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ON ALGEBRAICALLY TOTAL $*$-PARANORMALITY

YOUNGOH YANG

ABSTRACT. In this paper, we introduce the notion of $algebraically*$-TPN
operators on a Hilbert space $H$ as : An operator $T$ is $algebraically*$-TPN if
there exists a nonconstant complex polynomial $p$ such that $p(T)$ is $totally*-$

paranormal. In particular, we prove that this class $of*$-TPN (or equivalently,
totally $*$-paranormal) operators forms a proper subclass of algebraically $*-$

TPN operators. Also we prove that Weyl’s theorem and the spectral mapping
theorem hold for algebraically $*$ –TPN operators. Finally, we prove that
if $T$ is algebraically $*-TPN$ , then $f(T)$ satisfies Weyl’s theorem where $f$ is
analytic on an open neighborhood of $\sigma(T)$ .

$0$ . Introduction

Let $H$ be an infinite dimensional complex Hilbert space and $\mathcal{L}(H)$ denote
the space of all bounded linear operators from $H$ to $H$ . If $T\in \mathcal{L}(H)$ , we write
$N(T)$ and $R(T)$ for the null space and range of $T;\sigma(T)$ for the spectrum
of $T$ and $\sigma_{e}(T)$ for the essential spectrum of $T$ . Recal that an operator
$T\in L(H)$ is Fredholm if its range $R(T)$ is closed and both the null spaces
$N(T)$ and $N(T^{*})$ are finite dimensional. The index of a IFMredholm operator
$T$ , denoted by $ind(T)$ , is defined by

$ind(T)=\dim N(T)$ –dim $N(T^{*})$ ($=\dim N(T)$ –dim $R(T)^{\perp}$ ).

An operator $T\in \mathcal{L}(H)$ is called Weyl if $T$ is a Fredholm operator of index
zero. The Weyl spectrum of $T$ , denoted by $\omega(T)$ , is defined by the formula

$\omega(T)=$ { $\lambda\in \mathbb{C}$ : $T-\lambda I$ is not Weyl}.
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Note that for any operator $T,$ $\omega(T)$ is a nonempty compact subset of $\mathbb{C}$

([3],[4]). We say that Weyl’s theorem holds for $T$ if

$\sigma(T)\backslash \omega(T)=\pi_{00}(T)$

where $\pi_{00}(T)$ denotes the set of isolated points of $\sigma(T)$ that are eigenvalues
of finite multiplicity. An operator $T\in \mathcal{L}(H)$ is called isoloid if every isolated
point of $\sigma(T)$ is an eigenvalue of $T([3], [10])$ . An operator is called Browder
if it is Fredholm of finite ascent and descent([6]).

H. Weyl examined the spectra of all compact perturbations $T+K$ of a
single hermitian operator $T$ and discovered that $\lambda\in\sigma(T+K)$ for every
compact operator $K$ if and only if $\lambda$ is not an isolated eigenvalue of finite
multiplicity in $\sigma(T)$ . Today this result is known as Weyl’s theorem, and it
has been extended from hermitian operators to hyponormal operators and to
Toeplitz operators by L. Coburn [4], to several classes of operators including
hyponormal operators by S. Berberian [2], [3].

In this paper, we introduce the notion of $algebraically*$-TPN operators
on a Hilbert space $H$ as follows: An operator $T$ is algebraically $*$-TPN
if there exists a nonconstant complex polynomial $p$ such that $p(T)$ is to-
tally $*$-paranormal. In particular, we prove that this class $of*$-TPN (or
equivalently, $totaly*$-paranormal) operators forms a proper subclass of al-
$gebraically*$-TPN operators. Also we prove that Weyl’s theorem and the
spectral mapping theorem hold for $algebraically*$-TPN operators. Finally,
we prove that if $T$ is $algebraically*-TPN$ , then $f(T)$ satisfies Weyl’s theorem
where $f$ is analytic on an open neighborhood of $\sigma(T)$ .

1. Weyl’s theorem and Spectral mapping theorem

Recall that an operator $T\in \mathcal{L}(H)$ is said to be hyponormal if $ TT^{*}\leq$

$T^{*}T$ , or equivalently, $\Vert T^{*}h\Vert\leq\Vert Th||$ for every $h\in H$ . A larger class of
operators related to hyponormal operators is the following: An operator $T$

is $*$-paranormal if $\Vert T^{*}h\Vert^{2}\leq\Vert T^{2}h||||h\Vert$ for every $h\in H$ . It is known in [1]
that $Tis*$-paranormal if and only if $T^{*2}T^{2}-2rTT^{*}+r^{2}\geq 0$ for each $r>0$ .
This class of operators was introduced and studied by S. M. Patel(cf. [1])
under the title ‘Operators of class $(M)$ . An operator $T\in \mathcal{L}(H)$ is called
$totally*$-paranormal(or shortly, $*-TPN$ ) if $T-\lambda Iis*$-paranormal for every
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$\lambda\in \mathbb{C}$ , or equivalently, $\Vert(T-\lambda I)^{*}h\Vert^{2}\leq\Vert(T-\lambda I)^{2}h\Vert\Vert h\Vert$ for all $h\in H$ and
all $\lambda\in \mathbb{C}([8])$ . It was known ([8]) that this class forms a proper subclass
of the $*$-paranormal operators and that the class of hyponormal operators
forms a proper subclass of totally *-paranorm$a1$ operators.

The following facts ([8]) follow from the above definition and the well-
known facts $of*$-paranormal operators.

(a) If $T\in \mathcal{L}(H)is*-TPN$ , then so is $T-\lambda I$ for each $\lambda\in \mathbb{C}$ .
(b) If $T\in \mathcal{L}(H)$ is $*$-TPN and $M\subseteq H$ is invariant under $T$ , then $T|_{M}$ is

$*- TPN$ .
(c) If $T\in \mathcal{L}(H)is*$-TPN and quasinilpotent, then $T$ is zero.
(d) Let $T$ be a weighted shift with weighs $\{\alpha_{n}\}_{n=0}^{\infty}$ . If $T$ is $*-TPN$ , then

$|\alpha_{n-1}|^{2}\leq 2|\alpha_{n}|^{2}$ for each positive integer $n$ .

We shall introduce the notion of an $algebraically*$-TPN operator:

Definition. An operator $T\in B(H)$ is called $algebraically*$-TPN if there
exists a nonconstant complex polynomial $p$ such that $p(T)$ is totally $*-$

paranormal.

Evidently, $*- TPN\subseteq$ algebraically $*-TPN$ , and the following example
provides us with the class of $*$-TPN operators as the proper subclass of
$algebraically*-TPN$ .

Let $\{e_{n}\}_{n=0}^{\infty}$ be the canonical orthonormal basis for $l_{2}$ , let $\{\alpha_{n}\}_{n=0}^{\infty}$ be
a bounded sequence of nonnegative numbers and let $W_{\alpha}$ be the (unilateral)
weighted shift with the weights $\alpha=\{\alpha_{n}\}$ defined by

$W_{\alpha}e_{n}=\alpha_{n}e_{n+1}$ $(n\geq 0)$ .

It is well-known that $W_{\alpha}$ is hyponormal if and only if the weight sequence
$\{\alpha_{n}\}$ is monotonically increasing. A straightforward calculation shows that
$W_{\alpha}^{p}$ is hyponormal for $p\in N$ if and only if the weight sequence $\{\alpha_{n}\}$ satisfies
that for each $m=0,1,$ $\cdots p-1$ ,

(2.1) $\prod^{p+m-1}\alpha j\leq\prod^{2p+m-1}\alpha j\leq\prod^{3p+m-1}\alpha j\leq\cdots$

$j=m$ $j=p+m$ $j=2p+m$

Example. Let $\alpha_{0}=1,$ $\alpha_{1}=\frac{1}{2}$ and $\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=\cdots=1$ . Then
$W_{\alpha}$ is not hyponormal since $\{\alpha_{n}\}$ is not monotonically increasing. Since
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$|\alpha_{0}|^{2}=1>2|\alpha_{1}|^{2}=\frac{1}{2}$ by the above remark (d), $W_{\alpha}$ is not $*-TPN$ . But
$W_{\alpha}^{2}$ is hyponormal and so $W_{\alpha}^{2}$ is $*$-TPN i.e., $W_{\alpha}$ is algebraically $*-TPN$ .
Hence the set of all $totally*$-paranormal operators is a proper subset of the
set of all $algebraically*$-TPN operators.

The following facts follow from the above definition and the well-known
facts $of*$-TPN operators.

(a) If $T\in B(H)$ is $algebraically*$-TPN and $M\subseteq H$ is invariant under $T$ ,
then $T|_{M}$ is $algebraically*-TPN$ .

(b) Unitary equivalence preserves $algebraic*$ -TPN.

LEMMA 1. If $T\in \mathcal{L}(H)$ is $aIgebraically*$ -TPN and quasinilpotent, then
$T$ is nilpotent.

Proof. Suppose $p(T)is*$-TPN for some nonconstant polynomial $p$ . Since
$total*$-paranormality is translation-invariant, we may assume $p(O)=0$ . Thus
we can write $p(\lambda)\equiv a_{0}\lambda^{m}(\lambda-\lambda_{1})\cdots(\lambda-\lambda_{n})(m\neq 0,$ $\lambda;\neq 0$ for every $ 1\leq$

$i\leq n)$ . If $T$ is quasinilpotent, then $\sigma(p(T))=p(\sigma(T))=p(\{0\})=\{0\}$ , so
that $p(T)$ is also quasinilpotent. Since the $only*$-paranormal quasinilpotent
operator is zero, it follows that

$a_{0}T^{m}(T-\lambda_{1}I)\cdots(T-\lambda_{n}I)=0$ .

Since $T-\lambda_{i}I$ is invertible for every $1\leq i\leq n$ , we have $T^{m}=0$ . $\square $

Note that if $Tis*$-paranormal, then $N(T)=N(T^{2})$ .
LEMMA 2. if $T$ is algebraic$ally*- TPN$ , then $Th$as finite ascent.

Proof. Suppose $p(T)is*$-TPN for some nonconstant polynomial $p$ . We
may assume $p(O)=0$ . If $p(\lambda)\equiv a_{0}\lambda^{m}$ , then $N(T^{m})=N(T^{2m})$ because
$*$-paranormal operators are of ascent 1. Thus we write

$p(\lambda)\equiv a_{0}\lambda^{m}(\lambda-\lambda_{1})\cdots(\lambda-\lambda_{n})$ ( $m\neq 0,$ $\lambda;\neq 0$ for $1\leq i\leq n$ ).

We then claim that

(2.2) $N(T^{m})=N(T^{m+1})$

To show (2.2), let $x(\neq 0)\in N(T^{m+1})$ . Then we can write

$p(T)x=(-1)^{n}a_{0}\lambda_{1}\cdots\lambda_{n}T^{m}x$
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Thus we have

$|a0\lambda_{1}\cdots\lambda_{n}|^{2}\Vert T^{m}x\Vert^{2}=(p(T)x, p(T)x)=(p(T)^{*}p(T)x, x)$

$\leq\Vert p(T)^{*}p(T)x$ Il $\Vert x\Vert$

$\leq(\Vert p(T)^{3}x\Vert||p(T)x\Vert)^{1/2}\Vert x\Vert$

$=0$

since $||p(T)^{3}x||=\Vert a_{0}^{3}(T-\lambda_{1}I)^{3}\cdots(T-\lambda_{n}I)^{3}T^{3m}x||=0$ . Hence $x\in N(T^{m})$

and so $N(T^{m+1})\subseteq N(T^{m})$ . Also the reverse inclusion is evident. This
completes the proof. $\square $

LEMMA 3. If $T\in B(H)$ is algebrai$cally*-TPN$ , then $T$ is isoloid.

Proof. Suppose $p(T)is*$-TPN for some nonconstant polynomial $p$ . Let
$\lambda\in iso\sigma(T)$ . Then using the spectral decomposition, we can represent $T$ as
the direct sum $T=T_{1}\oplus T_{2}$ , where $\sigma(T_{1})=\{\lambda\}$ and $\sigma(T_{2})=\sigma(T)\backslash \{\lambda\}$ . Note
that $T_{1}-\lambda I$ is also algebr$aically*-TPN$ . Since $T_{1}-\lambda I$ is quasinilpotent, by
Lemma 1, $T_{1}-\lambda I$ is nilpotent. Therefore $\lambda\in\pi_{0}(T_{1})$ and hence $\lambda\in\pi_{0}(T)$ .
This shows that $T$ is isoloid. $\square $

THEOREM 4. Weyl’s theorem holds for every $algebraically*$ -TPN oper-
ator.

Proof. Suppose $p(T)is*$-TPN for some nonconstant polynomial $p$ . We
first prove that $\pi_{00}(T)\subseteq\sigma(T)\backslash \omega(T)$ . Since $algebraically*$-TPN operator is
translation-invariant, it suffices to show that

$0\in\pi_{00}(T)\Rightarrow T$ is Weyl but not invertible.

Suppo.se $0\in\pi_{00}(T)$ . Now using the spectral projection $P=\frac{1}{2\pi i}\int_{\partial B_{0}}(\lambda I-$

$ T)^{-1}d\lambda$ , where $B_{0}$ is an open disk of center $0$ which contains no other points
of $\sigma(T)$ , we can represent $T$ as the direct sum

$T=T_{1}\oplus T_{2}$ , where $\sigma(T_{1})=\{0\}$ and $\sigma(T_{2})=\sigma(T)\backslash \{0\}$ .

But then $T_{1}(=T|_{M}=T|_{{\rm Im} P})$ is also $algebraically*$-TPN and quasinilpo-
tent. Then by Lemma 1, $T_{1}$ is nilpotent. Thus we should have that dim $R(P)<$
$\infty$ : if it were not so then $N(T_{1})$ would be infinite dimensional so that
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$0\not\in\pi_{00}(T)$ , giving a contradiction. Therefore $T_{1}=T|R(P)$ is a finite di-
mensional operator. Since finite dimensional operators are always Weyl, it
follows that $T_{1}$ is Weyl. But since $T_{2}$ is invertible, we can conclude that $T$

is Weyl. Therefore $\pi_{00}(T)\subseteq\sigma(T)\backslash \omega(T)$

For the reverse inclusion, suppose $\lambda\in\sigma(T)\backslash \omega(T)$ . Thus $T-\lambda I$ is Weyl.
Then by the “index product theorem”,

dim $N((T-\lambda I)^{n})$ –dim $R((T-\lambda I)^{n})^{\perp}=ind((T-\lambda I)^{n})$

$=nind(T-\lambda I)=0$

Thus if dim $N((T-\lambda I)^{n})$ is a constant, then so is dim $R((T-\lambda I)^{n})^{\perp}$ since $T-$
$\lambda I$ is Fredholm. Consequently finite ascent forces finite descent. Therefore
by Lemma 2, $T-\lambda I$ is Weyl of finite ascent and descent, and thus it is
Browder. Therefore $\lambda\in\pi_{00}(T)$ . This completes the proof. $\square $

It was known that for hyponormal operators, the Weyl spectrum obeys
the spectral mapping theorem.

THEOREM 5. If $T\in \mathcal{L}(H)$ is $algebraically*-TPN$ , then for every $ f\in$

$H(\sigma(T))$

(2.3) $\omega(f(T))=f(\omega(T))$

where $H(\sigma(T))$ denotes the set ofanalytic functions on an open neighborhood
of $\sigma(T)$ .

Proof. First of all we prove the equality (2.3) when $P$ is $a$ polynomial. In
view of ([7], Theorem 5]), it suffices to show that for each pair $\lambda,$ $\mu\in \mathbb{C}\backslash \sigma_{e}(T)$ ,

(2.4) $ind(T-\lambda I)ind(T-\mu I)\geq 0$

By Lemma 2, $T-\lambda I$ has finite ascent for every $\lambda\in \mathbb{C}$ . Observe that if
$S\in \mathcal{L}(H)$ is Fredholm of finite ascent then $ind(S)\leq 0$ : Indeed, either if $S$

has finite descent then $S$ is Browder and hence $ind(S)=0$ , or if $S$ does not
have finite descent then

$nind(S)=\dim N(S^{n})$ –dim $ R(S^{n})^{\perp}\rightarrow-\infty$ as $n\rightarrow\infty$

which implies that $ind(S)<0$ . Thus we can see that (2.4) holds for every
algebraically $*$-TPN operator $T$ . This proves that the equality $\omega(p(T))=$

$p(\omega(T))$ holds for every polynomial $p$ .
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If $f$ is analytic on an open neighborhood of $\sigma(T)$ , then, by Runge’s theo-
rem, there is a sequence $(p_{n})$ of polynomials such that $f_{n}\rightarrow f$ uniformly on
$\sigma(T)$ . Since $p_{n}(T)$ commutes with $f(T)$ , by [9], we have

$\omega(f(T))=\lim\omega(p_{n}(T))=\lim p_{n}(\omega(T))=f(\omega(T))$ .

$\square $

COROLLARY 6. If $T\in B(H)$ is algebraically $*-TPN$ , then for every
$f\in H(\sigma(T))$ , Weyl $s$ theorem holds for $f(T)$ .

Proof. Recall that if $T$ is isoloid then

$f(\sigma(T)\backslash \pi_{00}(T))=\sigma(f(T))\backslash \pi_{00}(f(T))$ for every $f\in H(\sigma(T))$ .

Thus from Lemma 3, Theorem 4 and Theorem 5,

$\sigma(f(T))\backslash \pi_{00}(f(T))=f(\sigma(T)\backslash \pi_{00}(T))=f(\omega(T)=\omega(f(T))$

which implies that Weyl’s theorem holds for $f(T)$ . a
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