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A note on the Grothendieck-Cousin complex on the flag variety

in positive characteristic

KANEDA Masaharu

The Grothendieck-Cousin complex of a dominant line bundle on the
flag variety with respect to the Schubert filtration is made up of
the dual Verma modules in characteristic 0, the dual of a Bernstein-
Gélfand-Gelfand complex, as observed by G. Kempf [8]. J.L. Brylinski
and M. Kashiwara [1], and M. Kashiwara [7), but that does not carry
ovér to positive characteristic. The failure seems not as accessible
as the author feels it should be. We intend to remedy the situation
by reworking Kashiwara (7], § 3.

The difference stems from the one in SLz. Thus let K be an
algebraically closed field, G the K-group SLZ' B a Borel subgroup of
G, T a maximal torus of B, B+ the Borel subgroup of G opposite to B,
o the root of B+. W = <3a> the Weyl group of G, z, the point B of the
flag variety X = G/B, £(x) the invertible @X—module on X induced by a
l1-dimensional B-module x € Hom(B, GLI)' and Dist(G) the algebra of
distributions of G. In characteristic 0, the Dist(G)-modules

H1 (X, £(x)) and Ho+ (X, ﬂ(sa'k)) are isomorphic iff <X, o> =

+

B S0 Bz,

-1, where - is the dot multiplication and av is the coroot of . On

the other hand, we will find in § 2 that in positive characteristic
\'%

they are isomorphic iff <x, o« > = -1. General results are summarized

in (3.4).

—229 —



In what follows K will denote an algebraically closed field of
positive characteristic p, G a simply connected semisimple algebraic
group over K, B a Borel subgroup of G, and X the flag variety G/B.

The author is grateful to the referee for a helpful comment. The

work was supported in part by a Grant in Aid for Scientific Research,

Ministry of Education.

§ 1

In this section we recall some generalities on the Grothendieck-
Cousin complex of a G-linearized sheaf on X from Kempf [{9] and on the

representation theory of algebraic groups from Jantzen [6].

(1.1) We fix an action 0 : X X G — X of G on X given by

(1) (¢, g) —— g_la:-

For a locally free Ox—module & let q : V(§) — X be the vectorial
fibration of § on X [3], (9.4.9). A G-linearization of & is a
G-action Op ¢ V() x G — V(&) on V(&) making the fibration q
G-equivariant such that 06(—' g) induces a K-linear isomorphism from
the geometric fibre over £ onto the geometric fibre over g_lm for

each g € G(K) and £ € X(K). It induces an Ox—homomorphism

(2) § — a.px‘&
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where Py : X X G — X is the natural map. In particular, the

fibration V(OX) —— X is isomorphic to

(3) X x A —— X via  (z. E) —
and admits a unique G-linearization given by
(4) X x Al X G — X x Al via (z, £, g) +— (g_lrc. £).

Let H# be a closed subgroup of G, F the Frobenius mo}phism on H,
and Hr = ker Fr, r € N, a closed infinitesimal normal subgroup scheme
of H called the r-th Frobenius kernel of H. Let Dist{(H) be the

algebra of distributions on H (6], (1.7.7). Then

(5) Dist(H) = l;m Dist(Hr)-

The Cr-linearization of & obtained from its G-linearization by

restriction induces like (2) a system of compatible Ox-homomorphisms

which defines a structure of Dist(G)-module on §. In particular, 0

X

is a Dist(G)-module and the ®,-module structure on § is compatible

X

with the Dist(G)-actions. We will call such an @,-module an 0,-

X X
Dist(G)-module.
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(1.2) Let Z,. Z, be closed subsets of X with Z, 2 Z,. Define a

2
functor rZ /7 (X, _) from the category of abelian sheaves on X into
1 2

the category of abelian groups by

(1) F —— r, X, #)/r, (X. #F),

Z, Z,

where rZ (X, F) is the set of global sections of & with support
i

contained in Z,. We denote by HE (X, F) the i-th cohomology group
i 21/22

of the complex rZ (X, 8 (%)) for the Godement resolution
1/22

F — g (F) of Z.

In the notation of (1.1) each cohomology group Hé /7 (X. &) of
: 1 2

the G-linearized ox-module § inherits the structure of (X, Gx)-

Dist(G)-module. If Z1 and 22 are both JY-invariant, then Hé /7 (X, &)
1 2

comes from (1.1.2) equipped with a structure of H-module, which in

turn makes H§ /7 (X, &) into a Dist(H)-module in a natural way. That,
172

however, coincides with the Dist(}4)-module structure obtained from

the Dist(G)-module structure on HE (X, ) by restriction. We will
21/22

call such a module a Dist((G)-H-module.

A filtration (Z) = (Z0 = X o Z1 o) 22 D> ...) of X by closed
subsets gives rise to a complex of [ (X, GX)-Dist(C)—modules
(2) WS o (x. &) — H! (X, ) — ...
ZO/Zl 21/22 i

called the global Grothendieck-Cousin complex of the G-linearized
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ox—module & with respect to the filtration (Z). In case the
filtration is H-invariant the complex (2) is also H-linear.
All the above can be sheafified to yield a complex of

H-linearized GX-Dist(C)-modules

0 1
(3) ﬂzo/zl(6) — ﬂzl/zz(é) —_— ..,

called the local Grothendieck-Cousin complex of the G-linearized OX—
module & with respect to the H-invariant filtration (Z). We have

v

. i . . )
(4) le/zz(g) is quasicoherent i € N,

and in an open subset V of X

i o i o _
(5) Tr(, %21/22(6)) ~ ”zan/zznv(V’ §) as (v, OX) Dist(G)-modules.

{1.3) Let X(B) = Hom(B, CLI)' It forms an abelian group under
the multiplication which we will write additively. For X € X(B) we
will abuse the notation and denote by the same letter a l-dimensional

B-module affordiﬁg 2. Define an invertible sheaf £(x) on X by

rv, £x)) =

(1) v

U (F e Mor(nYvaa) | Flgh)=atb Dftg) Yg e G. b € Bl YV e Top X,

where 5t : G — X is the natural map. Let xo be the point B in X and

B

let 0 x°x be the quotient of G X A by the B-action
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(2) (9. ) —— (gb. b '£). b e B.
Then the fibration V(£(X)) — X is isomorphic to
(3) CxB(-,\) —_— X via (g, &) — gZ,.

and the invertible sheaf ¢(x) admits a unique G-linearization given

by the following commutative diagram

(¢ xB-10) x ¢ —— ¢ xBi-0
(lg”, €1, g) —— [g g~ . E]
(4) . I I
rd ’.l -
(g Zyo g) —m— g g9z,
X x G > X,

where [g. £] is the B-orbit through (g, &).

Let 7 be a maximal torus of B, R the root system of G relative
to T, R+ the positive syétem of R such that the roots of B are -R+. A
the simple system of R'. We denote by Ua the root subgroup of (§

associated with the root . Put X(B) =

Y v

(x € X(B) | <a, ¢'> 20 @ € Al., where " is the coroot of «. Let

W = N.(T)/T the Weyl group of G, Sy € W the reflection associated with

G

¢ € R, and let { : W — N the length function with respect to the
simple reflexions g8 , a0 € A.- Put p = 1 p; - Besides the usual
« 2 o€eR’

action of W on X(B) we define the dot action by

(5) wex = wlx + p) - p.
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Let B+ be the Borel subgroup of G opposite to B and U+ its

unipotent radical. From the Bruhat decomposition X = U B*wxo we get a
weW

filtration of X by closed subsets

(6) Z, = v Bz, i €N,
' weW
L(w)=1

called the Schubert filtration of X. For each A € X(B) the filtration
yields a global (resp. local) Grothendieck~-Cousin complex of £(x)

consisting of [(X., O )-Dist(C)~B+- (resp. B+—Iinearized OX—Dist(C)-)

X

modules. In particular,

H§ 7 X £Q)) =
(7) i i+1 E

o H*, (X, £2(x))  as I'(X, ox)—ois:(c)-g*-moduxes.
weWw B we,
Llw)=1

We have for each 2w € W and i € N \ {(w)

(8) HE, (X, £(x)) = 0
B ux,

and

(9) 2t (2 = 0.
B ux,

The local (resp. global) Grothendieck-Cousin complex of £(x) with
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respect to the Schubert filtration gives a resolution of £(x) (resp.
F(X. £(x)) in case A + p € X(B)").
+ + + +
= . = b i 1
Let Pu B vy BSaB Pa B uB SaB e the minimal parabolic
subgroups of § associated with @ € A, and U; the unipotenf radical of
P;. Then there is a short exact sequence of [(X, OX)-Dist(C)-U;-

modules

(10) + + 1
F(s,B zy \ B's x5, £(1)) — H, (X, £(x)) — 0.

B 840

(1.4) Let J be a closed connected subgroup of G and £ a J-module.

For a K-subspace E~ of E
(1) E” forms a J-submodule of E iff it is a Dist(J)-submodule.

Also for another J-module E~~

(2) HomJ(E. ETT) = HomDist(J)(E' E"7).

Now let M be a Dist(G)-T-module. It admits a decomposition into

the weight subspaces:

(3) M = a ”1’
XEX(B)

v

where ”A = (meM | tm = 2(t)m t € T). We also have
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(4) My = (me M | um = ulm Vi € Dist(T) ).

As G is simply connected semisimple, Dist((G) has a basis that define
Kostant’s Z-form of the universal enveloping algebra of the semisimple
complex Lie algebra corresponding to G (cf.[6]), (0.1.12)). Using the
commutation formula among the basis elements (cf.[5], (26.3.D)) one

checks

(5) vum = vix+n)um v,\. n € X(B), m € ”x' u € Dist(G)n. v € Dist(T).,
~which implies um € Ml*n by (4). Hence we see

1

(6) tut 'm = (Ad(t)wm ¥

m € M, u € Dist(G), ¢t €T.
Assume that

(7) dim H < = Vi e X(B).

We will deal_only with those Dist(G)-T-modules in this note. Put

(8) DM = u Hom (M ., K)-
XEX(B) KA

Using (6) we see that DM inherits the structure of Dist(G)-T-module in

a natural way (cf.[6], (1.7.11.8)).

(1.5) For each x € X(B) put
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(1) Z_(x) = Dist(C) 8y, ., (p) A

acting both on Dist(G) and Dist(B) under the adjoint action and on 2

A

|
With Dist(G) hitting from the left by multiplication and with B

as given, ZQ(A) carries a structure of Dist(G)-B-module. [t is
Haboush’s generalized Verma module of lowest weight A, lowest with

| respect to the partial order defined on X(B) by

(2) v 21 iff v-ne€e I N
oER

Let Z(X(B)] be the group algebra of X(B) over Z with natural

basis e(n), n € X(B). For a T-module M we put

(3) ch M = ¥ dim M_ e(n)
nex(s) n

and call it the formal character of M.

We have (cf.[9], Lemma 12.8) for each x € X(B) and w € W

e(w-a)

n

(4) ch #t ) (x, 2 - ch DZ_(-u-2).

B ux m (l-e(-a))
0 aeR+

One suspects that

(5) B (X, 2()) = DZ_(-w-a)  as Dist(G)-T-modules.
B uz,

It is known to -hold in characteristic 0 if A + p € X)) 181, 11,
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[7). Our aim is to study the question in positive characteristic p.

(1.6) Before closing the section let us verify the following
lemma used in the proof of [7], Lemma 3.6.6. Let o € A, Xd = C/Pa'

n : X — X the natural map, and g ihe oint in ' .
(04 X P J:d P P(X Xd

Lemma. Let w € W with {(wsa) < ¢{(w). Then for each { € N we have

the following isomorphisms of Dist(C)—B+-modules:
' 0

() R, K. m T, (e ~ HE, (X, £(2)).
B uz, wsaB z, ‘ B ws
Gid HE,  (x.omot L (e = HED e g
B W, wsaB S0 | B ux,

Proof. By (1.4.2) it is enough to establish the isomorphisms as

Dist (G)-modules.

(i) We have by [2], Proposition 5.5 a sectral sequence

(2(x))) = yt'd x. 2%, (g,

1 + .
(B wma) usaB z,

+

(1wt X R 20
usaB z,

o
B wI,, T

Let V be an affine open subset of X, Then another spectral sequence

of [2]), Proposition 1.3

(2) Htoety, wd (2(x))) = yt*d = ty. 2
@ B . Bz . anly ©
Usa :r:o USa Il:o o

degenerates by (1.3.9) into isomorphisms
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W tve 20 ooy «w? _1
(3) wsaB z, wsaB z, N na "4

R

-1
(na V. £(x))

~ + -1 - LI .
~ H (usaB z, N T V., £(x)) by excision as usaB £, is open in X,

which vanishes for § > 0 by Serre’s vanishing theorem as
ws Bz, N n&‘v is affine (3], (5.3.10). Hence
(4) RIn_ %° (g(x)) =0 Yiso

o +
usaB Zy

and the spectral sequence (1) degenerates into an isomorphism

(s) wt,  x.om #° . eoon xwt . o2 L e,
B wzx « % ws Bz n. (B uwuz.) ws B z
o o 0 o v « 0
Further, the spectral sequence of [9], Lemma 8.5
(6) K, . x.#? () = gt AN b TP
T (B uxa) wsaB z, msaB Ty N, (B Qwa)
degenerates by (1.3.9) again into an isomorphism
(7wt o 2%, o)) s Ht L. (X200
(B wx ) ws B z ws Bz, nn_ (B uc))
T o (4 0 [ 0 o o

+ -1 + +
" But = . , . 2. ,
u usaB Ty N M (B uxa) B ws T, (cf.[7)], Lemma 3.2.1), hence
putting together (5) and (7) yields (i).

(ii) The same argument as in (i) reduces us to checking
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8) #ln v, x! (£x))) = 0 Vattine open Vv in X_ and j > 0

+
W .
8B s4%o

and

+ -1 + +
9 ; ; - v
(9) wsaB Sy Lo n T (B wxa) B WL,

The identity (9) is proved in [7], Lemma 3.2.1. To see (8), argue as

in (3) to get an isomorphism

+

msaB samo

Hj(n‘;lv. 2! (2(2))) =~

(10)

j+1 +
H -1 (wB Ty N 7

. ly, 2.
usaB S50 N T 1% '

But uB+z0 N n&lv is affine and usaB+s . N n&lv is defined by a-

o0

single polynomial in wB'z, N nalv, hence (10) vanishes for j > 0 by

{9], Lemma 11.8, as desired.

§ 2
In this section we assume G = SL2 and A = l&].
(2.1) We begin by describing the,Dist(Ua)—module structure on

the invertible sheaf £(x), x € X(B). Recall the G-action o on the

variety X. If we identify SaB+$o x U, with A% via
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W = (Y6 ) ()

and write K[A%2] = K(z.y]. then

2 _ -1 + +
(2) A1+zy =0 . (s,B zy) 2 8,Bxy, x U,
s,B xy X U,

where
Uozr

is the r-th Frobenius kernel of Ua.

The Ua—linearization of £(x) restricts to a commutative diagram

A2 X (-2) =~ (saB+B XB(‘A)) X Ua —_— G XB(‘A)
(3) i
, |
A » X

and further to

2

B ~ 1

+
Al+zy x (=2) —— s B B x"(-a) A A x (-x)
(a.b.c) — [(b l+ab). c]k—# ( a . (l+ab) >’ c)
‘ -1 -a 1+ab
o | 1
(a.b) » a(l*ab)_l
2 1
Al+$y > A

S | G I

Co2) 7 acrtan ) e (50 n)
-1 -a -1 —a(i+ap) V) b(1+ap) 1 0 1+ab

By (2) one can read off from (4) the Ua r-linearization of

£(x) . to find the effect on the global sections to be

saB z,
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. r
Klz] = (8 B zy.£(x)) — r(sanmo.z(A))@K Ktu, ) ~ Klz.y1/(zP )

(5)
vc—
via b — zn(l*zy)<l'a > n, n € N.
(2.2) Lemma. Let 2 € X(B).
(i) Ho+ (X, £())) = DZw(—A) as Dist(G)-T-modules.
B z,
(ii) For v € X(B) there is a Dist{(G)-isomorphism between
H, (X, 2£00) and B0, (X, £(0)) iff s _x = x = v
B %0 B Z
Proof. (i) By (1.4.2) we have only to show that there is a
Dist(C)-isomorphism. Put # = H (X, £(x)). By (1.5.4) we know
B z,
(1) ch M = ch DZ_(-2).
Also
HomDist(C)(”' DZ_(-1)) = HomDist(G)(zw(-A)' DM)
(2) o HomDist(B)(-l' DM) by the Frobenius reciprocity
~ K by (1.4.6) as -x is the lowest weight of DM.

Let ¢ be a nonzero Dist{(G)-homomorphism from M into DZm(—A). By (1)

it suffices to show that ¢ is injective. But SocDist(G)” is a

+ +
U+—submodule of M by (1.4.1) and HU = Mor(U+. A)U = 2, hence
SocDist(C)” is simple of highest weight x. As ¢ preserves 2, the

assertion follows.
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0

+

1

+

(ii) Put Mg = H , (X. £(v)) and #, = H

B z, B s x

(X, £(x)).

o0

is a Dist(G)-isomorphism between ”0 and Ml' then

T-isomorphism by (1.4.2), hence

(3) V = 8 X

by the character consideration. Also from (i) we

(4) M = 8 _-X-.

that is a

must have

Conversely, if (4) holds, then arguing as in (i) will yield a

If

there

Dist{(G)-isomorphism from Ml onto DZQ(-Sa°A) and the assertion will

follow.

Hence we are reduced to showing

u _ . . Ly = . vy, -
(5) ”1 8, A iff CHRPS X, .., <A, o > 1.
We have

+

HIU ~ Hom (K, Ml) = Hom , (K ”1) by (1.4.2)
U Dist(U )
(6)
. + +
~ AnnMI(Dlst (U )),

where the last term is (m € M, | am = 0 v

Dist (U') = (u € Dist(U') | u(1) = 0). Further,
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write Ml > K[w.x_X]/K[x] in the notation of (2.1). Put N =

Ann - (Dist ' (U_)). Then (5) is equivalent to
Klz.z ~1/K(z) &

(7) N = Ke ' o+ Klz] Q£ G oYs = -1,

By (2.1.5) the Dist(Ua r)-module structure on K[z.x_l]/K[z] has the

effect of

v
- - <A o >+
(8) g™ g M(1egy) AR, mx2
Y <A.av>
If <x, x> £ -2, then g € N\ O.
v _ k v
If <A o, ¢ > > 0, take k € N large enough that m = p° - <x,0t > > 2.

Then x-m e N \ 0.

Finally, if <A, «'> = -1, then

n -i n-1 =n i-1 - i ,
(9) Sezt — T (I ( . )cixJ 19, ¢, € K.
i=1 t =0 i=1+5% 7 t
1f o cim_i € N\ 0, then
n i-1 i-i v
(10) 5 ( p )cix -0 je (1. n-11.

i=1+g

Hence if cn # 0, we must have 7 = 1, and (7) follows.

(2.3) Remark. If there is an isomorphism in (2.2)(ii), then that

is an isomorphism of Dist(G)-B -modules by (1.4.2).
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§ 3

In this section we follow Kashiwara [7] to study B, (X, £(x)).
B uz,

(3.1) Proposition. Let x € X(B).

(i) Ho+ (X, £2(x)) =~ DZ_(-x) as Dist(G)-T-modules.
B zy
(i1) For x € A and v € X(B) there is a Dist(G)-isomorphism
between H', (X, £(x)) and H°, (X. £(v)) iff x =g -a = v.
B S« %o B z, x.

Proof. (i) holds just as (2.2)(i) does.

(i1) Put # = H'_ (X, £(x)). As in the proof of (2.2)(ii), one
B s x,

has only to show

(1) MU = 8 -A iff A =S, A

+ + .
Recall the parabolic subgroup Pa = B U B+saB+ and its unipotent

radical u;. We have

+ 7
(2) HU = (M Xy & - Ann +(Dist+(Ua))-
MU“

As saB+x0 = U;sauaxo and as B+3a$0 = U;sazo. we are reduced via

(1.3.10) to the SL2 case, and the assertion follows from (2.2)(ii).
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(3.2) Remark. If there is an isomorphism in (3.1)(ii), then that

is an isomorphism of Dist(C)—B+-modules by (1.4.2).

(3.3) Recall the natural map na : X — X‘x = C/Pa and the point
Too = Py im Xo:

Proposition. Let x € X(B), o« € A, and w € W. If Se'X = A then

o' (2G0) a0 (£)) as 0y -Dist(G)-modules.
wB 0 wB z o
Proof. As ﬂl . (¢{(x)) is quasicoherent by (1.2.4) and as
wB So %o

+ + +
is affine open in containin g = ( , it is
wB T, P Xa g na(uB saxo) T wB xo)

enough by [3], (1.7.4) to show

+ 1
B zy. m K, (£(x))) =~
wB Sy Lo

(1)

F(vB+$ » T %O (£(x))) as r(uB+z , 0, })-Dist(G)-modules.

o o + o X
wB z, o
" Assume first w = 1 and put Mo = F(B*x | x° (¢(a)))., M, =
o Tt 1
Lo

r(B+$a} Ka.ﬂl (£(x))). Then

' B Sx%0

+

and
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1

My ~T(s B'zy. #,  (£(x))) by excision
B saxo
(3) ~H, (s B'zy. £() by (1.2.5)
B S, %o
~ B, (X, 200).
B 8,Zo
By (3.1) we know
(4) M1 o~ DZm(—A) ~ Mo as Dist(G)-T-modules,

hence HomDist(C)(”l' MO) ~ K. Let ¢ € HomDist(G)(Ml' Mo) \N 0. We must

show that ¢ is F(B+xa. OX )~linear, i.e., the following diagram

x
commutes:
r'z,. Oy ) O My © — T B'zy. 0,) @, M
id ® ¢ 1 l multiplication
(5) B’z ox ) Ok M, M,
Lo | o
re z,. Oy) &, M, . — M-

multiplication

Let @0 @y be the two maps in question induced by @- As ?, and ¢, are
both Dist(G)-linear, im(¢l-¢2) forms a B -submodule of My by (1.4.1),

hence

(6) (im(o, -0,
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But @, - @, is T-linear by (1.4.2) and

(7) (r(B’s,. 0, ) ®

o X Ml)JL = K ®K by

on which ¢, = @y hence im(¢1-¢2) = 0, as desired.

For arbitrary w € W one just twists the above argument by w.

(3.4) Corotllary. Let x € X{(B) and w € W.

(i) HY, (X, £(x)) = 0 unless i = L(w).
B we,
(i) ch #Y) (x. £G0) = ch DZ_(-u-a).
B wz,
(iii) 1-10+ (X, £2(x)) =~ DZ_(-x) as Dist(G)-T-modules.
B z,
(iv) For o € A and v € X(B) the following are equivalent:
(a) #', (X, £2)) ~ K%, (X, £(v))  as Dist(G)-modules.
B 8o Bz,
(b) #'. (X, £a)) =~ %, (X, £(v))  as Dist(G)-T-modules.
B Sx%o Bz,
(c) Hl+ (X, £(x)) = HO+ (X, 2(v)) as Dist(G)—B+—mo§ules.
B saxo‘ B z

d 3 = = v.
()sax A v

(v) Let 8, = (x € A | Sy'X = 2}. Then for any y e_<sa| o € 5>
{iy) (X, £2(y)) =~ Ho+ (X, £2(x)) as Dist(G)-B -modules.
8 yx, B x,

'

H

Proof. Only (v) may require an explanation. We have only to
establish an isomorphism as Dist{(G)-modules by (1.4.2). If L(y) = 0,

take sa with o € Al such that {(ysa) < ¢{y). Then
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#Y) (x. 2 o WO T om0 by (Le) (i)
B vZ, B ¥z, ysaB S, o
R TN om0 L (2G0) by (3.3)
B yxa ysaB z,
c(ysa) ‘
=~ H (X, £(x)) by (1.6)(i).
B YS,Zy

hence the assertion will follow by induction.

(3.5) Remarks. (i) The assertions (3.4)(i) and (ii) hold free of
characteristic, and appear in Kempf [9].

(ii) If Sy*X = X. X € X(B), for some ox € A, then

H (X, £2(x)) = 0

due to H.H. Andersen (cf.[6], (0.5.4)).
(iii) In ch 0, (3.4)(iii)., (iv), and (v) are replaced by the
statement: if x + p € X(B)', then for each weEW

H££U) (X, 20) ~ §° (X, 2(w-2)) as Dist(C)-B -modules.

+

B Wz, B z,
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