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1. Preliminary

Let $\Omega$ be a compact Hausdorff space and let $C(\Omega)$ be the space of complex valued
continuous functions on $\Omega$ . With the supremum norm, $C(\Omega)$ is a unital commutative $C^{*}-$

algebra. Let $S$ be a unital $C^{*}$ -subalgebra of $C(\Omega)$ . A bounded linear operator $P$ on $C(\Omega)$

is called a projection onto $S$ if $Ph=h$ for every $h\in S$ and the range of $P$ equals to
$S$ . A bounded linear operator $Q$ on $C(\Omega)$ is called a weak projection for $S$ if $Qh=h$ for
every $h\in S$ . If $P$ is a projection onto $S$ , then $P$ is a weak projection for $S$ . Converse
of this assertion is not true. A counterexample is $S=\{f\in C([0,1]);f(1/3)=f(x)$ for
$1/3\leq x\leq 2/3\}$ . For a unital $C^{*}$ -subalgebra $S$ of $C(\Omega)$ , there may not exist a weak
projection for $S$ . Our problem in this paper is to find which conditions on $S$ there exists
a weak projection for $S$ .

A motivation of this study comes from Korovkin type approximation theorems. A subset
$E$ of $C(\Omega)$ is called a Korovkin set if for every sequence of bounded linear operators $\{T_{n}\}_{n}$

on $C(\Omega)$ such that $\Vert T_{n}\Vert\leq 1$ for every $n$ and $T_{n}h\rightarrow h$ for each $h\in E$ , it holds $T_{n}f\rightarrow f$

for every $f\in C(\Omega)$ . Korovkin [4] (see also [6]) proved that $\{1, x, x^{2}\}$ is a Korovkin set of
$C([0,1])$ . There are many researches on Korovkin type approximation theorems, see [1, 3,
5].

By the definitions, if $S$ is a unital $C^{*}$-subalgebra of $C(\Omega)$ and $S$ is a Korovkin set, then
there are no weak projections $Q$ for $S$ such that $Q\neq I$ and $\Vert Q\Vert=1$ .

Let $S$ be a unital $C^{*}$ -subalgebra of $C(\Omega)$ . For $ x\in\Omega$ , put

$E(x)=$ { $y\in\Omega;f(y)=f(x)$ for every $f\in S$ }.

Then $E(x)$ is a closed subset of $\Omega$ , and it holds $E(x)=E(y)$ or $ E(x)\cap E(y)=\emptyset$ . We call
the family $\{E(x)\}_{x\in\Omega}$ the Shilov decomposition for $S$ . We have the following proposition.

Proposition. Let $S$ be a unital $C^{*}$ -subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov
decomposition for S. Assume that there exist a non-empty open subset $U$ of $\Omega$ and a
continuous map $\varphi$ from $U$ to $\Omega$ such that

i) $\varphi(x)\in E(x)$ for $x\in U$ ,

ii) $\varphi(x)\neq x$ for $x\in U$ .

Then there exists a weak projection $Q$ for $S$ such that $Q\neq I$ and $||Q||=1$ .

Proof. Let $\varphi$ be a continuous map satisfying i) and ii). We shall prove the existence of a
weak projection $Q$ for $S$ with $Q\neq I$ and $\Vert Q\Vert=1$ . Take a point $x_{0}$ in $U$ and a continuous
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function $\psi$ on $\Omega$ such that $0\leq\psi\leq 1$ on $\Omega$ ,

(1) $\psi=0$ on $\Omega\backslash U$ and $\psi(x_{0})=1$ .

We define an operator $Q$ on $C(\Omega)$ as

(2) $(Qg)(x)=\psi(x)g(\varphi(x))+(1-\psi(x))g(x)$ for $g\in C(\Omega),$ $ x\in\Omega$ .

Then it is not difficult to see that $Q$ is a bounded linear operator on $C(\Omega)$ with $||Q||=1$ .
Let $h\in S$ . Then by i), $h(\varphi(x))=h(x)$ for $x\in U$ . Hence by (2), $(Qh)(x)=h(x)$ for $x\in U$ .
For $x\in\Omega\backslash U$ , by (1) we have $\psi(x)=0$ , so that $(Qh)(x)=h(x)$ . Thus we get $Qh=h$ for
$h\in S$ .

Since $x_{0}\in U$ , by ii) we have $\varphi(x_{0})\neq x_{0}$ , so that there exists $g_{0}\in C(\Omega)$ such that
$g_{0}(\varphi(x_{0}))\neq g_{0}(x_{0})$ . Hence by (1) and (2), $(Qg_{0})(x_{0})\neq g_{0}(x_{0})$ . Therefore $Q$ is a weak
projection for $S$ with $Q\neq I$ and $||Q||=1$ .

We conjecture that the converse of Proposition is affirmative.

Conjecture. Let $S$ be a unital $C^{*}$-subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov
decomposition for $S$ . If there exists a weak projection $Q$ for $S$ such that $Q\neq I$ and
$||Q||=1$ , then there exist a non-empty open subset $U$ of $\Omega$ and a continuous map $\varphi$ from
$U$ to $\Omega$ such that

i) $\varphi(x)\in E(x)$ for $x\in U$ ,

ii) $\varphi(x)\neq x$ for $x\in U$ .

In the next section, we study this conjecture under some additional conditions.

2. Weak projections

In this section, we shall prove the following theorem.

Theorem 1. Let $S$ be a unital $C^{*}$ -subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x\in\Omega}$ be the Shilov
decomposition for S. Suppose that $E(x)$ is a countable set for every $ x\in\Omega$ . If there exists
a weak projection $Q$ for $S$ such that $Q\neq I$ and $||Q\Vert=1$ , then there exist a non-empty
open subset $U$ of $\Omega$ and a continuous map $\varphi$ from $U$ to $\Omega$ such that

i) $\varphi(x)\in E(x)$ for $x\in U$ ,

ii) $\varphi(x)\neq x$ for $x\in U$ .

Let $\Omega$ and $\Gamma$ be compact Hausdorff spaces, and let $\mu_{x}$ be a positive Borel measure on $\Omega$

for every $ x\in\Gamma$ . Further we assume that
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$(a)$ $sup\{\mu_{x}(\Omega);x\in\Gamma\}<\infty$ ,

$\mu_{x}$ has an atom for every $ x\in\Gamma$ , that is,

$(b)$ for every $x\in\Gamma,$ $\mu_{x}(\{\zeta\})>0$ for some $\zeta\in\Omega$ ,

and
$(c)$ $\int_{\Omega}fd\mu_{x}$ is continuous in $ x\in\Gamma$ for every $f\in C(\Omega)$ .

Lemma 1. Let $V$ be an open subset of $\Omega$ . Suppose that $0<r_{1}<\mu_{x_{1}}(V)\leq\mu_{x_{1}}(\overline{V})<r_{2}$

for a point $ x_{1}\in\Gamma$ . Then there exists an open neighborhood $U$ of $x_{1}$ such that $ r_{1}<\mu_{x}(V)\leq$

$\mu_{x}(\overline{V})<r_{2}$ for every $x\in U$ .

Proof. By the regularity of the measure $\mu_{x_{1}}$ , there exist a compact subset $K$ of $V$ and
an open subset $V_{1}$ such that $K\subset V\subset\overline{V}\subset V_{1}$ and $r_{1}<\mu_{x_{1}}(K)\leq\mu_{x_{1}}(V_{1})<r_{2}$ . Then
there exist continuous functions $f_{1}\in C(\Omega),$ $i=1,2$ , with $0\leq f_{1}\leq 1$ such that

$f_{1}=1$ on $K$ and $f_{1}=0$ on $\Omega\backslash V$,

$f_{2}=1$ on $\overline{V}$ and $f_{2}=0$ on $\Omega\backslash V_{1}$ .

By our assumption $(c),$ $\int_{\Omega}f_{l}d\mu_{x}\rightarrow\int_{\Omega}f_{1}d\mu_{x_{1}}$ as $x\rightarrow x_{1}$ . We note that

$r_{1}<\mu_{x_{1}}(K)\leq\int_{\Omega}f_{1}d\mu_{x_{1}}\leq\int_{\Omega}f_{2}d\mu_{x_{1}}\leq\mu_{x_{1}}(V_{1})<r_{2}$ .

Since
$\int_{\Omega}f_{1}d\mu_{x}\leq\mu_{x}(V)\leq\mu_{x}(\overline{V})\leq\int_{\Omega}f_{2}d\mu_{x}$ ,

we have our assertion.

For a closed subset $E$ of $\Omega$ , put

(1) $\lambda_{E}(x)=\sup\{\mu_{x}(\{\zeta\});\zeta\in E\},$ $ x\in\Gamma$ .

By condition (a), sup in (1) is attained, and

(2) $\lambda_{E}(x)\leq\mu_{x}(E)$ , $ x\in\Gamma$ .

For an open subset $U$ of $\Gamma$ , put

(3) $\alpha(E, U)=\sup\{\lambda_{E}(x);x\in U\}$ and $\beta(E, U)=\inf\{\lambda_{E}(x);x\in U\}$ .

Then

(4) $\beta(E, U)\leq\lambda_{E}(x)\leq\alpha(E, U)$ , $x\in U$.

Lemma 2. Let $E$ be a closed subset of $\Omega$ and let $U$ be an open subset of $\Gamma$ such that
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(i) $\mu_{x}(E)<4\alpha(E, U)/3$ for every $x\in U$ ,

(ii) $0<2a(E, U)/3\leq\beta(E, U)$ .

Then there exists a continuous map $\varphi$ from $U$ to $E$ such that $\mu_{x}(\{\varphi(x)\})>0$ for every
$x\in U$ .

Proof. By (1), for each $x\in U$ there exists ( $(x)$ such that

(5) $\zeta(x)\in E$ and $\lambda_{E}(x)=\mu_{x}(\{\zeta(x)\})$ .

Then by (ii) and (4),

(6) $0<2a(E, U)/3\leq\lambda_{E}(x)=\mu_{x}(\{((x)\}),$ $x\in U$.

Here we note that for each $x\in U,$ $\zeta\in E$ satisfying $2\alpha(E, U)/3\leq\mu_{x}(\{\zeta\})$ is unique. For,
suppose that $x\in U$ , (, $\zeta^{\prime}\in E,$ ( $\neq\zeta^{\prime},$ $2\alpha(E, U)/3\leq\mu_{x}(\{\zeta\})$ , and $2\alpha(E, U)/3\leq\mu_{x}(\{\zeta^{\prime}\})$ .
Then

$4\alpha(E, U)/3\leq\mu_{x}(\{\zeta\})+\mu_{x}(\{\zeta^{\prime}\})\leq\mu_{x}(E)$ .
This contradicts (i). Hence $\zeta(x)$ satisfying (5) is unique for each $x\in U$ .

Now we shall prove that $\zeta(x)$ is continuous in $x\in U$ . Then the map $\varphi(x)=\zeta(x),$ $x\in U$ ,
satisfies our assertion. To prove this, suppose that $\zeta(x)$ is not continuous at $x_{0}\in U$ . Then
there exist two nets $\{x_{i}\}_{i}$ and $\{y_{i}\}_{i}$ in $U$ which converge to $x_{0}$ ,

(7) $\zeta(x_{i})\rightarrow c_{1},$ $\zeta(y_{i})\rightarrow c_{2}$ , and $c_{1}\neq c_{2}$ .

By (5), $c_{1}$ and $c_{2}$ are contained in $E$ .
Take $e>0$ arbitrary. Then there exists a function $h\in C(\Omega)$ such that $0\leq h\leq 1$ on $\Omega$ ,

(8) $h(c_{1})=1$ ,

and

(9) $\int_{\Omega}hd\mu_{x_{0}}<\mu_{x_{0}}(\{c_{1}\})+e$ .

Now we have

$\int_{\Omega}hd\mu_{x_{0}}$ $=$ $\lim i\rightarrow\infty\inf\int_{\Omega}hd\mu_{x}$. by $(c)$

$\geq$
$\lim\inf\mu_{x;}(\{\zeta(x_{i})\})h(\zeta(x_{i}))i\rightarrow\infty$

$=$ $\lim\inf\mu_{x_{i}}(\{((x;)\})i\rightarrow\infty$ by (7) and(8)
$\geq$ $2a(E, U)/3$ by (6).

Hence by (9),
$2\alpha(E, U)/3<\mu_{xo}(\{c_{1}\})+e$ for every $\epsilon>0$ .
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Thus we get
$0<2a(E, U)/3\leq\mu_{x_{0}}(\{c_{1}\})$ .

In the same way, we have
$0<2a(E, U)/3\leq\mu_{x_{0}}(\{c_{2}\})$ .

By the first paragraph of the proof, we have $c_{1}=c_{2}$ . This contradicts (7).

Lemma 3. For a closed subset $E$ of $\Omega,$ $\lambda_{E}(x)$ is upper semicontinuous in $ x\in\Gamma$ .

Proof. Let $\{x_{i}\}_{i}$ be a net in $\Gamma$ such that $ x_{i}\rightarrow x_{0}\in\Gamma$ as $ i\rightarrow\infty$ . It is sufficient to prove
that

$\lim_{i\rightarrow}\sup_{\infty}\lambda_{E}(x_{i})\leq\lambda_{E}(x_{0})$ .

To prove this, suppose that

(10) $\lim_{i\rightarrow\infty}\lambda_{E}(x_{i})=a$ .

We shall prove that $a\leq\lambda_{E}(x_{0})$ . By (1), there exists $\zeta_{i}\in E$ such that

(11) $\mu_{x_{i}}(\{(:\})=\lambda_{E}(x_{i})$ .

We may assume moreover that $(_{i}\rightarrow\zeta_{0}\in E$ . Take a function $h$ in $C(\Omega)$ such that

(12) $0\leq h\leq 1$ and $h(\zeta_{0})=1$ .

Then
$h(\zeta_{i})\mu_{x;}(\{(i\})\leq\int_{\Omega}hd\mu_{x_{i}}\rightarrow\int_{\Omega}hd\mu_{xo}$ as $ i\rightarrow\infty$ .

Since $h((;)\rightarrow h(\zeta_{0})=1$ , by (10) and (11) we have $a\leq\int_{\Omega}hd\mu_{x_{0}}$ . Since this holds for every
$h\in C(\Omega)$ satisfying (12), we have $a\leq\mu_{x_{0}}(\{\zeta_{0}\})\leq\lambda_{E}(x_{0})$ .

For a subset $E$ of $\Gamma$ , we denote by int $E$ the interior of $E$ . To prove Theorem 1, we use
the following theorem.

Theorem 2. Let $\Omega$ and $\Gamma$ be compact Hausdorff spaces. Suppose that $\mu_{x},$
$ x\in\Gamma$ , is a

positive Borel measure on $\Omega$ such that $sup\{\mu_{x}(\Omega);x\in\Gamma\}<\infty,$ $\mu_{x}$ has an atom for every
$ x\in\Gamma$ , and $\int_{\Omega}fd\mu_{x}$ is continuous in $ x\in\Gamma$ for every $f\in C(\Omega)$ . Then there exists a
continuous map $\varphi$ from some non-empty open subset $U$ of $\Gamma$ to $\Omega$ such that $\mu_{x}(\{\varphi(x)\})>0$

for every $x\in U$ .

Proof. By our assumption and (1), $\lambda_{\Omega}(x)>0$ for every $ x\in\Gamma$ . Then by the Baire category
theorem (see [2, $pp.196- 197]$ ),$there$ exists $c>0$ such that $\overline{\{x\in\Gamma;3c/4\leq\lambda_{\Omega}(x)<c\}}$ has
an interior point. Also by Lemma 3, $\{x\in\Gamma;3c/4\leq\lambda_{\Omega}(x)\}$ is a closed subset of $\Gamma$ and
$\{x\in\Gamma;\lambda_{\Omega}(x)<c\}$ is an open subset of $\Gamma$ . Therefore $\{x\in\Gamma;3c/4\leq\lambda_{\Omega}(x)<c\}$ has
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also an interior point and so contains a non-empty open subset $U_{1}$ of $\Gamma$ . We may assume
moreover that

(13) $\overline{U_{1}}\subset\{x\in\Omega;3c/4\leq\lambda_{\Omega}(x)<c\}$ .

For an open subset $V$ of $\Omega$ , put

(14) $W_{V}=\{x\in\overline{U_{1}};3c/4\leq\lambda_{\overline{V}}(x)\}$ .

Let $\mathcal{U}(\zeta)$ be the family of open neighborhoods of $\zeta\in\Omega$ . We shall prove the existence of a
point $\zeta_{0}$ in $\Omega$ such that

(15) int $ W_{V}\neq\emptyset$ for every $V\in \mathcal{U}(\zeta_{0})$ ,

where int $W_{V}$ denotes the interior of $W_{V}$ . To prove this, suppose not. Then for each (in $\Omega$ ,
there exists $V_{(}\in \mathcal{U}(\zeta)$ such that int $ W_{V_{\zeta}}=\emptyset$ . Since $\Omega$ is compact, there exist $\zeta_{1},$

$\ldots,$
$(_{n}\in\Omega$

such that $\Omega=V_{\zeta_{1}}\cup\ldots\cup V_{\zeta_{n}}$ . Then by (1),

$\lambda_{\Omega}(x)=\max\{\lambda_{\overline{V}_{\zeta_{f}}}(x);1\leq j\leq n\}$ for $x\in U_{1}$ ,

so that by (13) and (14) we have
$\overline{U_{1}}=\bigcup_{j=1}^{n}W_{V_{\zeta_{j}}}$ .

By Lemma 3, $W_{V_{\zeta_{j}}}$ is a closed subset of $\overline{U_{1}}$ . Hence for some $j$ , int $ W_{V_{\zeta_{j}}}\neq\emptyset$ . This is a
desired contradiction.

For $V_{1},$ $V_{2}\in \mathcal{U}(\zeta_{0})$ such that $V_{1}\subset V_{2}$ , we have $\lambda_{\mathcal{T}_{1}}(x)\leq\lambda_{\overline{V_{2}}}(x)$ , so that by (14) $W_{V_{1}}\subset W_{V_{2}}$

and int $W_{V_{1}}\subset intW_{V_{2}}$ . Hence by (15), there exists a point $x_{0}\in\overline{U}_{1}$ such that

(16) $x_{0}\in\overline{intW_{V}}\subset W_{V}\subset\overline{U_{1}}$ for every $V\in \mathcal{U}(\zeta_{0})$ .

Then by (13),

(17) $\mu_{x_{0}}(\{(0\})\leq\lambda_{\overline{V}}(x_{0})\leq\lambda_{\Omega}(x_{0})<c$

for $V\in \mathcal{U}(\zeta_{0})$ . Since $\mu_{x_{0}}(\{\zeta_{0}\})=\inf\{\mu_{x_{0}}(\overline{V});V\in \mathcal{U}(\zeta_{0})\}$ , by (17) there exists $V_{0}\in \mathcal{U}((0)$

such that $\mu_{x_{0}}(\overline{V_{0}})<c$ . Then by Lemma 1, there exists an open subset $U_{2}$ such that
$ x_{0}\in U_{2}\subset\Gamma$ such that

(18) $\sup_{x\in U_{2}}\mu_{x}(\overline{V_{0}})<c$ .

By (16), $x_{0}\in\overline{intW_{V_{0}}}$ , so that there exists an open subset $U$ of $\Gamma$ such that

$U\subset U_{2}\cap intW_{V_{0}}$ .
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Then by (2), (3), (4), (14), and (18),

$3c/4\leq\beta(\overline{V_{0}}, U)\leq a(\overline{V_{0}}, U)\leq a(\overline{V_{0}}, U_{2})\leq\sup_{x\in U_{2}}\mu_{x}(\overline{V_{0}})<c$ .

Hence we have
$0<2a(\overline{V_{0}}, U)/3\leq 3a(\overline{V_{0}}, U)/4<3c/4\leq\beta(\overline{V_{0}}, U)$

and
$\mu_{x}(\overline{V_{0}})<c\leq 4\alpha(\overline{V_{0}}, U)/3$ for every $x\in U$.

Now we can apply Lemma 2. Then there is a continuous map $\varphi$ from $U$ to $\Omega$ such that
$\mu_{x}(\{\varphi(x)\})>0$ for every $x\in U$ .

As an application of Theorem 2, we prove Theorem 1.

Proof of Theorem 1. Assume the existence of a weak projection $Q$ for $S$ such that $Q\neq I$

and $\Vert Q||=1$ . For each $ x\in\Omega$ , by the Riesz representation theorem there exists a bounded
Borel measure $\nu_{x}$ on $\Omega$ such that

(19) $(Qg)(x)=\int_{\Omega}gd\nu_{x}$ for every $g\in C(\Omega)$ .

Since $Q1=1$ and $\Vert Q\Vert=1,$ $\nu_{x}$ is a probability measure. Since $Q$ is a weak projection for
$S,$ $Qh=h$ for every $h\in S$ . Since $S$ is a $C^{*}$ -subalgebra, by (19) we have

(20) supp $\nu_{x}\subset E(x)$ ,

where supp $\nu_{x}$ is a closed support set of $\nu_{x}$ . Hence by our assumption, $\nu_{x}$ is a discrete
measure for every $x$ . Since $Q\neq I$ , there exists $g\in C(\Omega)$ such that $\int_{\Omega}gdv_{x_{0}}\neq g(x_{0})$

for some $ x_{0}\in\Omega$ . Then there exists $\zeta_{0}$ in $\Omega$ such that $x_{0}\neq(0$ and $\nu_{x_{0}}(\{\zeta_{0}\})>0$ . Take
$V_{1},$ $V_{2}\in \mathcal{U}(\zeta_{0})$ such that $\overline{V_{1}}\subset V_{2}$ and $x_{0}\not\in\overline{V_{2}}$ . Since $0<\nu_{x_{0}}(\{\zeta_{0}\})\leq\nu_{xo}(V_{1})$ , by Lemma
1 there exists an open subset $W$ of $\Omega$ such that $x_{0}\in W,$ $\overline{V_{2}}\cap\overline{W}=\emptyset$ , and $\nu_{x}(V_{1})>0$ for
every $x\in\overline{W}$ . We note that

(21) $(x, x)\not\in W\times V_{2}$ for every $ x\in\Omega$ .

Take a function $g_{0}\in C(\Omega)$ such that $0\leq g_{0}\leq 1$ ,

(22) $g_{0}=1$ on $\overline{V_{1}}$ and $g_{0}=0$ on $\Omega\backslash V_{2}$ .

Put

(23) $d\mu_{x}=g_{0}d\nu_{x}$ , $x\in\overline{W}$ .

Then $\mu_{x}$ and $\Gamma=\overline{W}$ satisfy assumptions of Theorem 2. Hence there is a continuous map
$\varphi$ from some non-empty open subset $U$ of $W$ to $\Omega$ such that $\mu_{x}(\{\varphi(x)\})>0$ for every
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$x\in U$ . By (22) and (23), $\varphi(x)\in V_{2}$ and $v_{x}(\{\varphi(x)\})>0$ for every $x\in U$ . Then by (20),
$\varphi(x)\in E(x)$ for every $x\in U$ . Since U C $W,$ $(x, \varphi(x))\in U\times V_{2}\subset W\times V_{2}$ for every $x\in U$ .
Hence by (21), we obtain $\varphi(x)\neq x$ for $x\in U$ . This completes the proof.

Acknowledgment. The authors would like to express their heartfelt thanks to the
referee for $his/her$ comments on making the paper more readable.
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