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1. Introduction.

The Riemannian curvature tensor $R$ of a locally symmetric Riemannlan manifold
$(M, g)$ satisfies

$\mathfrak{c}^{*})$ $R(X, Y)\cdot R=0$, for any tangent vectors $X$ and $Y$,

where the endomorphism $R(X, Y)$ operates on $R$ as a derivation of the tensor algebra
at each point of $M$. A result of K. Nomizu [2] tells us that the converse is affirmative
in the case where $M$ is a certain hypersurface in a Euclidean space. That is

THEOREM A. Let $M$ be an m-dimensional, connected and complete Rimannian manifold
which is isometrically immersed in $a$ Euclidean space $E^{m+1}$ so that the type number $k(x)\geqq 3$

at least at one point $x$. IfMsatisfies the condition $\mathfrak{c}^{*}$), then it is of the form $M=S^{k}\times E^{m-k}$,
where $S^{k}$ is a hypersphere in $a$ Euclidean subspace $E^{k+1}$ of $E^{m+1}$ and $E^{m-k}$ is $a$ Euclidean
subspace orthogonal to $E^{k+1}$.

Now, let $R_{1}$ be the Ricci tensor of $M$ and $R^{1}$ be the symmetric endomorphism given
by $R_{1}(X, Y)=g(R^{1}X, Y)$ . Then, the condition $\mathfrak{c}^{*}$) implies in particular

$\mathfrak{c}^{**})$ $R(X, Y)\cdot R_{1}=0$, for any tangent vectors $X$ and $Y$

Recently, S. Tanno [4] gave the following

THEOLEM B. Let $M$ be an m-dimensionaI, connected and complete Rimannian manifold
which is isometrically immersed in $a$ Euclidean space $E^{m+1}$ so that the type number $k(x)\geqq 3$

at least at one point $x$. If $M$ satisfies the condition $(^{**})$ and have the positive scalar curva-
ture, then it is of the form $M=S^{k}\times E^{m-k}$ .

In the present paper, we shall show that the assumption of having the positive
scalar curvature in theorem $B$ can be replaced by some other conditions. That is :

THEOREM C. Let $M$ be an m-dimensional, connected and complete Riemannian manifold
which isometrically immered in $a$ Euclidean space $E^{m+1}$ so that $M$ is not minimal and the
type number $k(x)\geqq 3$ at least at one point $x$. If $M$ satisfies the condition $\mathfrak{c}^{**}$), then it is of
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the form $M=S^{k}\times E^{m-k}$ .

THEOREM D. Let $M$ be an m-dimensional, connected and complete Riemannian manifold
which is isometrically immersed in $a$ Euclidean space $E^{m+1}$ so that the type number $k(x)$ is
greater than 2 and odd at least at one point $x$. If $M$ satisfies the condition $(^{**})$ , then it is

of the form $M=S^{k}\times E^{m-k}$ .

2. Reduction of the condition $\mathfrak{c}^{**}$).

Let $M$ be a connected hypersurface in a Euclidean space $E^{m+1}$ and let $g$ be the
induced metric oh $M$ Let $U$ be a neighborhood of a point $x_{0}$ of $M$ on which we can
choose a unit vector field $\xi$ normal to $M$ For local vector fields $X$ and $Y$ on $U$ tangent
to $M$, we have the formulas of Gauss and Weingarten :

(2. 1) $ D_{X}Y=\nabla_{X}Y+H(X, Y)\xi$,

(2. 2) $D_{X}\xi=-AX$, where $D_{X}$ and $\nabla x$ denote

covariant differentiation for the Euclidean connection of $E^{m+1}$ and the Riemannian
connection on $M$, respectively. $H$ is the second fundamental form and $A$ is a symmet-
ric endomorphism given by $H(X, Y)=g(AX, Y)$ . Then, the equation of Gauss is

(2. 3) $R(X, Y)=AX\wedge AY$, where, in general, $X\wedge Y$

denotes the endomorphism which maps $Z$ upon $g(Z, Y)X-g(Z, X)Y$. The type num-
ber $k(x)$ at a point $x$ is, by definition, the rank of $A$ at $x$. From $(2, 3)$ , the Ricci tensor
$R_{1}$ of $M$ is given by

(2. 4) $R_{1}(X, Y)=(traceA)g(AX, Y)-g(A^{2}X, Y)$ .
For a point $x$ of $M$, take an orthonormal basis $\{e_{1}, \cdots,e_{h}\}$ of the tangent space $T_{x}(M)$

such that $Ae;=\lambda ie;,$ $1\leqq i\leqq m$ . Then, the equation (2. 3) implies

(2. 5) $R(ei, ej)=\lambda;\lambda jei\wedge e;$, $1\leqq i,$ $j\leqq m$,

and (2. 4) implies

(2. 6) $R_{1}(ei, et)=\lambda i\sum_{h-1}^{m}\lambda h-\lambda i^{2}$, and otherwise $z$ero.

From (2. 5) and (2. 6), by direct computing, the condition $\mathfrak{c}^{**}$) is euivalent to

(2. 7) $\lambda i\lambda J(2i-\lambda j)(\sum_{h-1}^{m}\lambda h-\lambda;-\lambda j)=0$, for $i\neq j$.

From (2. 7), for each point $x\epsilon M$, we see that the following cases are possible at $x$ :

I. $\lambda_{1}=\cdots\lambda_{k}=\lambda,$ $\lambda_{k+1}=\cdots=\lambda_{m}=0$,

II. $\lambda_{1}=\cdots=\lambda_{t}=\lambda,$ $\lambda_{t+1}=\cdots=\lambda_{t+t^{\prime}}=\mu,$ $\lambda_{t+t^{\prime}+1}=\cdots=\lambda_{m}=0$,
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where $k=k(x)$ , and, for II, $\lambda\neq\mu_{l}t=t(x)\geqq 2,$ $t^{\prime}=t^{\prime}(x)\geqq 2,$ $k=t+t^{\prime},$ $(t-1)\lambda+(t^{\prime}-1)\mu=0$ .
If $M$ satisfies the condition $(^{*})$ , then II can not occur. In future, we shall show that
II can not occur under some conditions.

3. Lemmas.

Now, we assume that $k(z)\geqq 3$ at some point $z\epsilon M$ and II is valid at 2. Then, by
the continuity argument for the characteristic polynomial of $A$ , we see that II is valid
and furthermore, $t$ and $t^{\prime}$ are constant near 2 and hence, let $W=\{x\epsilon M;h(x)\geqq 3$ and II
is valid at $x$}, which is an open set of $M$ For each point $x_{0}\epsilon W$, let $W_{0}$ be the connected
component of $x_{0}$ in $W$. Then, non-zero eigenvalues of $A,$ $\lambda$ and $\mu$, are differentiable
functions on $W_{0}$ and hence, we can define three differentiable distributions, $T_{\lambda},$ $T_{\mu}$

and $T_{0}$ corresponding $\lambda,$

$\mu$ and $0$, respectively on $W_{0}$ . Here, if $k=m$ on $W_{0}$ . then we
consider $T_{0}(x)$ as $\{0\}$ , for $x\epsilon W_{0}$ . Let $T_{1}(x)=T_{\lambda}(x)+T_{\mu}(x)$ (direct sum), for each point
$x\epsilon W_{0}$ . Then, $T_{1}$ is differentiable, and, from (2. 4) and II, we have

(3. 1) $R^{1}X=\lambda\mu X$, for $X\epsilon T_{1}$, and $R^{1}X=0$ . for $X\epsilon T_{0}$ .
For any $Z\epsilon T_{x}(M),$ $Z_{\lambda},$ $Z_{\mu}$ and $Z_{0}$ will denote the components of $Z$ in $T_{\lambda}(x),$ $T_{\mu}(x)$ and
$T_{0}(x)$ , respectively. Then we have

LEMMA 3. 1. $T_{\lambda}$ and $T_{\mu}$ are involutive.

PROOF. We recall the Coda$zzi$ equation

$(\nabla xA)Y=(\nabla_{Y}A)X$.
Suppose that $X$ and $Y$ are vector fields belonging to $Tz$ Then

$(\nabla_{X}A)Y=X\lambda Y+(\lambda-\mu)(\nabla_{X}Y)_{\mu}+\lambda(\nabla_{X}Y)_{0}$.
$(\nabla_{Y}A)X=Y\lambda X+(\lambda-\mu)(\nabla_{Y}X)_{\mu}+\lambda(\nabla_{Y}X)_{0}$ .

Thus, we have

$X\lambda Y-Y\lambda X=0$, and $[X, Y]_{\mu}=[X,$ $Y$} $=0$ .
The second identity shows that [X, $Y$] $\in T_{\lambda}$, proving that $T_{\lambda}$ is involutive. Similarly,
$T_{\mu}$ is involutive, and furthermore, for any vector fields $X$ and $Y$ belonging to $T_{\mu}$, we
have $X\mu Y-Y\mu X=0$ . Q. E. D.

For each point $x\epsilon W_{0}$, let $M_{\lambda}(x)$ and $M_{\mu}(x)$ be the maximal integral manifolds thro.
ugh $x$ of $T_{\lambda}$ and $T_{\mu}$, respectively. Since $t\geqq 2,$ $t^{\prime}\geqq 2$, from the proof of lemma 3. 1, we
have

LEMMA 3. 2. $\lambda$ and hence $\mu$ are constant on $W_{0}$ .
Next, suppose that $X\epsilon T_{\lambda},$ $Y\epsilon T_{\mu}$, and compute the both sides of Codazzi equation :
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$(\nabla xA)Y=X\mu Y+(\mu-\lambda)(\nabla_{X}Y)_{\lambda}+\mu(\nabla_{X}Y)_{0}$,
(3. 2)

$(\nabla_{Y}A)X=Y\lambda X+(\lambda-\mu)(\nabla_{Y}X)_{\mu}+\lambda(\nabla_{Y}X)_{0}$ .
Thus, by virtue of lemma 3. 2, we have

(3. 3) $(\nabla_{Y}X)_{\mu}=0$, and $(\nabla_{X}Y)_{\lambda}=0$, for $X\epsilon T_{\lambda},$ $Y\epsilon T_{\mu}$ .
Furthermore, suppose that $X\epsilon T_{\lambda},$ $Y\epsilon T_{0}$ , and compute the both sides of the Codazzi

equation :

$(\nabla xA)Y=-\lambda(\nabla_{X}Y)_{\lambda}-\mu(\nabla_{X}Y)_{\mu}$,
(3. 4)

$(\nabla_{Y}A)X=Y\lambda X+(\lambda-\mu)(\nabla_{Y}X)_{\mu}+\lambda(\nabla_{Y}X)_{0}$ .
Thus, we have $(\nabla_{Y}X)_{0}=0$, that is, $\nabla_{Y}X\epsilon T_{1}$ . Similarly, for $X\epsilon T_{\mu}$, $Y\epsilon T_{0}$, we have
$\nabla_{Y}X\epsilon T_{1}$ . Thus we have $\nabla_{Y}T_{1}\subset T_{1}$, for $Y\epsilon T_{0}$, and hence, $\nabla_{Y}T_{0}\subset T_{0}$, for $Y\epsilon T_{0}$ . The.
refore, of course, $T_{0}$ is involutive and furthermore, for each point $x\epsilon W_{0}$, let $M_{0}(x)$ be
the maximal integral manifold through $x$ of $T_{0}$ , then

LEMMA 3. 3. Each $M_{0}(x)$ is totally geodesic.

4. Main results.

Since $T_{\lambda},$ $T_{\mu}$ and $T_{0}$ are differentiable on $W_{0}$, for each point $x\epsilon W_{0}$, we may choose a
differentiable field of orthonormal basis $\{Xi\}$ near $x$ so that $\{X_{a}\},$ $\{x_{p}\}$ and $tx_{u}$} are bases
for $T_{\lambda},$ $T_{\mu}$ and $T_{0}$ , respectively. Here $1\leqq a,$ $b,$ $c,$ $\leqq t,$ $t+1\leqq p,$ $q,$ $r,$ $\leqq t+t^{\prime}=k,$ $ k+1\leqq$

$u,$ $v,$ $w,\cdots\leqq m$ . From (2. 3) and II, with respect to the above basis $\{Xi\}$ , we have

$R(X_{a}, X_{b})=\lambda^{2}X_{a}\wedge X_{b}$,

(4. 1) $R(X_{a}, Xp)=\lambda\mu X_{a}\wedge Xp$,

$R(Xp, X_{q})=\mu^{2}Xp\wedge X_{q}$, and otherwise $z$ero.

On the other hand, in general, for a local differentiable field of orthonormal basis
$\{X_{i}\}$ in a Riemannian manifold $(M, g)$ , we may put

(4. 2) $\nabla_{X^{i}}X_{j}=\sum_{h-1}^{m}\gamma_{ijh}X_{x}$, where VX denotes the

covariant differentiation with respect to the Riemannian connection given by $g$ and
$\gamma_{ijh}=-\gamma_{ihj}m=\dim M$

First, we assume that $k(z)=m$ at some point $z\epsilon M$. Then, the type number is also
$m$ near 2 and hence, let $W=$ {$x\epsilon M;k(x)=m$ at $x$}, which is an open set of $M$ For each
point $x_{0}\epsilon W$, let $W_{0}$ be the connected component of $X_{0}$ in $W$ Then, I is valid at each
point of $W_{0}$ . Because, if II is valid at some point of $W_{0}$, then we see that.II is valid
everywhere on $W_{0}$ and furthermore, considering $T_{0}(x)$ as $\{0\}$ for each point $x\epsilon W_{0}$, we
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may think that this case is the special case in the arguments in \S 3. Thus, from (3. 2),
$T_{\lambda}$ and $T_{\mu}$ are parallel on the open subspace $W_{0}$ . Therefore, in particular, it must
follow that $R(X, Y)=0$, for $x_{\epsilon}\tau_{r},$ $Y\epsilon T_{\mu}$ . But, this contradicts to (4. 1). Thus we have

PROPOSITION 4. 1. Let $M$ be an m-dimensional, connected and complete Riemannian
manifold which is isometrically immersed in $a$ Euclidean space $E^{m+1}$ so that the type number
$k(x)=m$ at least at one point $x$ . If $M$ satisfies the condition $\mathfrak{c}^{**}$), then it is a hypersphere.

Next, we assume that $3\leqq k(z)<m$ at some point $z\epsilon M$ Then, by the arguments in
\S 3, we can take non-trivial three differentiable distributions, $T,$ $T_{\mu}$ and $T_{0}$ on an open
set $W_{0}$ . we shall now study the properties of $T_{\lambda},$ $T_{\mu}$ and $T_{0}$ .

From (3. 4) and (4. 2), we have the followings

(4. 3) $\gamma_{aub}=0$, for $a\neq b$, similarly, $\gamma_{puq}=0$, for $p\neq q$,

(4. 4) $ r_{aua}=-X_{u}\lambda/\lambda$, similarly, $\gamma_{pup=-X_{u}\mu}/\mu$ .
(4. 5) $(\lambda-\mu)^{\gamma_{ua}}p+\mu^{\gamma_{au}}p=0$ ,

similarly

(4. 6) $(\mu-\lambda)r_{up_{a}+\lambda\gamma_{p_{ua}=0}}$ .

Ffom (4. 5) and (4. 6), we have

(4. 7) $\lambda\gamma_{pua}-\mu^{\gamma_{au}}p=0$ .
From (4. 2) and the fact of lemma 3. 3, we have

(4. 8) $\gamma_{ua\nu}=0$, similarly $r_{upv}=0$ .
Since $(t-1)\lambda+(t^{\prime}-1)\mu=0$, from (4. 4), we have

(4. 9) $\gamma_{aua}=\gamma_{bub}=\gamma_{pup=}r_{quq}=-X_{u}\lambda/\lambda$, for $a\neq b,$ $p\neq q$.
On the other hand, from (4. 1), we have

(4. 10) $R(X_{a}, X_{u})X_{v}=\nabla x_{a}\nabla_{Xu}X_{v}-\nabla x_{u}\nabla_{Xa}X_{v}-\nabla[x_{a},$ $x_{u}1X_{\nu}$

$=\sum_{i-1}^{m}(X_{a}^{\gamma_{u\nu}};+\sum_{h-1}^{m}\gamma_{u\nu h}\gamma_{ahi}-X_{u}r_{av};-\sum_{h-1}^{m}\gamma_{a\nu h}\gamma_{uhi}$

$-\sum_{h-1}^{m}(\gamma_{auh}-\gamma_{uah})rh\nu i)Xi=0$ .

Thus, from (4. 10), by virtue of (4. 3) and (4. 8), we have

(4. 11) $x_{1}r_{ava}+\gamma_{aua}\gamma_{ava}+\sum_{p-t+1}^{k}\gamma_{avp}\gamma_{upa}+\sum_{p-t+1}^{k}\gamma_{aup}\gamma_{p_{ya}-\sum_{p-t+1}^{k}}\gamma_{uap}\gamma_{p_{\nu a}=0}$

similarly, considering $R(Xp, X_{u})X_{\nu}=0$ ,

(4. 12) $x_{u}r_{pvp}+\gamma_{pup}\gamma_{pvp+\sum_{a-1}^{t}}\gamma_{pva}\gamma_{uap+\sum_{a-1}^{t}}\gamma_{pua}\gamma_{avp-\sum_{a-1}^{t}}\gamma_{upa}\gamma_{avp=0}$ .
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Taking $u=v$ in (4. 11), (4. 12) and using (4. 5), (4. 6), (4. 7) and (4. 9), we have

(4. 13) $\lambda\sum_{q-t+}^{k}\mathfrak{c}_{1}r_{auq})^{2}+\mu\sum_{b-1}^{t}(\gamma_{aup})^{2}=0$ .

Thus, from (4. 13), we have

(4. 14) $(t\mu+_{p}t^{\prime}\lambda\underline{)}\sum_{t+1}^{k}\sum_{a-1}^{t}(\gamma_{aup})^{2}=0$ .

Since $(t-1)\lambda+(t^{\prime}-1)\mu=0,$ $(4.14)$ implies

(4. 15) $(t-t^{\prime})(t+_{p}t^{\prime}-1)\sum_{-t+1}^{k}\sum_{a-1}^{t}(\gamma_{aup})^{2}=0$ .

Thus, from (4. 15), if $t\neq t^{\prime}$, then we have

(4. 16) $\gamma_{aup=0}$ and hence, $\gamma_{pua}=0$ .
From (4. 16) (4. 11) implies

(4. 17) $x_{u}r_{ava}+r_{aua}r_{a\nu a}=0$ .
Now, let $L(s)$ be a geodesic starting from any point $x\epsilon W_{0}$ with any initial dire-

ction belonging to $T_{0}(x)$ , where $s$ denotes the arc-length parameter. Then, by lemma
3. 3, $L(s)$ is contained in $M_{0}(x)$ for sufficiently small $s$ . From (4. 9) and (4. 17), we
have

(4. 18) $\frac{d^{2}}{ds^{2}}(1/\lambda)=0$ , along $L(s)$ .

Thus, if $M$ is complete, then, by the same ones as the arguments in [2], we can show
that $L(s)$ is infinitely extendible in $W_{0}$ and furthermore, $\lambda$ is constant along $L(s)$ , and
hence, is constant on each $M_{0}(x)$ . Thus, from (4. 9), we have

(4. 19) $\gamma_{aua}=\gamma_{pup=0}$ .

Therefore, from (3. 3), (4. 3), (4. 8), (4. 16) and (4. 19), we can show that $\tau_{a}$ , $T_{\mu}$ and
$T_{0}$ are parallel on $W_{0}$ . Thus, in particular, it must follow that $R(X, Y)=0$. for $X\epsilon T_{\lambda}$,
$Y\epsilon T_{\mu}$ . But, this contradicts to (4. 1). Therefore, in this case, II can not occur. If
$t=t^{\prime}$ , then we see that $M$ is minimal in $E^{m+1}$ . Thus, we have theorem C. If $k$ is odd,
of course, it must follow that $t\neq t^{\prime}$ . Thus, we have theorem D. Lastly, we assume
that $M$ is a space of constant scalar curvature. Then, from (4. 4), (4. 19) is valid, and
hence, from (4. 11), we have (4. 16). Therefore, we can also show that II can not
occur in this case. That is

PROPOSITION 4. 2 Let $M$ be an m-dimensional, connected and complete Riemannian
manifold which is isometrically immersed in $a$ Euclidean space $E^{m+1}$ so that the lype number
$k(x)\geqq 3$ at least at one point $x$. If $M$ satisfies the condition $\mathfrak{c}^{**}$) and has the constant scalar
curvature, then it is the form $M=S^{k}\times E^{m-k}$ .
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Remark. In our arguments, if the type number $k(x)=3$ at some point $x$, then we
see that II can not occur near $\chi$.
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