Weak Projections on Unital Commutative C*-Algebras

Sergio Canoy Jr., Go Hirasawa and Keiji Izuchi

1. Preliminary

Let Ω be a compact Hausdorff space and let $C(\Omega)$ be the space of complex valued continuous functions on Ω . With the supremum norm, $C(\Omega)$ is a unital commutative C^* algebra. Let S be a unital C^* -subalgebra of $C(\Omega)$. A bounded linear operator P on $C(\Omega)$ is called a *projection* onto S if Ph = h for every $h \in S$ and the range of P equals to S. A bounded linear operator Q on $C(\Omega)$ is called a *weak projection* for S if Qh = h for every $h \in S$. If P is a projection onto S, then P is a weak projection for S. Converse of this assertion is not true. A counterexample is $S = \{f \in C([0,1]); f(1/3) = f(x) \text{ for}$ $1/3 \leq x \leq 2/3\}$. For a unital C^* -subalgebra S of $C(\Omega)$, there may not exist a weak projection for S. Our problem in this paper is to find which conditions on S there exists a weak projection for S.

A motivation of this study comes from Korovkin type approximation theorems. A subset E of $C(\Omega)$ is called a *Korovkin set* if for every sequence of bounded linear operators $\{T_n\}_n$ on $C(\Omega)$ such that $||T_n|| \leq 1$ for every n and $T_nh \to h$ for each $h \in E$, it holds $T_nf \to f$ for every $f \in C(\Omega)$. Korovkin [4] (see also [6]) proved that $\{1, x, x^2\}$ is a Korovkin set of C([0, 1]). There are many researches on Korovkin type approximation theorems, see [1, 3, 5].

By the definitions, if S is a unital C^{*}-subalgebra of $C(\Omega)$ and S is a Korovkin set, then there are no weak projections Q for S such that $Q \neq I$ and ||Q|| = 1.

Let S be a unital C^{*}-subalgebra of $C(\Omega)$. For $x \in \Omega$, put

$$E(x) = \{ y \in \Omega; f(y) = f(x) \text{ for every } f \in S \}.$$

Then E(x) is a closed subset of Ω , and it holds E(x) = E(y) or $E(x) \cap E(y) = \emptyset$. We call the family $\{E(x)\}_{x \in \Omega}$ the Shilov decomposition for S. We have the following proposition.

Proposition. Let S be a unital C^* -subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov decomposition for S. Assume that there exist a non-empty open subset U of Ω and a continuous map φ from U to Ω such that

- i) $\varphi(x) \in E(x)$ for $x \in U$,
- ii) $\varphi(x) \neq x$ for $x \in U$.

Then there exists a weak projection Q for S such that $Q \neq I$ and ||Q|| = 1.

Proof. Let φ be a continuous map satisfying i) and ii). We shall prove the existence of a weak projection Q for S with $Q \neq I$ and ||Q|| = 1. Take a point x_0 in U and a continuous

function ψ on Ω such that $0 \leq \psi \leq 1$ on Ω ,

(1)
$$\psi = 0 \text{ on } \Omega \setminus U \text{ and } \psi(x_0) = 1.$$

We define an operator Q on $C(\Omega)$ as

(2)
$$(Qg)(x) = \psi(x)g(\varphi(x)) + (1 - \psi(x))g(x) \text{ for } g \in C(\Omega), x \in \Omega.$$

Then it is not difficult to see that Q is a bounded linear operator on $C(\Omega)$ with ||Q|| = 1. Let $h \in S$. Then by i), $h(\varphi(x)) = h(x)$ for $x \in U$. Hence by (2), (Qh)(x) = h(x) for $x \in U$. For $x \in \Omega \setminus U$, by (1) we have $\psi(x) = 0$, so that (Qh)(x) = h(x). Thus we get Qh = h for $h \in S$.

Since $x_0 \in U$, by ii) we have $\varphi(x_0) \neq x_0$, so that there exists $g_0 \in C(\Omega)$ such that $g_0(\varphi(x_0)) \neq g_0(x_0)$. Hence by (1) and (2), $(Qg_0)(x_0) \neq g_0(x_0)$. Therefore Q is a weak projection for S with $Q \neq I$ and ||Q|| = 1.

We conjecture that the converse of Proposition is affirmative.

Conjecture. Let S be a unital C^* -subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov decomposition for S. If there exists a weak projection Q for S such that $Q \neq I$ and ||Q|| = 1, then there exist a non-empty open subset U of Ω and a continuous map φ from U to Ω such that

i) $\varphi(x) \in E(x)$ for $x \in U$,

ii)
$$\varphi(x) \neq x$$
 for $x \in U$.

In the next section, we study this conjecture under some additional conditions.

2. Weak projections

In this section, we shall prove the following theorem.

Theorem 1. Let S be a unital C^* -subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov decomposition for S. Suppose that E(x) is a countable set for every $x \in \Omega$. If there exists a weak projection Q for S such that $Q \neq I$ and ||Q|| = 1, then there exist a non-empty open subset U of Ω and a continuous map φ from U to Ω such that

i)
$$\varphi(x) \in E(x)$$
 for $x \in U$,

ii)
$$\varphi(x) \neq x$$
 for $x \in U$.

Let Ω and Γ be compact Hausdorff spaces, and let μ_x be a positive Borel measure on Ω for every $x \in \Gamma$. Further we assume that

(a) $\sup \{\mu_x(\Omega); x \in \Gamma\} < \infty,$

 μ_x has an atom for every $x \in \Gamma$, that is,

(b) for every
$$x \in \Gamma$$
, $\mu_x(\{\zeta\}) > 0$ for some $\zeta \in \Omega$,

and

(c)
$$\int_{\Omega} f d\mu_x$$
 is continuous in $x \in \Gamma$ for every $f \in C(\Omega)$.

Lemma 1. Let V be an open subset of Ω . Suppose that $0 < r_1 < \mu_{x_1}(V) \leq \mu_{x_1}(\overline{V}) < r_2$ for a point $x_1 \in \Gamma$. Then there exists an open neighborhood U of x_1 such that $r_1 < \mu_x(V) \leq \mu_x(\overline{V}) < r_2$ for every $x \in U$.

Proof. By the regularity of the measure μ_{x_1} , there exist a compact subset K of V and an open subset V_1 such that $K \subset V \subset \overline{V} \subset V_1$ and $r_1 < \mu_{x_1}(K) \leq \mu_{x_1}(V_1) < r_2$. Then there exist continuous functions $f_i \in C(\Omega), i = 1, 2$, with $0 \leq f_i \leq 1$ such that

$$f_1 = 1 ext{ on } K ext{ and } f_1 = 0 ext{ on } \Omega \setminus V,$$

 $f_2 = 1 ext{ on } \overline{V} ext{ and } f_2 = 0 ext{ on } \Omega \setminus V_1.$

By our assumption (c), $\int_{\Omega} f_i d\mu_x \to \int_{\Omega} f_i d\mu_{x_1}$ as $x \to x_1$. We note that

$$r_1 < \mu_{x_1}(K) \leq \int_{\Omega} f_1 d\mu_{x_1} \leq \int_{\Omega} f_2 d\mu_{x_1} \leq \mu_{x_1}(V_1) < r_2.$$

Since

$$\int_{\Omega} f_1 \, d\mu_x \leq \mu_x(V) \leq \mu_x(\overline{V}) \leq \int_{\Omega} f_2 \, d\mu_x,$$

we have our assertion.

For a closed subset E of Ω , put

(1)
$$\lambda_E(x) = \sup \{ \mu_x(\{\zeta\}); \zeta \in E \}, \ x \in \Gamma.$$

By condition (a), sup in (1) is attained, and

(2)
$$\lambda_E(x) \le \mu_x(E), \quad x \in \Gamma.$$

For an open subset U of Γ , put

(3)
$$\alpha(E,U) = \sup \{\lambda_E(x); x \in U\} \text{ and } \beta(E,U) = \inf \{\lambda_E(x); x \in U\}.$$

Then

(4)
$$\beta(E,U) \leq \lambda_E(x) \leq \alpha(E,U), x \in U.$$

Lemma 2. Let E be a closed subset of Ω and let U be an open subset of Γ such that

- (i) $\mu_x(E) < 4\alpha(E,U)/3$ for every $x \in U$,
- (ii) $0 < 2\alpha(E, U)/3 \le \beta(E, U).$

Then there exists a continuous map φ from U to E such that $\mu_x(\{\varphi(x)\}) > 0$ for every $x \in U$.

Proof. By (1), for each $x \in U$ there exists $\zeta(x)$ such that

(5)
$$\zeta(x) \in E \text{ and } \lambda_E(x) = \mu_x(\{\zeta(x)\}).$$

Then by (ii) and (4),

(6)
$$0 < 2\alpha(E,U)/3 \le \lambda_E(x) = \mu_x(\{\zeta(x)\}), x \in U.$$

Here we note that for each $x \in U$, $\zeta \in E$ satisfying $2\alpha(E,U)/3 \leq \mu_x(\{\zeta\})$ is unique. For, suppose that $x \in U$, $\zeta, \zeta' \in E$, $\zeta \neq \zeta'$, $2\alpha(E,U)/3 \leq \mu_x(\{\zeta\})$, and $2\alpha(E,U)/3 \leq \mu_x(\{\zeta'\})$. Then

$$4\alpha(E,U)/3 \leq \mu_x(\{\zeta\}) + \mu_x(\{\zeta'\}) \leq \mu_x(E).$$

This contradicts (i). Hence $\zeta(x)$ satisfying (5) is unique for each $x \in U$.

Now we shall prove that $\zeta(x)$ is continuous in $x \in U$. Then the map $\varphi(x) = \zeta(x), x \in U$, satisfies our assertion. To prove this, suppose that $\zeta(x)$ is not continuous at $x_0 \in U$. Then there exist two nets $\{x_i\}_i$ and $\{y_i\}_i$ in U which converge to x_0 ,

(7)
$$\zeta(x_i) \to c_1, \ \zeta(y_i) \to c_2, \ \text{and} \ c_1 \neq c_2.$$

By (5), c_1 and c_2 are contained in E.

Take $\varepsilon > 0$ arbitrary. Then there exists a function $h \in C(\Omega)$ such that $0 \le h \le 1$ on Ω ,

$$h(c_1) = 1,$$

(9)
$$\int_{\Omega} h \, d\mu_{x_0} < \mu_{x_0}(\{c_1\}) + \varepsilon.$$

Now we have

$$\int_{\Omega} h \, d\mu_{x_0} = \liminf_{i \to \infty} \int_{\Omega} h \, d\mu_{x_i} \quad \text{by } (c)$$

$$\geq \liminf_{i \to \infty} \mu_{x_i}(\{\zeta(x_i)\})h(\zeta(x_i))$$

$$= \liminf_{i \to \infty} \mu_{x_i}(\{\zeta(x_i)\}) \quad \text{by } (7) \text{ and}(8)$$

$$\geq 2\alpha(E, U)/3 \quad \text{by } (6).$$

Hence by (9),

$$2\alpha(E,U)/3 < \mu_{x_0}(\{c_1\}) + \varepsilon$$
 for every $\epsilon > 0$.

Thus we get

$$0 < 2\alpha(E, U)/3 \le \mu_{x_0}(\{c_1\}).$$

In the same way, we have

$$0 < 2\alpha(E, U)/3 \le \mu_{x_0}(\{c_2\}).$$

By the first paragraph of the proof, we have $c_1 = c_2$. This contradicts (7).

Lemma 3. For a closed subset E of Ω , $\lambda_E(x)$ is upper semicontinuous in $x \in \Gamma$.

Proof. Let $\{x_i\}_i$ be a net in Γ such that $x_i \to x_0 \in \Gamma$ as $i \to \infty$. It is sufficient to prove that

$$\limsup_{i\to\infty}\lambda_E(x_i)\leq\lambda_E(x_0).$$

To prove this, suppose that

(10)
$$\lim_{i\to\infty}\lambda_E(x_i)=a.$$

We shall prove that $a \leq \lambda_E(x_0)$. By (1), there exists $\zeta_i \in E$ such that

(11)
$$\mu_{x_i}(\{\zeta_i\}) = \lambda_E(x_i).$$

We may assume moreover that $\zeta_i \to \zeta_0 \in E$. Take a function h in $C(\Omega)$ such that

(12)
$$0 \le h \le 1 \text{ and } h(\zeta_0) = 1.$$

Then

$$h(\zeta_i)\mu_{x_i}(\{\zeta_i\}) \leq \int_{\Omega} h \, d\mu_{x_i} \to \int_{\Omega} h \, d\mu_{x_0} \quad \text{as } i \to \infty.$$

Since $h(\zeta_i) \to h(\zeta_0) = 1$, by (10) and (11) we have $a \leq \int_{\Omega} h \, d\mu_{x_0}$. Since this holds for every $h \in C(\Omega)$ satisfying (12), we have $a \leq \mu_{x_0}(\{\zeta_0\}) \leq \lambda_E(x_0)$.

For a subset E of Γ , we denote by int E the interior of E. To prove Theorem 1, we use the following theorem.

Theorem 2. Let Ω and Γ be compact Hausdorff spaces. Suppose that $\mu_x, x \in \Gamma$, is a positive Borel measure on Ω such that $\sup \{\mu_x(\Omega); x \in \Gamma\} < \infty$, μ_x has an atom for every $x \in \Gamma$, and $\int_{\Omega} f d\mu_x$ is continuous in $x \in \Gamma$ for every $f \in C(\Omega)$. Then there exists a continuous map φ from some non-empty open subset U of Γ to Ω such that $\mu_x(\{\varphi(x)\}) > 0$ for every $x \in U$.

Proof. By our assumption and (1), $\lambda_{\Omega}(x) > 0$ for every $x \in \Gamma$. Then by the Baire category theorem (see [2, pp.196-197]), there exists c > 0 such that $\overline{\{x \in \Gamma; 3c/4 \leq \lambda_{\Omega}(x) < c\}}$ has an interior point. Also by Lemma 3, $\{x \in \Gamma; 3c/4 \leq \lambda_{\Omega}(x)\}$ is a closed subset of Γ and $\{x \in \Gamma; \lambda_{\Omega}(x) < c\}$ is an open subset of Γ . Therefore $\{x \in \Gamma; 3c/4 \leq \lambda_{\Omega}(x) < c\}$ has also an interior point and so contains a non-empty open subset U_1 of Γ . We may assume moreover that

(13)
$$\overline{U_1} \subset \{x \in \Omega; 3c/4 \le \lambda_{\Omega}(x) < c\}.$$

For an open subset V of Ω , put

(14)
$$W_V = \{x \in \overline{U_1}; 3c/4 \le \lambda_{\overline{V}}(x)\}.$$

Let $\mathcal{U}(\zeta)$ be the family of open neighborhoods of $\zeta \in \Omega$. We shall prove the existence of a point ζ_0 in Ω such that

(15)
$$\operatorname{int} W_V \neq \emptyset \text{ for every } V \in \mathcal{U}(\zeta_0),$$

where int W_V denotes the interior of W_V . To prove this, suppose not. Then for each ζ in Ω , there exists $V_{\zeta} \in \mathcal{U}(\zeta)$ such that int $W_{V_{\zeta}} = \emptyset$. Since Ω is compact, there exist $\zeta_1, \ldots, \zeta_n \in \Omega$ such that $\Omega = V_{\zeta_1} \cup \ldots \cup V_{\zeta_n}$. Then by (1),

$$\lambda_{\Omega}(x) = \max \left\{ \lambda_{\overline{V}_{\zeta_j}}(x); 1 \leq j \leq n \right\} \text{ for } x \in U_1,$$

so that by (13) and (14) we have

$$\overline{U_1} = \bigcup_{j=1}^n W_{V_{\zeta_j}}.$$

By Lemma 3, $W_{V_{\zeta_j}}$ is a closed subset of $\overline{U_1}$. Hence for some j, int $W_{V_{\zeta_j}} \neq \emptyset$. This is a desired contradiction.

For $V_1, V_2 \in \mathcal{U}(\zeta_0)$ such that $V_1 \subset V_2$, we have $\lambda_{\overline{V_1}}(x) \leq \lambda_{\overline{V_2}}(x)$, so that by (14) $W_{V_1} \subset W_{V_2}$ and int $W_{V_1} \subset \operatorname{int} W_{V_2}$. Hence by (15), there exists a point $x_0 \in \overline{U}_1$ such that

(16)
$$x_0 \in \overline{\operatorname{int} W_V} \subset W_V \subset \overline{U_1}$$
 for every $V \in \mathcal{U}(\zeta_0)$.

Then by (13),

(17)
$$\mu_{x_0}(\{\zeta_0\}) \leq \lambda_{\overline{V}}(x_0) \leq \lambda_{\Omega}(x_0) < c$$

for $V \in \mathcal{U}(\zeta_0)$. Since $\mu_{x_0}(\{\zeta_0\}) = \inf \{\mu_{x_0}(\overline{V}); V \in \mathcal{U}(\zeta_0)\}$, by (17) there exists $V_0 \in \mathcal{U}(\zeta_0)$ such that $\mu_{x_0}(\overline{V_0}) < c$. Then by Lemma 1, there exists an open subset U_2 such that $x_0 \in U_2 \subset \Gamma$ such that

(18)
$$\sup_{x \in U_2} \mu_x(\overline{V_0}) < c.$$

By (16), $x_0 \in \overline{\operatorname{int} W_{V_0}}$, so that there exists an open subset U of Γ such that

$$U \subset U_2 \cap \operatorname{int} W_{V_0}$$
.

Then by (2), (3), (4), (14), and (18),

$$3c/4 \le \beta(\overline{V_0}, U) \le \alpha(\overline{V_0}, U) \le \alpha(\overline{V_0}, U_2) \le \sup_{x \in U_2} \mu_x(\overline{V_0}) < c.$$

Hence we have

$$0 < 2\alpha(\overline{V_0}, U)/3 \le 3\alpha(\overline{V_0}, U)/4 < 3c/4 \le \beta(\overline{V_0}, U)$$

and

$$\mu_x(\overline{V_0}) < c \le 4\alpha(\overline{V_0}, U)/3$$
 for every $x \in U$.

Now we can apply Lemma 2. Then there is a continuous map φ from U to Ω such that $\mu_x(\{\varphi(x)\}) > 0$ for every $x \in U$.

As an application of Theorem 2, we prove Theorem 1.

Proof of Theorem 1. Assume the existence of a weak projection Q for S such that $Q \neq I$ and ||Q|| = 1. For each $x \in \Omega$, by the Riesz representation theorem there exists a bounded Borel measure ν_x on Ω such that

(19)
$$(Qg)(x) = \int_{\Omega} g \, d\nu_x \text{ for every } g \in C(\Omega).$$

Since Q1 = 1 and ||Q|| = 1, ν_x is a probability measure. Since Q is a weak projection for S, Qh = h for every $h \in S$. Since S is a C^{*}-subalgebra, by (19) we have

(20)
$$\operatorname{supp} \nu_x \subset E(x),$$

where $\operatorname{supp} \nu_x$ is a closed support set of ν_x . Hence by our assumption, ν_x is a discrete measure for every x. Since $Q \neq I$, there exists $g \in C(\Omega)$ such that $\int_{\Omega} g \, d\nu_{x_0} \neq g(x_0)$ for some $x_0 \in \Omega$. Then there exists ζ_0 in Ω such that $x_0 \neq \zeta_0$ and $\nu_{x_0}(\{\zeta_0\}) > 0$. Take $V_1, V_2 \in \mathcal{U}(\zeta_0)$ such that $\overline{V_1} \subset V_2$ and $x_0 \notin \overline{V_2}$. Since $0 < \nu_{x_0}(\{\zeta_0\}) \leq \nu_{x_0}(V_1)$, by Lemma 1 there exists an open subset W of Ω such that $x_0 \in W$, $\overline{V_2} \cap \overline{W} = \emptyset$, and $\nu_x(V_1) > 0$ for every $x \in \overline{W}$. We note that

(21)
$$(x,x) \notin W \times V_2$$
 for every $x \in \Omega$.

Take a function $g_0 \in C(\Omega)$ such that $0 \leq g_0 \leq 1$,

(22)
$$g_0 = 1 \text{ on } \overline{V_1} \text{ and } g_0 = 0 \text{ on } \Omega \setminus V_2.$$

Put

(23)
$$d\mu_x = g_0 \, d\nu_x, \quad x \in \overline{W}.$$

Then μ_x and $\Gamma = \overline{W}$ satisfy assumptions of Theorem 2. Hence there is a continuous map φ from some non-empty open subset U of W to Ω such that $\mu_x(\{\varphi(x)\}) > 0$ for every

 $x \in U$. By (22) and (23), $\varphi(x) \in V_2$ and $\nu_x(\{\varphi(x)\}) > 0$ for every $x \in U$. Then by (20), $\varphi(x) \in E(x)$ for every $x \in U$. Since $U \subset W$, $(x, \varphi(x)) \in U \times V_2 \subset W \times V_2$ for every $x \in U$. Hence by (21), we obtain $\varphi(x) \neq x$ for $x \in U$. This completes the proof.

Acknowledgment. The authors would like to express their heartfelt thanks to the referee for his/her comments on making the paper more readable.

REFERENCES

- [1] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, de Gruyter, Berlin, New York, 1994.
- [2] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [3] K. Izuchi, H. Takagi and S. Watanabe, Sequential Korovkin type theorems and weighted composition operators, Acta Sci. Math.(Szeged) 62(1996), 161-174.
- [4] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Pub., Delhi, 1960.
- S. -E. Takahasi, (T, E)-Korovkin closures in normed spaces and BKW-operators, J. Approx. Theory 82(1995), 340-351.
- [6] D. E. Wulbert, Convergence of operators and Korovkin's theorem, J. Approx. Theory 1(1968), 381-390.

Department of Mathematics Niigata University Niigata 950-2181, JAPAN

Received December 25, 1998