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for Vector-Valued Functions via Scalarization*
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Abstract. In this paper, we propose abstract concepts of saddle points of a vector-
valued function $f$ defined on a product $X\times Y$ of infinite-dimensional sets $X$ and $Y$ in
locally convex topological vector spaces. Three notions of the generalized saddle points are
considered, and a notions of semi-saddle points, which is also known as “Nash equilibrium
points“ for a two-person nonzero-sum game in game theory, is defined for a pair of scalarized
functions. Various necessary conditions, sufficient conditions and existence conditions are
explored for each type of the generalized saddle points. These conditions give a connection
between each type of the generalized saddle points and the corresponding type of the
semi-saddle points.

Key words. vector optimization, scalarization, two-person game, cone saddle
points, equilibrium points, convex-concave functions.

1. Introduction
Saddle point problems are important in the areas of optimization theory and game

theory. As for optimization theory, the main motivation for studying saddle points of
scalar-valued functions in the past has been their connection with characterizing solutions
to dual problems. Also, as for game theory, the main motivation in the past has been
the determination of two-person zero-sum games based on the minimax principle. That
is, saddle points of the payoff function for the game are optimal strategy pairs for players.
Unfortunately, no vector-valued saddle point problems have been formulated in any appli-
cation in those areas and the other areas. However, we think that they will eventually lead
to worthwhile new developments in mathematics as vector optimization has been explored
widely. Therefore, we will generalize a saddle point concept and investigate the generalized
saddle points which are called “cone saddle points”.

Since scalarization method is of great importance on characterizing and computing for
vector optimization theory, we will adopt the same approach to characterize the generalized
saddle points. There have recently appeared many papers connected with scalarization in
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vector optilnization; see [1], [8], [9], [10], [12], and [20]. In tllese papers, “optimal”, “weakly
optimal”, and “properly optimal” $-tl\iota ese$ optimalities are investigated widely. There are,
however, few papers devoted to scalarization of generalized saddle points for vector-valued
functions except [14] and [19]. In the two papers, the existence of generalized saddle
points is guaranteed by the existence of (ordinary) saddle points of appropriate scalarized
functions. Also, in [19], a notion of generalized saddle points is defined by means of the
concept of cone extreme points or cone efficiency (in the sense of [22]), and called “cone
saddle points”. Various properties of the cone extreme points can be found in [22], [17],
and [18].

The aim of this paper is to characterize the generalized saddle points for a vector-valued
function via scalarization. For this purpose, we will define cone saddle points and weak
cone saddle points, and introduce a notion of proper cone saddle points anew. Then we
will establish some sufficient conditions and necessary conditions for the three types of the
cone saddle points via scalarization. Also, we will present some existence results for each
type of the cone saddle points.

The organization of the paper is as follows. In Section 2, we will define three types
of cone saddle points: “proper $Z_{+}$-saddle points”, $Z_{+}$-saddle points”, and (weak $z_{+}-$

saddle points” for a vector-valued function. Also, we will introduce a notion of semi-saddle
points for a pair of functionals, which is also known as “Nash equilibrium points” for a
two-person nonzero-sum game in game theory. Moreover, we will present some sufficient
conditions for each type of the cone saddle points. Next, in Section 3 we will give some
necessary conditions for each type of the cone saddle points. Also, we try to make clear the
relation between each type of the cone saddle points for a vector-valued function and the
corresponding type of the semi-saddle points for a pair of the scalarized functions. Finally,
in Section 4 we will prove some existence theorems for each type of the cone saddle points,
and give their corolaries with respect to some special convex properties of vector-valued
functions.

Throughout the paper, let $E,$ $F,$ $Z$ be three real Hausdorff locally convex topological
vector spaces (l.c. $s.$ ) possessing each base $\mathcal{B}_{E},$ $\mathcal{B}_{F},$ $B_{Z}$ of (convex symmetric) neighborhoods
of the origin, respectively. We assume that $z_{+}\subset Z$ is a pointed convex cone (i.e.,
$tZ+\subset z_{+}$ for any $t\geq 0,$ $z_{+}\cap(-Z_{+})=\{0\}$ , and $Z_{+}$ is nonempty and convex), which
induces a partial ordering $\leq z_{+}$ in $Z$ as follows: For vectors $z_{1},$ $z_{2}\in Z$ , we denote

$z_{1}$ $\leq z_{+}$ $z_{2}$ , whenever $z_{2}-z_{1}\in Z_{+}$ .

Also, we assume that int $ Z_{+}\neq\emptyset$ , where the set int $z_{+}$ denotes the interior of the set $z_{+}$ .
Then, int $Z_{+}^{0}$ $:=$ (int $Z_{+}$ ) $\cup\{0\}$ is a nontrivial pointed convex cone and induces a partial
ordering $\leq intz_{+}^{0}$ weak than $\leq z_{+}$ in $Z$ . An element $z_{0}$ of a subset $A$ of $Z$ is said to be a
$Z_{+}$-extreme point of $A$ if there is no point $z\in A$ such that $z\neq z_{0}$ and $z_{0}-z\in Z_{+}$ , i.e.,

$\{z\in A|z\leq z_{+}z_{0}, z\neq z_{0}\}=\emptyset$ ,

which is equivalent to
$A\cap(z_{0}-Z_{+})=\{z_{0}\}$ .

In this paper, we will call the $z_{+}$-extreme point of $A$ a minimal point of $A$ . Also, if the set
$-Z_{+}$ $;=\{-z|z\in z_{+}\}$ is denoted by $Z_{-}$ , t.he $Z_{-}$ -extreme point of $A$ is called a maximal
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point of $A$ . The set of all $Z_{+}$-extreme points of $A$ is denoted by $Ext[A|Z_{+}]$ ; see [17], [18],
and [22] for details. Then, the sets $Ext[A|,Z_{+}]$ and $Ext[A|Z_{-}]$ consist of the nnnimal and
maximal points of $A$ , respectively. Finally, we will denote the dual cone for the convex
cone $Z_{+}$ in the dual space $Z^{*}$ of all continuous linear functionals on $Z$ by

$Z_{+}^{*}$ $:=\{z^{*}\in Z^{*}|\langle z^{*}, z)\geq 0, \forall z\in Z_{+}\}$ .

Also, we will denote the positive dual cone for the convex cone $Z_{+}$ in $Z^{*}$ by

$Z_{+}^{**}:=\{z^{*}\in Z^{*}|\langle z^{*}, z\rangle>0, \forall z\in Z_{+}\backslash \{0\}\}$ .

It is easily seen that the sets $Z_{+}^{*}$ and $Z_{+}^{*i}\cup\{0\}$ are pointed convex cones but the set $Z_{+}^{*j}$ is
not always the topological interior of the set $Z_{+}^{*}$ (e.g., the usual positive cone in $l^{2}$ ).

2. Sufficient conditions for the cone saddle points
First, we start with recalling the contingent cone $K(A;z)$ of tangents to a subset $A$ of

$Z$ at a vector $z$ (e.g., see [3, p.55]). A vector $v$ in $Z$ belongs to $K(A;z)$ if and only if, for
any $U\in \mathcal{B}_{Z}$ and $e>0$ , there exist a scalar $t\in(0,e)$ and a vector $w\in v+U$ such that
$z+tw\in A$ (thus $ z\in$ c1A necessarily). It follows that the cone $K(A;z)$ contains the
sequential (Bouligand) tangent cone $T(A;z)$ defined as

$T(A;z)$ $:=\{\lim_{n\rightarrow\infty}\lambda_{n}(z_{\mathfrak{n}}-z)|\lambda_{n}\geq 0,$ $z_{n}\in A$ for $\forall n$ , and $z=\lim_{n\rightarrow\infty}z_{n}\}$

If the set $A$ is convex, the contingent cone $K(A;z)$ at any vector $z\in c1A$ is a convex cone
and

$A-z\subset K(A;z)$ . (1)

Many papers (e.g., [1], [9] and [10]) give a definition of proper optimality by means of
the sequential tangent cone, but in this paper we shall define proper cone saddle points by
means of the contingent cone.

Throughout the paper, let $X\subset E$ and $Y\subset F$ be nonempty, and let $f$ : $XxY\rightarrow Z$

be a vector-valued function. Also, we will use the following symbols:

$f(X, y)$
$:=\bigcup_{x\in X}\{f(x, y)\}$

,

$f(x, Y)$
$:=\bigcup_{y\in Y}\{f(x, y)\}$

,

and
$M$ $:=f(X, Y)$ .

Then, three types of the cone saddle points for a vector-valued function $f$ are defined as
follows:
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DEFINITION 2.1. (a) A point $(x_{0}, y_{0})$ is sa.id to be a $z_{+}$ -saddle point of $f$ with respect
to $XxY$ , a $Z_{+}$ -saddle point for short, if

$f(x_{0}, y_{0})\in Ext[f(x_{0}, Y)|Z_{-}]\cap Ext[f(X, y_{0})|Z_{+}]$ . (2)

(b) A point $(x_{0}, y_{0})$ is said to be a weak $z_{+}$ -saddle point of $f$ with respect to $XxY$ ,
a weak $Z_{+}$-saddle point for short, if

$f(x_{0}, y_{0})\in Ext[f(x_{0}, Y)|$ int $Z_{-}^{0}]\cap Ext[f(X, y_{0})|$ int $Z_{+}^{0}]$ . (3)

(c) A point $(x_{0}, y_{0})$ is said to be a proper $z_{+}$-saddle point of $f$ with respect to $XxY$ ,
a proper $Z_{+}$-saddle point for short, if the point $(x_{0}, y_{0})$ is a $Z_{+}$-saddle point and

$0$ $\in$ $Ext[clK(f(X, y_{0})+Z_{+}; f(x_{0}, y_{0}))|Z_{+}]$

$\cap Ext[clK(f(x_{0}, Y)+Z_{-}; f(x_{0}, y_{0}))|Z_{-}]$ . (4)

As for (a) and (b), we gave the definitions in [19]. Also, the definition (c) of proper $Z_{+}$

-saddle points is found to be acceptable on refering to [1, Def.2], [9, Def.1.1], [10, Def.1.1]
and [$20$ , Def.3.1] If the sets $f(X, y_{0})+z_{+}$ and $f(x_{0}, Y)+Z_{-}$ are convex, then, by (1), any
point $(x_{0}, y_{0})$ satisfing the condition (4) is a $Z_{+}$ -saddle point of $f$ , and hence a proper $Z_{+}-$

saddle point. For the convenience, we will denote the set of all $z_{+}$-saddle points (resp. weak
$Z_{+}$-saddle points, proper $z_{+}$-saddle points) by $S$ (resp. $S^{w},$ $S^{p}$), and then the following
relationship holds:

$S^{p}\subset S\subset S^{w}$ .
Moreover, we have $S=S^{w}$ whenever int $Z_{+}^{0}=Z_{+}$ .

Next, we wil formulate a sufficient condition for each of the three types of the cone
saddle points. For this purpose, we will review Jahn’s definition [8, p.204]. It is slightly
changed as follows:

DEFINITION 2.2. Let $A$ be a nonempty subset of $Z$ , and $z_{0}$ be a vector of $A$ .
(a) A functional $\varphi$ : $A\rightarrow R$ is called monotonically increasing with respect to the

lower (resp. upper) section on $A$ at $z_{0}$ if

$\varphi(z)\leq\varphi(z_{0})$ for any $z\in(\{z_{0}\}+Z_{-})\cap A$

(resp. $\varphi(z)\geq\varphi(z_{0})$ for any $z\in(\{z_{0}\}+z_{+})\cap A$ ).

(b) A functional $\varphi:A\rightarrow R$ is called strongly monotonically increasing with respect
to the lower (resp. upper) section on $A$ at $z_{0}$ if

$\varphi(z)<\varphi(z_{0})$ for any $z\in(\{z_{0}\}+Z_{-})\cap A,$ $z\neq z_{0}$

(resp. $\varphi(z)>\varphi(z_{0})$ for any $z\in(\{z_{0}\}+z_{+})\cap A,$ $z\neq z_{0}$ ).
(c) A functional $\varphi$ : $A\rightarrow R$ is called strictly monotonically increasing with respect to

the lower (resp. upper) section on $A$ at $z_{0}$ if

$\varphi(z)<\varphi(z_{0})$ for any $z\in(\{z_{0}\}+intZ_{-})\cap A$

(resp. $\varphi(z)>\varphi(z_{0})$ for any $z\in(\{z_{0}\}+intZ_{+})\cap A$ ).
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Also, we will define a semi-saddle point for a pair of functionals, whicll is also known
as a Nash equilibrium point for a two-person nonzero-sum game in game theory (e.g., see
[13, p.287]).

DEFINITION 2.3. Let two (real-valued) functionals $g_{1}$ and $g_{2}$ be defined on $XxY$ .
(a) A point $(x_{0}, y_{0})$ is said to be a semi-saddle point of $(g_{1}, g_{2})$ with respect to $XxY$ ,

a semi-saddle point of $(g_{1}, g_{2})$ for short, if

$g_{1}(x_{0}, y_{0})\leq g_{1}(x, y_{0})$ ,

and
$g_{2}(x_{0}, y_{0})\geq g_{2}(x_{0}, y)$ ,

for any $x\in X$ and $y\in Y$ .
(b) A point $(x_{0}, y_{0})$ is said to be a strict semi-saddle point of $(g_{1}, g_{2})$ with respect to

$X\times Y$ , a strict semi-saddle point of $(g_{1}, g_{2})$ for short, if

$g_{1}(x_{0}, y_{0})<g_{1}(x, y_{0})$ ,

and
$g_{2}(x_{0}, y_{0})>g_{2}(x_{0}, y)$ ,

for any $x\in X,$ $x\neq x_{0}$ and $y\in Y,$ $y\neq y_{0}$ .

If $g_{1}=g_{2)}$ then a semi-(resp. strict selni-) saddle point $(x_{0}, y_{0})$ of $(g_{1}, g_{2})$ is an ordinary
saddle (resp. strict saddle) point of $g_{1}$ .

Now, we will state a basic characterization of each type of the cone saddle points. Here,
“l.s. $c$ . is the abbreviation for lower semicontinuous, (u.s.c. for upper semicontinuous.

THEOREM 2.4. Let $\varphi_{1}$ and $\varphi_{2}$ be functionals from‘ $M$ into $R$ , and a point $(x_{0}, y_{0})\in$

$X\times Y$ be given.
(i) Suppose that the functionals $\varphi_{1}$ and $\varphi_{2}$ are $u.s.c$ . and $l.s.c.$ , respectively, linear,

strongly monotonically increasing with respect to the lower section on $Z_{-}$ (or the upper
section on $z_{+}$ ) at $0\in Z.$ If the point $(x_{0}, y_{0})$ is a semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ ,
then $(x_{0}, y_{0})$ is a proper $z_{+}$ -saddle point of $f$ .

(ii) Suppose that the functionals $\varphi_{1}$ and $\varphi_{2}$ are monotonically increasing with respect to
the lower and upper section on $M$ at $f(x_{0}, y_{0})$ , respectively. If the point $(x_{0}, y_{0})$ is a strict
semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ , then $(x_{0}, y_{0})$ is a $Z_{+}$ -saddle point of $f$ .

(iii) Suppose that the functionals $\varphi_{1}$ and $\varphi_{2}$ are strictly monotonically increasing with
respect to the lower and upper section on $M$ at $f(x_{0}, y_{0})$ , respectively. If the point $(x_{0}, y_{0})$

is a semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ , then $(x_{0}, y_{0})$ is a weak $z_{+}$ -saddle point of $f$ .

PROOF. We only prove the part (i) of the assertion. First, in order to show the
condition (2) to hold, we suppose to the contrary that

$f(x_{0}, y_{0})\not\in Ext[f(X, y_{0})|Z_{+}]$ .

Then, there exists some vector $\hat{x}\in X$ such that

$f(x_{0}, y_{0})\in f(\hat{x}, y_{0})+z_{+}$ and $f(\hat{x}, y_{0})\neq f(x_{0}, y_{0})$ ,
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and hence
$f(\hat{x}, y_{0})-f(x_{0}, y_{0})\in Z_{-}\backslash \{0\}$ .

This implies
$\varphi_{1}(f(\hat{x}, y_{0}))<\varphi_{1}(f(x_{0}, y_{0}))$ ,

which is a contradiction. Therefore the condition (2) holds, and hence the point $(x_{0}, y_{0})$ is
a $z_{+}$ -saddle point of $f$ .

Next, in order to show the condition (4) to hold, we suppose to the contrary that

$0\not\in Ext[c1K(f(X, y_{0})+Z_{+};f(x_{0}, y_{0}))|Z_{+}]$ .

Then, there exists a nonzero vector $h\in Z$ such that $0\in h+Z_{+}$ and

$h\in c1K(f(X, y_{0})+Z_{+};f(x_{0}, y_{0}))$ . (5)

Therefore,
$(f(x_{0}, y_{0})+h)-f(x_{0}, y_{0})=h\in Z_{-}\backslash \{0\}$ ,

which implies
$\varphi_{1}(f(x_{0}, y_{0})+h)<\varphi_{1}(f(x_{0}, y_{0}))$ .

Since the functionaJ $\varphi_{1}$ is u.s. $c.$ , there exists a (convex symmetric) neighborhood $U\in B_{Z}$

such that
$\varphi_{1}(f(x_{0}, y_{0})+z)<\varphi_{1}(f(x_{0}, y_{0}))$

for any $z\in h+U$ . Since the functional $\varphi_{1}$ is linear, we have

$\varphi_{1}(z)<0$ $\forall z\in h+U$. (6)

On the other hand, it follows that there exist a vector $\hat{z}\in h+U$ and a scalar $\hat{t}>0$ such
that

$f(x_{0}, y_{0})+\hat{t}\hat{z}\in f(X, y_{0})+Z_{+}$ ,
from (5). Therefore there exist a vector $\hat{x}\in X$ and a vector $\hat{z}_{+}\in Z_{+}$ such that

$t_{\hat{z}=f(\hat{x},y_{0})-f(x_{0},y_{0})+\hat{z}_{+}}$ .

Since the functional $\varphi_{1}$ is linear, we have

$\hat{t}\varphi_{1}(\hat{z})\geq\varphi_{1}(\hat{z}_{+})\geq 0$ .

Hence, $\varphi_{1}(\hat{z})\geq 0$ , which is a contradiction to the condition (6). Thus the condition (4)
holds, and then the point $(x_{0}, y_{0})$ is a proper $z_{+}$-saddle point of $f$ . $\square $

In order to give a few corollaries to the theorem, for a vector-valued function $f$ and
each (continuous) linear functional $z^{*}\in Z^{*}$ , we will consider the z’-scalarized function
which is defined by

$\overline{f_{z}\cdot}(x, y)$ $:=\langle z^{*},$ $f(x, y))$ .
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COROLLARY 2.5. (i) If there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*l}$ such that a point $(x_{0}, y_{0})\in XxY$ is a
semi-saddle point of $(\overline{f_{z_{1}}*}, \overline{f_{z_{2}}\cdot})$ , then the point $(x_{0}, y_{0})$ is a proper $z_{+}$ -saddle point of $f$ .

$(\ddot{u})$ If there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*}$ such that a point $(x_{0}, y_{0})\in X\times Y$ is a strict semi-saddle
point of $(\overline{f_{zi}},\overline{f_{z_{2}}\cdot})$ (thus $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*}\backslash \{0\}$ necessarily), then the point $(x_{0}, y_{0})$ is a $Z_{+}$ -saddle
point of $f$ .

(iii) If there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*}\backslash \{0\}$ such that a point $(x_{0}, y_{0})\in XxY$ is a semi-saddle
point of $(\overline{f_{z_{1}^{*}}}, \overline{f_{z_{\dot{2}}}})$ , then the point $(x_{0}, y_{0})$ is a weak $z_{+}$ -saddle point of $f$ .

PROOF. It is easily proved as shown in [8, Cor.2.3] that each functional $z^{*}\in Z_{+}^{*j}$

(resp. $z^{*}\in Z_{+}^{*},$ $z^{*}\in Z_{+}^{*}\backslash \{0\}$ ) is strongly monotonically (resp. monotonically, strictly
monotonically) increasing with respect to the lower and upper section on $Z$ at any point
of $Z$ . The assertion is clear by Theorem 2.4. $\square $

COROLLARY 2.6. (i) If there exists $z^{*}\in Z_{+}^{*j}$ such that a point $(x_{0}, y_{0})\in XxY$ is a
saddle point of $\overline{f_{z}}$ , then the point $(x_{0}, y_{0})$ is a proper $z_{+}$ -saddle point of $f$ .

(ii) If there exists $z^{*}\in Z_{+}^{*}$ such that a point $(x_{0}, y_{0})\in XxY$ is a strict saddle point
$of\overline{f_{z^{*}}}$ (thus $z^{*}\in Z_{+}^{*}\backslash \{0\}$ necessarily), then the point $(x_{0}, y_{0})$ is a $z_{+}$ -saddle point of $f$ .

(iii) If there exists $z^{*}\in Z_{+}^{*}\backslash \{0\}$ such that a point $(x_{0}, y_{0})\in X\times Y$ is a saddle point
of $\overline{f_{z}\cdot}$, then the point $(x_{0}, y_{0})$ is a weak $z_{+}$ -saddle point of $f$ .

PROOF. The proof is straightforward from Corollary 2.5. $\square $

REMARK 2.7. Theorem 3.3 in [19] follows directly from (i) of Corollary 2.6. Also, we
notice that every one of Corollaries 3.1-3.4 in [19] is an existence theorem for proper $z_{+}$

-saddle points.

3. Necessary conditions for the cone saddle points

In this section, we will formulate some necessary conditions for each type of the cone
saddle points. They are converse to Corollary 2.5. For this purpose, we will start with a
few definitions, which are usual notions in vector optimization.

DEFINITION 3.1. Let $A$ and $D$ be a subset and a cone in $Z$ , respectively. The set $A$

is said to be D-convex if the set $A+D$ is a convex set in $Z$ .

With a nonempty subset $A$ of $Z$ , we associate the cone generated by the set $A$ which
is defined by

$cone[A]:=$ { $\lambda a|\lambda\geq 0$ and $a\in A$ }.
Also, for a point $(x_{0}, y_{0})\in XxY$ , we define the following cones of $Z$ :

$K_{1}$ $:=cone[f(X, y_{0})+Z_{+}-f(x_{0}, y_{0})]$ ,

$K_{2}$ $:=cone[f(x_{0}, Y)+Z_{-}-f(x_{0}, y_{0})]$ .
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THEOREM 3.2. Let a point $(x_{0}, y_{0})\in Xx$ }’ be given.
(i) Suppose that the pointed convex cone $Z_{+}$ has a compact base; $i.e.$ ,

$Z_{+}=\bigcup_{\lambda\geq 0}\lambda B$

where the set $B$ is compact and convex, and $0\not\in B.$ If the point $(x_{0}, y_{0})$ is a proper $Z_{+}-$

saddle point of $f$ such that the sets $f(X, y_{0})$ and $f(x_{0}, Y)$ are $Z_{+}$ -convex and $Z_{-}$ -convex,
respectively, then there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*:}$ such that the point $(x_{0}, y_{0})$ is a semi-saddle point
of $(\overline{f_{z}i}’\overline{f_{z_{2}}\cdot})$ .

$(\ddot{u})$ Suppose that the two cones $K_{1}\backslash \{0\}$ and $K_{2}\backslash \{0\}$ are open. If the point $(x_{0}, y_{0})$

is a $z_{+}$ -saddle point of $f$ such that the sets $f(X, y_{0})$ and $f(x_{0}, Y)$ are $z_{+}$ -convex and $Z_{--}$

convex, respectively, then there exist $z_{1}^{*},$ $z_{2}\in Z_{+}^{*}\backslash \{0\}$ such that the point $(x_{0}, y_{0})$ is a strict
semi-saddle point of $(\overline{f_{zi}}, \overline{f_{z_{\dot{2}}}})$ .

(iii) If the point $(x_{0}, y_{0})$ is a weak $Z_{+}$ -saddle point of $f$ such that the sets $f(X, y_{0})$ and
$f(x_{0}, Y)$ are $z_{+}$ -convex and $Z_{-}$ -convex, respectively, then there exist $z_{1}^{*},$ $z_{2}^{*}\in.Z_{+}^{*}\backslash \{0\}$ such
that the point $(x_{0}, y_{0})$ is a semi-saddle point of $(\overline{f_{z}i}’\overline{f_{z_{2}}\cdot})$ .

PROOF. (i) We assume that the point $(x_{0}, y_{0})$ is a proper $Z_{+}$-saddle point of $f$ , and
that the sets $f(X, y_{0})$ and $f(x_{0}, Y)$ are $z_{+}$ -convex and $Z_{-}$-convex, respectively. It suffices
to prove that there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*:}$ such that

$\overline{f_{z[}}(x_{0}, y_{0})\leq\overline{f_{z[}}(x, y_{0})$ $\forall x\in X$ , (7)

$\overline{f_{z_{2}}\cdot}(x_{0}, y_{0})\geq\overline{f_{z_{2}}\cdot}(x_{0}, y)$ $\forall y\in Y$. (8)

We only prove the existence of $z_{2}^{*}\in Z_{+}^{*:}$ satisfying the condition (8). Let

$N:=c1K(f(x_{0}, Y)+Z_{-};$ $f(x_{0}, y_{0}))$ ,

then the set $N$ is a closed convex cone and it follows that

$f(x_{0}, Y)+Z_{-}-f(x_{0}, y_{0})\subset N$ ,

from the condition (1). Since the point $(x_{0}, y_{0})$ is a proper $Z_{+}$ -saddle point, we have

$N\cap Z_{+}=\{0\}$ .

By [1, Prop.3], there is some $z_{2}^{*}\in zf$ satisfying the following condition:

$\langle-z_{2}^{*}, z\rangle\geq 0$ $\forall z\in N$ ,

which implies that the condition (8) holds.
(ii) We assume that the point $(x_{0}, y_{0})$ is a $z_{+}$ -saddle point of $f$ , and that the sets

$f(X, y_{0})$ and $f(x_{0}, Y)$ are $z_{+}$-convex and $Z_{-}$ -convex, respectively. We only prove the
existence of $z_{1}^{*}\in Z_{+}^{*}\backslash \{0\}$ satisfying the following condition:

$\overline{f_{zi}}(x_{0}, y_{0})<\overline{f_{z[}}(x, y_{0})$ (9)
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for any $x\in X,$ $x\neq x_{0}$ . By assumption, we have

$(f(X, y_{0})+Z_{+}-f(x_{0}, y_{0}))\cap Z_{-}=\{0\}$ ,

and so $(K_{1}\backslash \{0\})\cap Z_{-}=\emptyset$ . Since the set $K_{1}\backslash \{0\}$ is an open convex cone and the set $Z_{-}$

is a convex cone, from Dubovitskii-Milyutin’s theorem (e.g., see [6, p.37] or [7, p.116]), it
follows that there exists some $z_{1}^{*}\in Z_{+}^{*}\backslash \{0\}$ satisfying the following condition:

$\langle z_{1}^{*}, z\rangle>0$ $\forall z\in K_{1}\backslash \{0\}$ .

This implies that the condition (9) holds for any $x\in X,$ $x\neq x_{0}$ .
(iii) We assume that the point $(x_{0}, y_{0})$ is a wea.$kz_{+}$ -saddle point of $f$ , and that tlle

sets $f(X, y_{0})$ and $f(x_{0}, Y)$ are $z_{+}$-convex a.nd $Z_{-}$ -convex, respectively. We only prove the
existence of $z_{1}^{*}\in Z_{+}^{*}\backslash \{0\}$ satisfying the condition (7). Let

$A:=f(X, y_{0})+Z_{+}-f(x_{0}, y_{0})$ ,

then the set $A$ is a convex set and we have
$ A\cap intZ_{-}=\emptyset$ .

By a weak separation theorem [15, Thm. 3.3.3], there is some $z_{1}^{*}\in Z^{*}\backslash \{0\}$ satisfying the
following condition:

$sup(z_{1}^{*},$ $ z\rangle$

$\leq\inf_{z\in A}\langle z_{1}^{*}, z\rangle$ .
$z\in intz_{-}$

From $O\in A\cap Z_{-}$ , it follows that

$sup\langle z_{1}^{*}, z\rangle=\inf_{z\in A}\langle z_{1}^{*}, z\rangle=0$ ,
$z\in intz_{-}$

which implies that $z_{1}^{e}\in Z_{+}^{*}\backslash \{0\}$ and
$\langle z_{1}^{*}, z\rangle\geq 0\forall z\in A$ .

This completes the proof. $\square $

REMARK 3.3. In part (i) of the theorem, the pointed convex cone. $Z_{+}$ is locally
compact if and only if it has a compact base, in which case the cone $Z_{+}$ is necessarily
closed (e.g., see Lemma 1 in [7, p.76]). As for part (ii) of the theorem, we have an another
result: Suppose that two cones $K_{1},$ $K_{2}$ are closed, and the pointed convex cone $z_{+}$ has a
compact base. If the point $(x_{0}, y_{0})$ is a $z_{+}$-saddle point of $f$ such that the sets $f(X, y_{0})$ and
$f(x_{0}, Y)$ are $z_{+}$-convex, $Z_{-}$-convex, respectively, then there exist $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*:}$ such that the
point $(x_{0}, y_{0})$ is a semi-saddle point of $(\overline{f_{z_{1}^{*}}},\overline{f_{z_{2}^{*}}})$ . The proof is similar to that of part (i) of
the theorem.

COROLLARY 3.4. Suppose that two sets $f(X, y)$ and $f(x, Y)$ are $Z_{+}$ -convex and $Z_{--}$

convex, for any $y\in Y$ and $x\in X$ , respectively. Then

$ S^{w}=.\bigcup_{z|,z_{2}\in Z_{+}^{*}\backslash \{0\}}\{semi\rightarrow$
addle points of $(\overline{f_{zi}},\overline{f_{z_{2}}\cdot})\}$ .

Moreover, if the pointed convex cone $Z_{+}$ has a compact base, then

$S^{p}=i^{z_{2}\in z\dotplus}\bigcup_{z}\{semi$
-saddle points of $(\overline{f_{zi}},\overline{f_{z_{2}}\cdot})\}$ .
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PROOF. The proof is straightforward from Corollary 2.5 and Theorem 3.2. $\square $

In order to present an another corollary, we will review the following definition (e.g.,
see [19, Def.3.2]).

DEFINITION 3.5. Let $X$ and $Y$ be two convex sets.
(a) A vector-valued function $f$ : $XxY\rightarrow Z$ is said to be $Z_{+}-$ ($convex$-concave) in

$XxY$ if the function $f$ satisfies the following conditions: for each $x\in X$ and $y\in Y$ ,

(i) $\lambda f(x_{1}, y)+(1-\lambda)f(x_{2}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+Z_{+}$

for every $x_{1},$ $x_{2}\in X,$ $\lambda\in[0,1]$ , and
(ii) $\mu f(x, y_{1})+(1-\mu)f(x, y_{2})\in f(x, \mu y_{1}+(1-\mu)y_{2})+Z_{-}$

for every $y_{1},$ $y_{2}\in Y,$ $\mu\in[0,1]$ .

(b) A vector-valued function $f$ : $X\times Y\rightarrow Z$ is said to be strictly $Z_{+}-$ ($convex$-concave)
in $X\times Y$ if the function $f$ satisfies the following conditions: for each $x\in X$ and $y\in Y$ ,

(i) $\lambda f(x_{1}, y)+(1-\lambda)f(x_{2}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+intZ_{+}$

for every $x_{1},$ $x_{2}\in X,$ $x_{1}\neq x_{2},$ $\lambda\in[0,1]$ , and
(ii) $\mu f(x, y_{1})+(1-\mu)f(x, y_{2})\in f(x, \mu y_{1}+(1-\mu)y_{2})+intZ_{-}$

for every $y_{1},$ $y_{2}\in Y,$ $y_{1}\neq y_{2},$ $\mu\in[0,1]$ .

A strictly $Z_{+}-$(convex-concave) function is also a $Z_{+}-$ ($convex$-concave) function.

COROLLARY 3.6. If the vector-valued function $f$ is $Z_{+}-$(convex-concave), then

$S^{w}=.\bigcup_{z_{1}^{*},z_{2}\in Z_{+}^{*}\backslash \{0\}}\{semi$
-saddle points of $(\overline{f_{zi}},\overline{f_{z_{2}}\cdot})\}$ .

Moreover, if the pointed convex cone $Z_{+}$ has a compact base, then

$S^{p}=\bigcup_{z_{1}^{*},z_{2}\in Z_{+}^{*:}}\{semi$
-saddle points of $(\overline{f_{zi}},\overline{f_{z_{2}}\cdot})\}$ .

PROOF. The proof follows directly from Corollary 3.4. $\square $

4. Existence theorems for the cone saddle points
In this section, we will prove some existence theorems for each type of the cone saddle

points. To begin with, we define the following set-valued maps $T_{\varphi}$ and $U_{\varphi}$ for a functional
$\varphi$ from $M$ into $R$ :

$T_{\varphi}(y):=\{x_{0}\in X|\varphi(f(x_{0}, y))=\min_{x\in X}\varphi(f(x, y))\},$ $y\in Y$ ;

$U_{\varphi}(x)$ $:=\{y_{0}\in Y|\varphi(f(x, y_{0}))=\max_{y\in Y}\varphi(f(x, y))\},$ $x\in X$ .
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If, for all $y\in Y,$ $T_{\varphi}(y)$ is a nonempty closed convex subset of $X$ , then the map $T_{\varphi}$ is said to
be a nonempty closed convex map. Also, the set-valued map $T_{\varphi}$ is said to be u.s. $c$ . from $Y$

to $X$ if, for each neighborhood $V$ of the origin $0\in X$ and each vector $y_{0}\in Y$ , there exists
a neighborhood $U$ of the origin $0\in Y$ such that $T_{\varphi}(y)\subset T_{\varphi}(y_{0})+V$ for all $y\in y_{0}+U$ ; see
[2, Def.2]. The map $U_{\varphi}$ is analogously defined.

First, we give some existence results for proper $Z_{+}$-saddle points.

THEOREM 4.1. Let $X$ and $Y$ be compact convex sets. Suppose that there exist func-
tionals $\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the following conditions:

(i) The set-valued maps $T_{\varphi_{1}}$ and $U_{\varphi_{2}}$ are nonempty closed convex $u.s.c$ . maps.
(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are $u.s.c$ . linear and $l,s.c$ . linear, respectively.
(iii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are strongly monotonically increasing with respect to the

lower section on $Z_{-}$ (or the upper section on $Z_{+}$ ) at the origin $O\in Z$ .

Then the vector-valued function $f$ has at least one proper $z_{+}$ -saddle point..

PROOF. The proof is based on Browder’s coincidence theorem (e.g., see [2] and [16]).
By (i), we can use [16, Thm.2.5] and so there exists some point $(x_{0}, y_{0})\in XxY$ such that
$x_{0}\in T_{\varphi 1}(y_{0})$ and $y_{0}\in U_{\varphi 2}(x_{0})$ . Consequently, we have

$\varphi_{1}(f(x_{0}, y_{0}))\leq\varphi_{1}(f(x, y_{0}))$ $\forall x\in X$ ,

and
$\varphi_{2}(f(x_{0}, y_{0}))\geq\varphi_{2}(f(x_{0}, y))$ $\forall y\in Y$.

This implies that the point $(x_{0}, y_{0})$ is a semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ . From (i) of
Theorem 2.4, it follows directly that the point $(x_{0}, y_{0})$ is a proper $z_{+}$-saddle point of $f$ . $\square $

COROLLARY 4.2. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.
Suppose that there exist functionals $z_{1}^{*},$ $z_{2}^{*}\in Z^{*}$ satisfying the following conditions:

(i) $\forall y\in Y$, $x\mapsto\overline{f_{z_{1}}}(x, y)$ is convex, and
$\forall x\in X$ , $y-\overline{f_{z_{2}}\cdot}(x, y)$ is concave.

(ii) The functionals $z_{1}^{*}$ and $z_{2}^{*}$ are strongly monotonically increasing with respect to the
lower section on $Z_{-}$ (or the upper section on $Z_{+}$ ) at the origin $0\in Z$ .

Then the vector-valued function $f$ has at least one proper $z_{+}$ -saddle point.

PROOF. By assumption, it is easily proved that the corresponding set-valued maps $T_{z_{I}^{*}}$

and $U_{z_{2}^{*}}$ are nonempty closed convex maps. In order to show that the map $T_{z_{1}}*is$ u.s.c., we
suppose to the contrary that the map $T_{z}i$ is not u.s. $c$ . at some vector $y_{0}\in Y$ . Then there
is some neighborhood $V\in \mathcal{B}_{E}$ such that

$T_{zi}(y_{0}+U)\not\subset T_{z_{1}^{*}}(y_{0})+V$ (10)

for any neighborhood $U\in \mathcal{B}_{F}$ . Let

$N$ $:=(T_{z_{I}}\cdot(y_{0})+V)^{c}\cap X$ .
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Since the set $N$ is compact and the scalarized function $\overline{f_{z}i}$ is continuous, we have

$\min_{x\in X}\overline{f_{zi}}(x, y_{0})<\min_{x\in N}\overline{f_{zi}}(x, y_{0})$ .

Also, let
$\epsilon$

$:=\min_{x\in N}\overline{f_{zi}}(x, y_{0})-\min_{x\in X}\overline{f_{z[}}(x, y_{0})$

then $e>0$ , and then there is some neighborhood $U_{1}\in \mathcal{B}_{F}$ such that

$\min_{x\in X}\overline{f_{z\downarrow}}(x, y)<x\in Xn1in\overline{f_{z}i}(x, y_{0})+\epsilon/3$ (11)

for any $y\in y_{0}+U_{1}$ . On the other hand, there is some neighborhood $U_{2}\in \mathcal{B}_{F}$ such that

$\overline{f_{zi}}(x^{\prime}, y)>\min_{x\in N}\overline{f_{zi}}(x, y_{0})-e/3$ (12)

for any $x^{\prime}\in N$ and $y\in y_{0}+U_{2}$ . Here let $U_{0}:=U_{1}\cap U_{2}$ then, by the condition (10), there
exist vectors $\hat{x}\in N$ and $\hat{y}\in y_{0}+U_{0}$ such that

$\hat{x}\in T_{zi}(\hat{y})$ . (13)

Consequently, by the conditions (11), (12), and (13), we get

$\overline{f_{z1}}(\hat{x},\hat{y})=\min_{x\in X}\overline{f_{z}i}(x,\hat{y})<\overline{f_{z}i}(\hat{x},\hat{y})$ ,

which is a contradiction. Similarly, the map $U_{z_{\dot{2}}}$ is also verified to be u.s. $c$ . Therefore, the
assertion follows directly from Theorem 4.1. $\square $

COROLLARY 4.3. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.
Suppose that there exist functionals $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*i}$ such that

$\forall y\in Y$, $x\mapsto\overline{f_{z1}}(x, y)$ is convex,

and
$\forall x\in X$ , $y\mapsto\overline{f_{z_{2}}\cdot}(x, y)$ is concave.

Then the vector-valued function $f$ has at least one proper $z_{+}$ -saddle point.

PROOF. The proof is straightforward from Corollary 4.2. $\square $

In order to present an another corollary, we will review the following definition (e.g.,
see [18, Def.4.3]).

DEFINITION 4.4. Let $X$ and $Y$ be two convex sets.
(a) A vector-valued function $f$ : $XxY\rightarrow Z$ is said to be properly $Z_{+}- quasi-(convex-$

concave) in $X\times Y$ if the function $f$ satisfies the following conditions: for each $x\in X$ and
$y\in Y$ ,

(i) $f(x_{1}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+Z_{+}$ or $f(x_{2}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+Z_{+}$

for every $x_{1},$ $x_{2}\in X,$ $\lambda\in[0,1]$ ; and
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(ii) $f(x, y_{1})\in f(x, \mu y_{1}+(1-\mu)y_{2})+Z_{-}$ or $f(x, y_{2})\in f(x, \mu y_{1}+(1-\mu)y_{2})+Z_{-}$

for every $y_{1},$ $y_{2}\in Y,$ $\mu\in[0,1]$ .

(b) A vector-valued function $f$ : $X\times Y\rightarrow Z$ is said to be strict-properly $Z_{+}$ -quasi-
(convex-concave) in $XxY$ if the function $f$ satisfies the following conditions: for each
$x\in X$ and $y\in Y$ ,

(i) $f(x_{1}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+intZ_{+}$ or $f(x_{2}, y)\in f(\lambda x_{1}+(1-\lambda)x_{2}, y)+intZ_{+}$

for every $x_{1},$ $x_{2}\in X,$ $x_{1}\neq x_{2},$ $\lambda\in(0,1)$ ; and
(ii) $f(x, y_{1})\in f(x, /\iota y_{1}+(1-\mu)y_{2})+intZ_{-}$ or $f(x, y_{2})\in f(x, \mu y_{1}+(1-\mu)y_{2})+intZ_{-}$

for every $y_{1},$ $y_{2}\in Y,$ $y_{1}\neq y_{2},$ $\mu\in(0,1)$ .

A strict-properly $Z_{+}- quasi-$(convex-concave) function is also a properly $Z_{+}- quasi-(convex-$

concave) function. Also, the conditions expressed in Definitions 3.5 and 4.4 are mutually
independent (also, see [4, Prop.4.2]).

COROLLARY 4.5. Let $X$ and $Y$ be compact convex sets. If the vector-valued function
$f$ is continuous and either

(i) $Z_{+}-$ ( $convex$-concave) in $XxY$ ; or
(ii) properly $Z_{+}- quasi-$ ( $convex$-concave) in $XxY$ ,

then the function $f$ has at least one proper $Z_{+}$ -saddle point whenever $ Z_{+}^{*:}\neq\emptyset$ .

PROOF. The case of (i), whose proof is similar to [19, Cor.3.4], is easily verified by
Corollary 4.3. In the case of (ii) it suffices to prove that the corresponding set-valued ma.ps
$T_{z}$ . and $U_{z}$ . are two convex maps for some $z^{*}\in Z_{+}^{*i}$ , beca.use it is easily proved that the
maps $T_{z}$. and $U_{z^{*}}$ are nonempty closed maps, and that they are u.s. $c.$ , in a similar way as
the proof of Corolary 4.2. Now, for each vector $y\in Y$ , let $x_{1},$ $x_{2}\in T_{z^{*}}(y),$ $\lambda\in[0,1]$ , then
we have $\lambda x_{1}+(1-\lambda)x_{2}\in X$ and either

$\overline{f_{z}\cdot}(x_{1}, y)-\overline{f_{z}\cdot}(\lambda x_{1}+(1-\lambda)x_{2}, y)\geq 0$

or
$\overline{f_{z}}(x_{2}, y)-\overline{f_{z}}(\lambda x_{1}+(1-\lambda)x_{2}, y)\geq 0$ .

Consequently,
$\overline{f_{z}\cdot}(\lambda x_{1}+(1-\lambda)x_{2}, y)=1nin\overline{f_{z}\cdot}(x, y)x\in X$

which implies that the set $T_{z}\cdot(y)$ is a convex set. Similarly, the set $U_{z}\cdot(x)$ is also verified
to be a convex set for every vector $x\in X$ . This completes the proof. $\square $

Next, we present an another existence tlleorem for proper $z_{+}$-saddle points.

THEOREM 4.6. Let $X$ be a compact convex set. Suppose that there exist functionals
$\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the follou’ing conditions:

(i) The set-valued maps $T_{\varphi 1}$ and $U_{\varphi 2}$ are nonempty singleton continuous maps.
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(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are $u.s.c$ . linear and 1. $s.c$ . linear, respectively.
(iii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are strongly monotonically increasing with respect to the

lower section on $Z_{-}$ (or the upper section on $Z_{+}$ ) at the origin $O\in Z$ .

Then the vector-valued function $f$ has at least one proper $Z_{+}$ -saddle point.

PROOF. The proof is based on Tychonoff’s fixed point theorem [21]. By the condition
(i), the composite mapping $T_{\varphi\iota}\circ U_{\varphi 2}$ : $X\rightarrow X$ is continuous, and hence there exists some
vector $x_{0}\in X$ such that $x_{0}=T_{\varphi_{1}}oU_{\varphi_{2}}(x_{0})$ . If we put $y_{0}$ $:=U_{\varphi_{2}}(x_{0})$ , then $x_{0}=T_{\varphi 1}(y_{0})$ .
Consequently, we have

$\varphi_{1}(f(x_{0}, y_{0}))<\varphi_{1}(f(x, y_{0}))$ ,

$\varphi_{2}(f(x_{0}, y_{0}))>\varphi_{2}(f(x_{0}, y))$ ,

for any $x\in X,$ $x\neq x_{0}$ , and $y\in Y,$ $y\neq y_{0}$ . This implies tllat the point $(x_{0}, y_{0})$ is also a
semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ . From (i) of Theorem 2.4, it follows directly that the
point $(x_{0}, y_{0})$ is a proper $z_{+}$-saddle point of $f$ . $\square $

COROLLARY 4.7. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.
Suppose that there exist functionals $z_{1}^{*},$ $z_{2}^{*}\in Z^{*}$ satisfying the following conditions:

(i) $\forall y\in Y$, $x-\overline{f_{zi}}(x, y)$ is strictly convex, and
$\forall x\in X$ , $y-\overline{f_{z_{2}}\cdot}(x, y)$ is strictly concave.

(ii) The functionals $z_{1}^{*}$ and $z_{2}^{*}$ are strongly monotonically increasing with respect to the
lower section on $Z_{-}$ (or the upper section on $Z_{+}$ ) at the origin $0\in Z$ .

Then the vector-valued function $f$ has at least one proper $Z_{+}$ -saddle point.

The proof, which follows directly from Corolary 4.2, is also verified by Theorem 4.6.
Secondly, we state some existence results for $Z_{+}$-saddle points.

THEOREM 4.8. Let $X$ be a compact convex set. Suppose that there exist functionals
$\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the following conditions:

(i) The set-valued maps $T_{\varphi\iota}$ and $U_{\varphi 2}$ are nonempty singleton continuous maps.
(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are monotonically increasing with respect to the lower and

upper section on $M$ at each point $z\in Af$ , respectively.

Then the vector-valued function $f$ has at least one $Z_{+}$ -saddle point.

PROOF. In a similar way as the proof of Theorem 4.6, it is shown that there exists
a strict semi-saddle point $(x_{0}, y_{0})$ of $(\varphi_{1}of, \varphi_{2}\circ f)$ . From (ii) of Theorem 2.4, it follows
directly that tlle point $(x_{0}, y_{0})$ is a $Z_{+}$-saddle point of $f$ . $\square $

COROLLARY 4.9. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.Suppose that there exist continuous functionals $\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the
following conditions:
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(i) $\forall y\in Y$, $x\mapsto\varphi_{1}of(x, y)$ is strictly convex, and
$\forall x\in X$ , $y-\varphi_{2}of(x, y)$ is strictly concave.

(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are monotonically increasing with respect to the lower and
upper section on $M$ at each point $z\in\Lambda f$ , respectively.

$ T/le’\iota$ the vector-valued function $f$ has at least one $Z_{+}$ -saddle point.

PROOF. The proof is straightforward from Theorem 4.8. $\square $

COROLLARY 4.10. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.
Suppose that there exist nonzero functionals $z1,$ $z2\in Z_{+}\backslash \{0\}$ such that

$\forall y\in Y$, $x-\overline{f_{z}i}(x, y)$ is strictly convex,

and
$\forall x\in X$ , $y-\overline{f_{z_{2}}\cdot}(x, y)$ is strictly concave.

Then the vector-valued function $f$ has at least one $Z_{+}$ -saddle point.

PROOF. The proof is straightforward from Corollary 4.9. $\square $

COROLLARY 4.11. Let $X$ and $Y$ be compact convex sets. If the vector-valued function
$f$ is continuous and either

(i) strictly $Z_{+}-$ ( $convex$-concave) in $X\times Y$ ; or

(ii) strict-properly $Z_{+}- quasi-$ ( $convex$-concave) in $X\times Y_{f}$

then the function $f$ has at least one $Z_{+}$ -saddle point.

PROOF. Since int $ z_{+}\neq\emptyset$ , we have $ Z_{+}^{*}\backslash \{0\}\neq\emptyset$ (e.g., see [15, Thm.3.3.3]). Therefore,
the assertion of the case of (i) follows from Corollary 4.10. In the case of (ii), it suffices
to prove that the corresponding set-valued maps $T_{z}$ . and $U_{z}$ . are singleton inaps for some
$z^{*}\in Z_{+}^{*}$ . Now, for each $y\in Y$ , let $x_{1},$

$x_{2}\in T_{\wedge}..(y),$ $x_{1}\neq x_{2},$ $\lambda\in(0,1)$ , then we have
$\lambda x_{1}+(1-\lambda)x_{2}\in X$ and either

$\overline{f_{z^{*}}}(x_{1}, y)-\overline{f_{z}\cdot}(\lambda x_{1}+(1-\lambda)x_{2}, y)>0$

or
$\overline{f_{z}\cdot}(x_{2}, y)-\overline{f_{z}\cdot}(\lambda x_{1}+(1-\lambda)x_{2}, y)>0$ .

Consequently,
$\overline{f_{z}\cdot}(\lambda x_{1}+(1-\lambda)x_{2}, y)<n\dot{u}n\overline{f_{z}\cdot}(x, y)x\in X$

which is a contradiction. Similarly, the map $U_{z}$ . is also verified to be a singleton map. This
completes the proof. $\square $

REMARK 4.12. Corollary 4.11 is a generalization of Corollary 4.1 in [18].

Thirdly, we present some existence results for weak $z_{+}$-saddle points.
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THEOREM 4.13. Let $X$ and $Y$ be compact convex sets. Suppose that there exist func-
tionals $\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the following conditions:

(i) The set-valued maps $T_{\varphi 1}$ and $U_{\varphi_{2}}$ are nonempty closed convex $u.s.c$ . maps.
(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are strictly monotonically increasing with respect to the

lower and upper section on $M$ at each point $z\in M$ , respectively.

Then the vector-valued function $f$ has at least one weak $Z_{+}$ -saddle point.

PROOF. In a similar way as the proof of Theorem 4.1, it is shown that there exists a
semi-saddle point $(x_{0}, y_{0})$ of $(\varphi_{1}of, \varphi_{2}of)$ . From (iii) of Theorem 2.4, it follows directly
that the point $(x_{0}, y_{0})$ is a weak $z_{+}$-saddle point of $f$ . $\square $

The following corollaries are easy to prove; review the corresponding previous corollaries
if necessary.

COROLLARY 4.14. Let $X$ and $Y$ be compact convex sets, and $f$ a $cont\ell^{\sim}nuous$ function.
Suppose that there exist continuous functionals $\varphi_{1}$ and $\varphi_{2}$ from $M$ into $R$ satisfying the
following conditions:

(i) $\forall y\in Y$, $x-\varphi_{1}of(x, y)$ is convex, and
$\forall x\in X$ , $y\mapsto\varphi_{2}of(x, y)$ is concave.

(ii) The functionals $\varphi_{1}$ and $\varphi_{2}$ are strictly monotonically increasing with respect to the
lower and upper section on $M$ at each point $z\in M$ , respectively.

Then the vector-valued function $f$ has at least one weak $z_{+}$ -saddle point.

COROLLARY 4.15. Let $X$ and $Y$ be compact convex sets, and $f$ a continuous function.
Suppose that there exist functionals $z_{1}^{*},$ $z_{2}^{*}\in Z_{+}^{*}\backslash \{0\}$ such that

$\forall y\in Y$, $x-\overline{f_{z}i}(x, y)$ is convex,

and
$\forall x\in X$ , $y\mapsto\overline{f_{z_{2}}\cdot}(x, y)$ is concave.

Then the vector-valued function $f$ has at least one weak $z_{+}$ -saddle point.

COROLLARY 4.16. Let $X$ and $Y$ be compact convex sets. If the vector-valued function
$f$ is continuous and either

(i) $Z_{+}-$( $convex$-concave) in $XxY$ ; or
(ii) properly $Z_{+}- quasi-$ ( $convex$-concave) in $XxY$ ,

then the functon $f$ has at least one weak $Z_{+}$ -saddle point.

REMARK 4.17. Corolaries 4.3, 4.10, and 4.15 a.re specifications of Corollary 3.2 in
[19]. Also, Corollaries 4.5, 4.11, and 4.16 are specifications of Corollary 3.4 in [19].

Finally, we have the following theorem which is a specification of Theorem 3.2 in [19].
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THEOREM 4.18. Let $X$ and $Y$ be compact sets. Suppose that $f$ is a separated contin-
uous vector-valued function of the type

$f(x, y)=u(x)+v(y)$

where $u:X\rightarrow Z$ and $v:Y\rightarrow Z$ . Then the function $f$ has at least one weak $z_{+}$ -saddle
point. Moreover, if $ Z_{+}^{*j}\neq\emptyset$ , then the function $f$ has at least one proper $z_{+}$ -saddle point.

PROOF. Since $ Z_{+}\backslash \{0\}\neq\emptyset$ (e.g., see the proof of Corollary 4.11), we have some
$z^{*}\in Z_{+}^{*}\backslash \{0\}$ . By assumption there exists some point $(x_{0}, y_{0})\in XxY$ such that

$\langle z^{*}, u(x_{0})\rangle=\min_{x\in X}\langle z^{*}, u(x)\rangle$ ,

$\langle z^{*}, v(y_{0})\rangle=\max_{y\in Y}\langle z^{*}, v(y)\rangle$ .

This implies that
$\overline{f_{z}\cdot}(x_{0}, y)\leq\overline{f_{z}\cdot}(x_{0}, y_{0})\leq\overline{f_{z}\cdot}(x, y_{0})$ .

From (iii) of Corollary 2.6, it follows directly that the point $(x_{0}, y_{0})$ is a weak $z_{+}$-saddle
point of $f$ . Similarly, the remainder of the proof follows directly from (i) of Corollary 2.6. $\square $

5. Conclusions
In this paper, we have introduced a notion of proper cone saddle points in Iddition

to notions of cone saddle points and weak cone saddle points for a vector-valued function
treated in [18] and [19]. By adopting the same setting as in [19], we have characterized
each type of the cone saddle points via scalarization. The characteriza.tion consists of three
parts: sufficient conditions, necessary conditions, and several existence results for each
type of the cone saddle points. In general, scalariza.tion means the replacement of a vector
optimization problem by a suitable scalar optimization problem. From this point of view,
we have introduced a suitable notion for the generalized saddle points. For scalar-valued
functions, there is a notion of ordinary saddle points. For the generalization, we have
defined a notion of semi-saddle points for a pair of scalar-valued functions, which is also
known as “Nash equilibrium points” for a two-person nonzero-sum game in game theory.
Through the characterization, we have got some connection between each type of the cone
saddle points of a vector-valued function and the corresponding type of the semi-saddle
points of a pair of the scalarized functions. Also, we have successfully generalized and
specified several results in [19].
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