ON ALGEBRAICALLY TOTAL *-PARANORMALITY

Youngoh Yang

ABSTRACT. In this paper, we introduce the notion of algebraically *-TPN operators on a Hilbert space H as : An operator T is algebraically *-TPN if there exists a nonconstant complex polynomial p such that p(T) is totally *- paranormal. In particular, we prove that this class of *-TPN (or equivalently, totally *- paranormal) operators forms a proper subclass of algebraically *- TPN operators. Also we prove that Weyl's theorem and the spectral mapping theorem hold for algebraically *- TPN operators. Finally, we prove that if T is algebraically *- TPN, then f(T) satisfies Weyl's theorem where f is analytic on an open neighborhood of $\sigma(T)$.

0. Introduction

Let H be an infinite dimensional complex Hilbert space and $\mathcal{L}(H)$ denote the space of all bounded linear operators from H to H. If $T \in \mathcal{L}(H)$, we write N(T) and R(T) for the null space and range of T; $\sigma(T)$ for the spectrum of T and $\sigma_e(T)$ for the essential spectrum of T. Recall that an operator $T \in L(H)$ is Fredholm if its range R(T) is closed and both the null spaces N(T) and $N(T^*)$ are finite dimensional. The *index* of a Fredholm operator T, denoted by ind(T), is defined by

$$\operatorname{ind}(T) = \dim N(T) - \dim N(T^*) (= \dim N(T) - \dim R(T)^{\perp}).$$

An operator $T \in \mathcal{L}(H)$ is called Weyl if T is a Fredholm operator of index zero. The Weyl spectrum of T, denoted by $\omega(T)$, is defined by the formula

$$\omega(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}.$$

Key words and phrases. Weyl's spectrum, *-paranormal operator, totally *-paranormal operator, Weyl's theorem,

¹⁹⁹¹ Mathematics Subject Classification. 47A10, 47A53, 47B05, 47B20,.

Note that for any operator T, $\omega(T)$ is a nonempty compact subset of \mathbb{C} ([3],[4]). We say that Weyl's theorem holds for T if

$$\sigma(T) \backslash \omega(T) = \pi_{00}(T)$$

where $\pi_{00}(T)$ denotes the set of isolated points of $\sigma(T)$ that are eigenvalues of finite multiplicity. An operator $T \in \mathcal{L}(H)$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T([3], [10]). An operator is called Browder if it is Fredholm of finite ascent and descent([6]).

H. Weyl examined the spectra of all compact perturbations T + K of a single hermitian operator T and discovered that $\lambda \in \sigma(T + K)$ for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in $\sigma(T)$. Today this result is known as Weyl's theorem, and it has been extended from hermitian operators to hyponormal operators and to Toeplitz operators by L. Coburn [4], to several classes of operators including hyponormal operators by S. Berberian [2], [3].

In this paper, we introduce the notion of algebraically *-TPN operators on a Hilbert space H as follows: An operator T is algebraically *-TPNif there exists a nonconstant complex polynomial p such that p(T) is totally *-paranormal. In particular, we prove that this class of *-TPN (or equivalently, totally *-paranormal) operators forms a proper subclass of algebraically *-TPN operators. Also we prove that Weyl's theorem and the spectral mapping theorem hold for algebraically *-TPN operators. Finally, we prove that if T is algebraically *-TPN, then f(T) satisfies Weyl's theorem where f is analytic on an open neighborhood of $\sigma(T)$.

1. Weyl's theorem and Spectral mapping theorem

Recall that an operator $T \in \mathcal{L}(H)$ is said to be hyponormal if $TT^* \leq T^*T$, or equivalently, $||T^*h|| \leq ||Th||$ for every $h \in H$. A larger class of operators related to hyponormal operators is the following: An operator T is *-paranormal if $||T^*h||^2 \leq ||T^2h|| ||h||$ for every $h \in H$. It is known in [1] that T is *-paranormal if and only if $T^{*2}T^2 - 2rTT^* + r^2 \geq 0$ for each r > 0. This class of operators was introduced and studied by S. M. Patel(cf. [1]) under the title 'Operators of class (M)'. An operator $T \in \mathcal{L}(H)$ is called totally *-paranormal(or shortly, *-TPN) if $T - \lambda I$ is *-paranormal for every

 $\lambda \in \mathbb{C}$, or equivalently, $||(T - \lambda I)^* h||^2 \leq ||(T - \lambda I)^2 h|| ||h||$ for all $h \in H$ and all $\lambda \in \mathbb{C}([8])$. It was known ([8]) that this class forms a proper subclass of the *-paranormal operators and that the class of hyponormal operators forms a proper subclass of totally *-paranormal operators.

The following facts ([8]) follow from the above definition and the well-known facts of *-paranormal operators.

(a) If $T \in \mathcal{L}(H)$ is *-TPN, then so is $T - \lambda I$ for each $\lambda \in \mathbb{C}$.

- (b) If $T \in \mathcal{L}(H)$ is *-TPN and $M \subseteq H$ is invariant under T, then $T|_M$ is *-TPN.
- (c) If $T \in \mathcal{L}(H)$ is *-TPN and quasinilpotent, then T is zero.
- (d) Let T be a weighted shift with weighs $\{\alpha_n\}_{n=0}^{\infty}$. If T is *-TPN, then $|\alpha_{n-1}|^2 \leq 2|\alpha_n|^2$ for each positive integer n.

We shall introduce the notion of an algebraically *-TPN operator:

Definition. An operator $T \in B(H)$ is called algebraically *-TPN if there exists a nonconstant complex polynomial p such that p(T) is totally *-paranormal.

Evidently, $*-TPN \subseteq$ algebraically *-TPN, and the following example provides us with the class of *-TPN operators as the proper subclass of algebraically *-TPN.

Let $\{e_n\}_{n=0}^{\infty}$ be the canonical orthonormal basis for l_2 , let $\{\alpha_n\}_{n=0}^{\infty}$ be a bounded sequence of nonnegative numbers and let W_{α} be the (unilateral) weighted shift with the weights $\alpha = \{\alpha_n\}$ defined by

$$W_{\alpha}e_n = \alpha_n e_{n+1} \quad (n \ge 0).$$

It is well-known that W_{α} is hyponormal if and only if the weight sequence $\{\alpha_n\}$ is monotonically increasing. A straightforward calculation shows that W^p_{α} is hyponormal for $p \in \mathbb{N}$ if and only if the weight sequence $\{\alpha_n\}$ satisfies that for each $m = 0, 1, \dots, p-1$,

(2.1)
$$\prod_{j=m}^{p+m-1} \alpha_j \leq \prod_{j=p+m}^{2p+m-1} \alpha_j \leq \prod_{j=2p+m}^{3p+m-1} \alpha_j \leq \cdots$$

Example. Let $\alpha_0 = 1, \alpha_1 = \frac{1}{2}$, and $\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \cdots = 1$. Then W_{α} is not hyponormal since $\{\alpha_n\}$ is not monotonically increasing. Since

 $|\alpha_0|^2 = 1 > 2|\alpha_1|^2 = \frac{1}{2}$, by the above remark (d), W_{α} is not *-*TPN*. But W_{α}^2 is hyponormal and so W_{α}^2 is *-*TPN* i.e., W_{α} is algebraically *-*TPN*. Hence the set of all totally *-paranormal operators is a proper subset of the set of all algebraically *-*TPN* operators.

The following facts follow from the above definition and the well-known facts of *-TPN operators.

- (a) If $T \in B(H)$ is algebraically *-TPN and $M \subseteq H$ is invariant under T, then $T|_M$ is algebraically *-TPN.
- (b) Unitary equivalence preserves algebraic *-TPN.

LEMMA 1. If $T \in \mathcal{L}(H)$ is algebraically *-TPN and quasinilpotent, then T is nilpotent.

Proof. Suppose p(T) is *-*TPN* for some nonconstant polynomial p. Since total *-paranormality is translation-invariant, we may assume p(0) = 0. Thus we can write $p(\lambda) \equiv a_0 \lambda^m (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$ $(m \neq 0, \lambda_i \neq 0$ for every $1 \leq i \leq n$). If T is quasinilpotent, then $\sigma(p(T)) = p(\sigma(T)) = p(\{0\}) = \{0\}$, so that p(T) is also quasinilpotent. Since the only *-paranormal quasinilpotent operator is zero, it follows that

$$a_0 T^m (T - \lambda_1 I) \cdots (T - \lambda_n I) = 0.$$

Since $T - \lambda_i I$ is invertible for every $1 \le i \le n$, we have $T^m = 0$.

Note that if T is *-paranormal, then $N(T) = N(T^2)$.

LEMMA 2. If T is algebraically *-TPN, then T has finite ascent.

Proof. Suppose p(T) is *-*TPN* for some nonconstant polynomial p. We may assume p(0) = 0. If $p(\lambda) \equiv a_0 \lambda^m$, then $N(T^m) = N(T^{2m})$ because *-paranormal operators are of ascent 1. Thus we write

$$p(\lambda)\equiv a_0\lambda^m(\lambda-\lambda_1)\cdots(\lambda-\lambda_n) \quad (m
eq 0,\lambda_i
eq 0 \quad ext{for} \quad 1\leq i\leq n).$$

We then claim that

(2.2)
$$N(T^m) = N(T^{m+1})$$

To show (2.2), let $x \neq 0 \in N(T^{m+1})$. Then we can write

$$p(T)x = (-1)^n a_0 \lambda_1 \cdots \lambda_n T^m x$$

Thus we have

$$| a_0 \lambda_1 \cdots \lambda_n |^2 ||T^m x||^2 = (p(T)x, p(T)x) = (p(T)^* p(T)x, x)$$

$$\leq ||p(T)^* p(T)x|| ||x||$$

$$\leq (||p(T)^3 x|| ||p(T)x||)^{1/2} ||x||$$

$$= 0$$

since $||p(T)^3 x|| = ||a_0^3 (T - \lambda_1 I)^3 \cdots (T - \lambda_n I)^3 T^{3m} x|| = 0$. Hence $x \in N(T^m)$ and so $N(T^{m+1}) \subseteq N(T^m)$. Also the reverse inclusion is evident. This completes the proof.

LEMMA 3. If $T \in B(H)$ is algebraically *-TPN, then T is isoloid.

Proof. Suppose p(T) is *-TPN for some nonconstant polynomial p. Let $\lambda \in iso \sigma(T)$. Then using the spectral decomposition, we can represent T as the direct sum $T = T_1 \oplus T_2$, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$. Note that $T_1 - \lambda I$ is also algebraically *-TPN. Since $T_1 - \lambda I$ is quasinilpotent, by Lemma 1, $T_1 - \lambda I$ is nilpotent. Therefore $\lambda \in \pi_0(T_1)$ and hence $\lambda \in \pi_0(T)$. This shows that T is isoloid.

THEOREM 4. Weyl's theorem holds for every algebraically *-TPN operator.

Proof. Suppose p(T) is *-TPN for some nonconstant polynomial p. We first prove that $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$. Since algebraically *-TPN operator is translation-invariant, it suffices to show that

 $0 \in \pi_{00}(T) \Longrightarrow T$ is Weyl but not invertible.

Suppose $0 \in \pi_{00}(T)$. Now using the spectral projection $P = \frac{1}{2\pi i} \int_{\partial B_0} (\lambda I - T)^{-1} d\lambda$, where B_0 is an open disk of center 0 which contains no other points of $\sigma(T)$, we can represent T as the direct sum

 $T=T_1\oplus T_2, \quad ext{where} \quad \sigma(T_1)=\{0\} \quad ext{ and } \quad \sigma(T_2)=\sigma(T)ackslash\{0\}.$

But then $T_1(=T|_M = T|_{\text{Im}P})$ is also algebraically *-*TPN* and quasinilpotent. Then by Lemma 1, T_1 is nilpotent. Thus we should have that dim $R(P) < \infty$: if it were not so then $N(T_1)$ would be infinite dimensional so that

- 191 ---

 $0 \notin \pi_{00}(T)$, giving a contradiction. Therefore $T_1 = T|R(P)$ is a finite dimensional operator. Since finite dimensional operators are always Weyl, it follows that T_1 is Weyl. But since T_2 is invertible, we can conclude that T is Weyl. Therefore $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$

For the reverse inclusion, suppose $\lambda \in \sigma(T) \setminus \omega(T)$. Thus $T - \lambda I$ is Weyl. Then by the "index product theorem",

$$\dim N((T - \lambda I)^n) - \dim R((T - \lambda I)^n)^{\perp} = \operatorname{ind}((T - \lambda I)^n)$$
$$= n \operatorname{ind}(T - \lambda I) = 0$$

Thus if dim $N((T-\lambda I)^n)$ is a constant, then so is dim $R((T-\lambda I)^n)^{\perp}$ since $T-\lambda I$ is Fredholm. Consequently finite ascent forces finite descent. Therefore by Lemma 2, $T - \lambda I$ is Weyl of finite ascent and descent, and thus it is Browder. Therefore $\lambda \in \pi_{00}(T)$. This completes the proof.

It was known that for hyponormal operators, the Weyl spectrum obeys the spectral mapping theorem.

THEOREM 5. If $T \in \mathcal{L}(H)$ is algebraically *-TPN, then for every $f \in H(\sigma(T))$

(2.3)
$$\omega(f(T)) = f(\omega(T))$$

where $H(\sigma(T))$ denotes the set of analytic functions on an open neighborhood of $\sigma(T)$.

Proof. First of all we prove the equality (2.3) when P is a polynomial. In view of ([7], Theorem 5]), it suffices to show that for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_e(T)$,

(2.4)
$$\operatorname{ind}(T - \lambda I) \operatorname{ind}(T - \mu I) \ge 0$$

By Lemma 2, $T - \lambda I$ has finite ascent for every $\lambda \in \mathbb{C}$. Observe that if $S \in \mathcal{L}(H)$ is Fredholm of finite ascent then $\operatorname{ind}(S) \leq 0$: Indeed, either if S has finite descent then S is Browder and hence $\operatorname{ind}(S) = 0$, or if S does not have finite descent then

$$n \operatorname{ind}(S) = \dim N(S^n) - \dim R(S^n)^{\perp} \longrightarrow -\infty \quad \text{as} \quad n \to \infty$$

which implies that $\operatorname{ind}(S) < 0$. Thus we can see that (2.4) holds for every algebraically *-*TPN* operator *T*. This proves that the equality $\omega(p(T)) = p(\omega(T))$ holds for every polynomial *p*.

If f is analytic on an open neighborhood of $\sigma(T)$, then, by Runge's theorem, there is a sequence (p_n) of polynomials such that $f_n \to f$ uniformly on $\sigma(T)$. Since $p_n(T)$ commutes with f(T), by [9], we have

$$\omega(f(T)) = \lim \omega(p_n(T)) = \lim p_n(\omega(T)) = f(\omega(T)).$$

COROLLARY 6. If $T \in B(H)$ is algebraically *-TPN, then for every $f \in H(\sigma(T))$, Weyl's theorem holds for f(T).

Proof. Recall that if T is isoloid then

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T)) \quad ext{for every} \quad f \in H(\sigma(T)).$$

Thus from Lemma 3, Theorem 4 and Theorem 5,

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\omega(T) = \omega(f(T))$$

which implies that Weyl's theorem holds for f(T).

References

- 1. S. C. Arora and J. K. Thukral, On a class of operators, Glasnik Mat. **21(41)**, (1986), 381-386.
- 2. S. K. Berberian, An extnesion of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.
- 3. S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20(6) (1970), 529-544.
- L. A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13 (1966), 285-288.
- 5. P. R. Halmos, A Hilbert space problem book, Springer-Verlag, 1982.
- 6. R. E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
- R. E. Harte and W. Y. Lee, A note note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
- 8. E. Ko, H. W. Nam and Y. Yang, On totally *-paranormal operators, Integral Equations Operator Theory, to appear.

9. K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.

10. K. K. Oberai, On the Weyl spectrum (II), Illinois J. Math. 21 (1977), 84-90.

Youngoh Yang Department of Mathematics Cheju National University Cheju 690-756, Korea *Email*:yangyo@cheju.cheju.ac.kr

Received May 17, 1999

Revised October 14, 1999