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1. Introduction

R. L. Bishop and B. O’Neill [1] constructed a wide class of Riemannian manifolds of
negative curvature by warped product using convex functions. For two Riemannian
manifolds $B$ and $F$, a warped product is denoted by $B\times fF$ where $f$ is a positive $C^{\infty}$ fun-
ction on $B$. The purpose of this paper is to prove

THEOREM. Let $(F, g)$ be a Riemannian manifold of constant curvature $K\leqq 0$ . Let $E^{n}$

be an n-dimensional Euclidean space and let $f$ be a positive $C^{\infty}$ function on $E^{n}$. If either
$E^{n}\times fF$ is homogeneous (Riemannian) or the Ricci tensor of $E^{n}\times fF$ is parallel, then $E^{n}\times fF$

is locally symmetric.

The proof of the last theorem is motivated by [2], in which S. Tanno deals with
som $e$ related problems.

2. The curvature tensor of $E^{n}\times fF$

Let $(F, g)$ be a Riemannian manifold and let $E^{n}$ be a Euclidean n-space. We con.
sider the product manifold $E^{n}\times F$. For vector fields $A,$ $B,$ $C$, etc. on $E^{n}$, we denote
vector fields $(A, 0),$ $(B, 0),$ $(C, 0)$ , etc. on $E^{n}\times F$ by also $A,$ $B,$ $C$, etc. Likewise, for
vector fields $X,$ $Y$, etc. on $F$, we denot$e$ vector fields $(0, X),$ $(0, Y|)$ , etc. on $E^{n}\times F$

by $X,$ $Y$, etc.

We denote the inner product of $A$ and $B$ on $E^{n}$ by $<A,$ $B>$ . Let $f$ be a positive
$C^{\infty}$-function on $E^{n}$. Then the (Riemannian) inner product $<,$ $>forA+X$ and $B+Y$

on the warped product $E^{n}\times fF$ at $(a, x)$ is given by (cf. [1].)

$<A+X,$ $B+Y>(a.x)=<A,$ $B>(a)+f^{2}(a)g_{x}(X, Y)$ .
We extend the function $f$ on $E^{n}$ to that on $E^{n}\times fF$ by $f(a,x)=f(a)$ . The Riemannian
connections defined by $<,$ $>onE^{n}$ and $E^{n}\times fE$ are denot$ed$ by $\nabla^{0}$ and $\nabla$, respectively.
The Riemannian connection defined by $g$ on $\dagger F$ is denoted by $D$ Then we have the
identities (cf. Lemma 7.3, [1].)
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(2. 1) $\nabla_{A}B=\nabla^{o_{A}}B$,

$\nabla_{A}X=\nabla xA=(Af/f)X$,

(2. 2) VX $Y=D_{X}Y-(<X, Y>/f)$ grad $f$.
By (2. 1) we identify $\nabla^{0}$ with $\nabla$ in the sequel. In (2. 2) grad $fmE^{n}$ is identified with
grad $f$ on $E^{n}\chi_{f}F$ and we have

$<gradf,$ $A>=df(A)=Af$.
The Riemannian curvature tensors defined by $\nabla$ and $D$ ar $e$ denoted by $R$ and $S$ respec-
tively. We use both notations $R(X, Y)$ and $R_{XY}$. etc. :

$R(X,Y)=R_{XY}=\nabla[x, Y]-[\nabla x, \nabla_{Y}]$, etc.

Then, noticing that $E^{n}$ is flat, we hav$e$ (cf. Lemma 4.4, [1])

$R_{AB}C=0$,

$R_{AX}B=+(1/f)<\nabla_{A}gradf,$ $B>X$,

$R_{AB}X=R_{XY}A=0$,

$R_{AX}Y=(1/f)<X,$ $\triangleright\nabla_{A}gradf$,

(2. 3) $R_{XY}Z=S_{XY}Z_{-}$ ($<gradf$, grad $f>/f^{2}$)$(<X, Z>Y-<Y, Z>X)$ .
From now on we assume that $(F, g)$ is of constant curvature $K\leqq 0$ . Then we have

$S_{XY}Z=K(g(X, Z)Y-g(Y, Z)X)=(K/f^{2})(<X, Z>Y-<Y, Z>X)$ .
In this case, (2. 3) is written as

$R_{XY}Z=P(<X, Z>Y-<Y, Z>X)$

where we have put

(2. 4) $P=$ ($K-<gradf$, grad $J>$) $/f^{2}\leqq 0$ .
Then we have the following

LEMMA 2. 1. (cf. Lemma 4. 1, [2]) On $E^{n}\times fF,$ $\nabla R=0$ if and only if
(2. 5) $fP$ grad $f+\nabla gradf$ grad $f=0$,

(2. 6) $f\nabla_{A}\nabla_{B}$ grad $f-f\nabla_{T}grad$ f–Af $\nabla_{B}$ grad $f=0,$ $T=\nabla_{A}B$

and

(2. 7) $Bf\nabla_{A}$ grad $f-<\nabla_{A}$ grad $f,$ $B>gradf=0$.
Let $A_{\alpha}$($\alpha=1,$ 2, n) be unit vector fields on some open set on $E^{n}\times fF$ such that

they are mutually orthogonal and are tangent to $E^{n}$ at each point of the open set. We
denote by $R_{1}$ the Ricci curvature tensor. Then we have (cf. \S 5, [2])
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(2. 8) $\left\{\begin{array}{ll}R_{1}(Y, Z)=[ (r-1)P-(1/f)\sum_{\alpha}<\nabla_{A\alpha} & rad f, A_{\alpha}>] <Y, Z>\\R_{1}(B, Y)=0 & \\R_{1}(B, C)=-(r/f)<\nabla_{B} grad f, C>, & r=dim. F.\end{array}\right.$

3. Lemmas

LEMMA 3. 1. Let $R_{1}$ be the Ricci tensor field of a Riemennian manifold $(M, g)$ . Let $R^{1}$

be a field of symmetric endomorphism which corresponds to $R_{1}$ , that is, $g(R^{1}X, Y)=R_{1}(X$,
$Y)$ for all vector fields $X$ and $Y$ on M If either

a) $M$ is homogeneous (Riemannian)
$or$

b) the Ricci tensor of $M$ is parallel,

then the characteristic roots of $R^{1}$ are constant in value and multiplicity on $M$

PROOF. a) Since $R_{1}(\varphi_{*}X, \varphi_{*}Y)=R_{1}(X, Y)$ for every isometry $\varphi$ of $M$, it follows
that $\varphi_{*}^{-1}R^{1}\varphi_{*}=R^{1}$ on $M$ Since $M$ is homogeneous, this proves the first of the lemma.

b) In this case R is also parallel and the result is immediate. $q$ . $e$ . $d$ .
Returning to an argument of $E^{n}\times fF$, we have

LEMMA 3. 2. (cf. Lemma 6. 1, [2]) On $E^{n}\times fF,$ $(2.5)$ is equivalent to $P=constant$.
PROOF. By (2. 4) and (2. 5) we have

$(1/f)$ ($K-<gradf$, grad $J>$) grad $f+\nabla gradf$ grad $f=0$ .
Since this equatim is an equation on $E^{n}$, we introduce the natural $c\infty rdinate$ system
$(x^{\alpha};\alpha=1, \cdots, n)$ on $E^{n}$ . Then the last equation is nothing but

$(K-\sum_{\alpha}\frac{\partial f}{\partial x^{\alpha}}\frac{\partial f}{\partial x^{\alpha}})\frac{\partial f}{\partial x^{\beta}}+f\sum_{\alpha}\frac{\partial^{2}f}{\partial x^{\alpha}\partial x^{\beta}}\frac{\partial f}{\partial x^{\alpha}}=0$ .

The last equation multiplied by $2f$ is

$(K-\sum_{\alpha}(\frac{\partial J}{\partial x^{\alpha}})^{2})\frac{\partial f^{2}}{\partial x^{\beta}}f^{2}\frac{\partial}{\partial x^{\beta}}(K-\sum_{\alpha}(\frac{\partial f}{\partial x^{\alpha}})^{2})=0$,

which implies that each partial derivative of

(3. 1) $P=(K-\sum_{\alpha}(\frac{\partial f}{\partial x^{a}})^{2})/f^{2}$

vanishes. Thus, $P$ is constant. The converse is clear. $q$. $e$ . $d$ .
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4. Proof of theorem

In (2. 8), we may put $A_{\alpha}=\frac{\partial}{\partial x^{a}}$ , where $x^{\alpha}(\alpha=1, \cdots, n)$ are natural coordinates of
$E^{n}$. Then the characteristic roots of $R^{1}$ at a point $(a, x)\in E^{n}\times fF$ consist of

$(r-1)P(a)-(1/f(a))\sum_{\alpha}\frac{\partial^{2}f}{\partial x^{a}\partial x^{a}}(a)$ (n-multiplicity)

and the roots $\lambda_{1}(a),$ $\lambda_{2}(a),$
$\cdots,$

$\cdots\lambda_{r}(a)$ of

$det(-(r/f(a))\frac{\partial^{2}f}{\partial_{X^{\beta}}\partial x^{\alpha}}(a)-\lambda\delta_{\beta a})=0$ .

Since $E^{n}\times fF$ is homogeneous, we have

$(r-1)P-(1/f)\sum_{a}\frac{\partial^{2}f}{\partial x^{a}\partial x^{\alpha}}=constant$

and

$\lambda_{1}+\cdots+\lambda_{n}=-(r/f)\sum_{\alpha}\frac{\partial^{2}f}{\partial x^{\alpha}\partial x^{a}}=constant$

by lemma 3. 1 and by the continuity of th$e$ characteristic roots of $R^{1}$ . Therefore $P$ is
constant and (2. 5) is $s$atisPed by lemma 3. 2.

Now, we solve (3. 1) with $P=constant$ and show that $f$ satisfies (2. 6) and (2. 7).

Then $E^{n}\times fF$ is locally symmetric. (3. 1) is

$K-\sum_{\alpha}(\frac{\partial f}{\partial x^{\alpha}})^{2}-Pf^{2}=0$ .

S. Tanno [2] solved the last partial differential equation by Lagrange-Charpit method
to get a solution

$f=(\frac{1}{2\sqrt{-P}})((K/b)exp(c\rho x^{\beta})-bexp(-c_{\beta}x^{\beta}))$

where $b$ and $c_{1},$ $\cdots,$
$c_{n}$ are some constant. Consequently, we see that $f$ satisfies (2. 6) and

(2. 7) which are written as

$f\frac{\partial^{3}f}{\partial x^{a}\partial x^{\beta}\partial x^{\gamma}}-\frac{\partial f}{\partial x^{a}}\frac{\partial^{2}f}{\partial x^{\beta}\partial x^{\gamma}}=0$

$\frac{\partial]}{\partial x^{\beta}}\frac{\partial^{2}f\partial^{2}f}{\partial x^{\alpha}\partial x^{\gamma}\partial x^{\alpha}\partial_{X^{\beta}}}\frac{\partial f}{\partial x^{\gamma}}=0$ .
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