algebraically *-T PN oper-
ator.

Proof. Suppose p(T) is *-T PN for some nonconstant polynomial p. We
first prove that moo(7T") C o(T)\w(T"). Since algebraically *-T' PN operator is
translation-invariant, it suffices to show that

0 € moo(T) => T is Weyl but not invertible.

Suppose 0 € moo(T). Now using the spectral projection P = 31~ faBo()\I —

. 2w
T)~'d), where By is an open disk of center 0 which contains no other points

of o(T'), we can represent T' as the direct sum
T=T1®T;, where o(T1)={0} and o(T2)=0(T)\{0}.
But then T1(=T|,; = T|;,p) is also algebraically *-TPN and quasinilpo-

tent. Then by Lemma 1, T} is nilpotent. Thus we should have that dim R(P) <
oo: if it were not so then N(7y) would be infinite dimensional so that
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0 ¢ moo(T), giving a contradiction. Therefore Ty = T|R(P) is a finite di-
mensional operator. Since finite dimensional operators are always Weyl, it
follows that 77 is Weyl. But since T} is invertible, we can conclude that T
is Weyl. Therefore mgo(T) C o(T)\w(T)

For the reverse inclusion, suppose A € o(T)\w(T). Thus T — AT is Weyl.
Then by the ”index product theorem”,

dim N((T — M)*) — dim R((T — AI)")™ = ind((T — AI)")
=n ind(T — A\I) =0

Thus if dim N((T—AI)") is a constant, then so is dim R((T'—AI)") * since T—
Al is Fredholm. Consequently finite ascent forces finite descent. Therefore
by Lemma 2, T — AI is Weyl of finite ascent and descent, and thus it is
Browder. Therefore A € mgo(T"). This completes the proof. O

It was known that for hyponormal operators, the Weyl spectrum obeys
the spectral mapping theorem.

THEOREM §. If T € L(H) is algebraically *-TPN, then for every f €
H(o(T))
(2.3) w(f(T)) = f(w(T))

where H(o(T)) denotes the set of analytic functions on an open neighborhood
of o(T).

Proof. First of all we prove the equality (2.3) when P is a polynomial. In
view of ([7], Theorem 5]), it suffices to show that for each pair A, u € C\o.(T),

(2.4) ind(T — AI) ind(T — uI) >0

By Lemma 2, T — Al has finite ascent for every A € C. Observe that if
S € L(H) is Fredholm of finite ascent then ind(S) < 0 : Indeed, either if S
has finite descent then S is Browder and hence ind(S) = 0, or if S does not
have finite descent then

n ind(S) = dim N(§™) — dim R(S™")* — —o0 as n — oo

which implies that ind(S) < 0. Thus we can see that (2.4) holds for every
algebraically *-TPN operator T. This proves that the equality w(p(T)) =
p(w(T)) holds for every polynomial p.
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If f is analytic on an open neighborhood of ¢(T'), then, by Runge’s theo-
rem, there is a sequence (p,) of polynomials such that f, — f uniformly on

o(T). Since p,(T) commutes with f(T'), by [9], we have
w(f(T)) = limw(pa(T)) = lim pa(w(T)) = f(w(T)).

a

COROLLARY 6. If T € B(H) is algebraically *-TPN, then for every
f € H(o(T)), Weyl’s theorem holds for f(T).

Proof. Recall that if T is isoloid then

F(o(T)\m00(T)) = o(f(T))\moo(f(T)) for every f € H(a(T)).

Thus from Lemma 3, Theorem 4 and Theorem 5,

c(FTM\roo(F(T)) = F(o(T)\moo(T)) = F(T) = w(£(T))
which implies that Weyl’s theorem holds for f(T). a
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