C^{*}-algebras having the property (T)

By

Tadashi Huruya

(Received Nov. 30, 1970)

1. Introduction

If A and B are C^{*}-algebras, $A \odot B$ denotes their algebraic tensor product. A norm $\left\|\|_{B}\right.$ in $A \odot B$ is called compatible if the completion of $A \odot B$ by $\| \|_{\beta}$ becomes a C^{*}-algebra, and we denote by $A \bigotimes_{\beta} B$ the C^{*}-algebra which is the completion of $A \odot B$ with respect to $\left\|\|_{\beta}\right.$. There are some ways to define compatible norms in $A \odot B$. T. Turumaru [5] introduced the α-norm. As A. Wulfsohn established, the α-norm has the property:

$$
\left\|\sum_{k=1}^{n} x_{k} \otimes y_{k}\right\|_{\alpha}=\left\|\sum_{k=1}^{n} \pi_{1}\left(x_{k}\right) \otimes \pi_{2}\left(y_{k}\right)\right\|, x_{k} \in A, y_{k} \in B
$$

where π_{1} and π_{2} are any faithful representations of A and B, respectively. M. Takesaki proved in [4] that the α-norm is not necessarily the unique compatible norm in $A \odot B$ and that it is the least one among the all compatible norms.

On the other hand, A. Guichardet defined the v-norm and showed that it is the greatest one among the all compatible norms. The ν-norm is defined by the formula

$$
\|x\|_{\nu}=\sup _{\pi}\|\pi(x)\|, x \in A \odot B
$$

where π runs over the set of all representations of $A \odot B$ which are continuous with respect to any compatible norm in $A \odot B$.

We say that a C^{*}-algebra A has the property (T) if, for every C^{*}-algebra B, the α-norm in $A \odot B$ is the unique compatible norm.

This papar is concerned with C^{*}-algebras having the property (T). In § 2, we consider the structure of C^{*}-algebras having the property (T). In $\S 3$, we apply the consideration in $\S 2$ to tensor products of C^{*}-algebras. Finally in $\S 4$ we present that a C^{*}-algebra A has the greatest closed two-sided ideal I having the property (T) and it is the least one such that A / I has no nonzero closed two-sided ideals having the property (T).

2. \mathbf{C}^{*}-algebras

We begin with preliminary lemmas.
Lemma 1. Let A and B be C^{*}-algebras and let I be a closed two-sided ideal in A. Then there exists a closed two-sided ideal J such that

$$
(A / I) \bigotimes_{a} B=\left(A \bigotimes_{\alpha} B\right) / J
$$

Proof. Let π be a representation of A such that the kernel of $\pi=I$ and ι be a faith. ful representation of B. Then we can consider the canonical homomorphism $\pi \otimes_{c}$ of $A \bigotimes_{\alpha} B$ onto $\pi(A) \otimes_{\alpha} \iota(B)$ and denote its kernel by J. Since $\pi(A) \otimes_{\alpha \iota}(B)$ is isomorphic to $(A / I) \otimes_{\alpha} B$, it follows that $(A / I) \otimes_{\alpha} B=\left(A \otimes_{\alpha} B\right) / J$.

Lemma 2. If a C^{*}-algebra A has the property (T) and φ is a homomorphism of A, then the image $\varphi(A)$ of A under φ has the property (T).

Proof. Let B be a C^{*}-algebra, let π be a representation of $\varphi(A) \odot B$ which is continuous with respect to each compatible norm in $\varphi(A) \odot B$ and let c be the identity automorphism of B. Then we can consider the canonical homomorphism $\varphi \otimes_{c}$ of $A \otimes_{a} B$ onto $\varphi(A) \otimes_{\alpha} B$. The composite $\pi \circ \varphi \otimes \iota$ of $\varphi \otimes \iota$ and π is a representation of $A \odot B$ which is continuous with respect to each compatible norm in $A \odot B$. Since A has the property (T), $\pi \circ \varphi \otimes \iota$ can be extended to the representation of $A \otimes_{a} B$ which is denoted by ν.

On the other hand, since $\varphi(A) \bigotimes_{\alpha} B=\varphi \otimes_{\iota}\left(A \otimes_{\alpha} B\right)$, for each x in $\varphi(A) \otimes_{\alpha} B$ there exists an element y in $A \otimes_{a} B$ such that $\varphi \otimes_{\iota}(y)=x$. Assume that $\varphi \bigotimes_{\iota}(y)=\varphi \otimes_{\iota}(z)$, where $y \in A$ $\otimes_{\alpha} B, z \in A \otimes_{\alpha} B$. Since the kernel of $\varphi \otimes \iota$ is a subset of the kernel of ν, we have $\nu(y)=$ $\nu(z)$. Therefore, we can define the representation $\tilde{\pi}$ of $\varphi(A) \otimes_{\alpha} B$ as follows:

$$
\tilde{\pi}(x)=\nu(y), x \grave{\in} \varphi(A) \otimes_{\alpha} B
$$

where y is an element in $A \otimes_{\alpha} B$ such that $\varphi \otimes_{\bullet}(y)=x$.
Then $\tilde{\pi}$ is an extention of π. Therefore, the α-norm in $\varphi(A) \odot B$ is greater than the ν-norm in $\varphi(A) \odot B$. This implies the equality of the two norms, and the lemma is proved.

Corollary. Let A be a C*-algebra having the property (T) and let I be a closed twosided ideal in A. Then A / I has the property (T).

Proposition 3. Let I be a closed two-sided ideal in a C*-algebra A. Then A has the property (T) if and only if A / I and I have the property (T).

Proof. Let B be a C^{*}-algebra. Assume first that A has the property (T). If π is a non degenerate representation of $I \odot B$ which is continuous with respect to each compatible norm in $I \odot B$. By [2: Proposition 1] there exist representations π_{1} of I and π_{2} of B such that

$$
\pi(x \otimes y)=\pi_{1}(x) \pi_{2}(y)=\pi_{2}(y) \pi_{1}(x), x \in I, y \in B
$$

Then π_{1} is the non degenerate representation of I and hence π_{1} can be extended to the representation of A which is also denoted by π_{1}. Moreover, we have

$$
\pi_{1}(x) \pi_{2}(y)=\pi_{2}(y) \pi_{1}(x), x \in A, y \in B
$$

Therefore, we can define the representation $\tilde{\pi}$ of $A \odot B$ as follows:

$$
\widetilde{\pi}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)=\sum_{i=1}^{n} \pi_{1}\left(x_{i}\right) \pi_{2}\left(y_{i}\right), \quad x_{i} \in A, \quad y_{i} \in B
$$

Since $\tilde{\pi}$ is continuous with respect to each compatible norm in $A \odot B$, it can be extended to the representation of $A \otimes_{\alpha} B$ which is also denoted by $\tilde{\pi}$. Since $I \otimes_{\alpha} B, \subset A \otimes_{\alpha} B, \widetilde{\pi} \mid I \otimes_{\alpha} B$ is the extention of π. Therefore, I has the property (T).
By Corollary of Lemma 2, A / I has the property (T).
Conversely, assume that A / I and I have the property (T). Let π be a representation of $A \odot B$ on a Hilbert space H_{π}. If π is continuous with respect to each compatible norm in $A \odot B$, there exist representations π_{1} of A and π_{2} of B such that

$$
\pi(x \otimes y)=\pi_{1}(x) \pi_{2}(y)=\pi_{2}(y) \pi_{1}(x), x \in A, y \in B
$$

Then, in case $\pi_{1}(I)=\{0\}, \pi$ defines the canonical representation π of $A / I \odot B$ which is continuous with respect to each compatible norm in $A / I \odot B$. Since $A / I \otimes_{\nu} B=A / I \otimes_{\alpha} B$, $\bar{\pi}$ can be extended the representation of $A / I \otimes_{\alpha} B$ which is also denoted by $\bar{\pi}$. By Lemma $1, \bar{\pi}$ defines the representation ρ of $A \otimes_{\alpha} B$. Then, $\rho \mid A \odot B=\pi$.

In case $\pi_{1}(I) \neq\{0\}$, let H_{1} be the closed subspace of H generated by $\{\pi(x) \xi \mid x \in I \odot B$, $\xi \in H\} . \quad \pi$ defines the representation π^{\prime} of $I \odot B$ on H_{1}. Then $I \otimes_{\alpha} B$ is a closed two-sided ideal in $A \otimes_{\alpha} B$, so π^{\prime} can be extended to the representation of $A \otimes_{\alpha} B$ on H_{1} which is also denoted by π^{\prime}. Let $\left(u_{\lambda}\right)$ and $\left(v_{\mu}\right)$ be approximate identities of I and B, respectively. Then we have

$$
\text { strong- } \underset{\lambda, \mu)}{\operatorname{limit}} \pi\left(u_{\lambda} \otimes v_{\mu}\right)=I_{H 1}
$$

where $I_{H 1}$ is the identy operator on H_{1}, and

$$
\begin{aligned}
\lim _{(\lambda, \mu)} \pi(x \otimes y) \pi\left(u_{\lambda} \otimes y_{\mu}\right) \xi & =\lim _{(\lambda, \mu)} \pi\left(x u_{\lambda} \otimes y v_{\mu}\right) \xi \\
& =\lim _{(\lambda, \mu)} \pi^{\prime}\left(x u_{\lambda} \otimes y v_{\mu}\right) \xi \\
& =\lim _{(\lambda, \mu)} \pi^{\prime}(x \otimes y) \pi^{\prime}\left(u_{\lambda} \otimes v_{\mu}\right) \xi
\end{aligned}
$$

for $x \in A, y \in B, \xi \in H_{1}$.
Hence H_{1} is invariant with respect to $\pi(A \odot B)$ and $\pi(x) \mid H_{1}=\pi^{\prime}(x)$ for $x \in A \odot B$.
Let $H^{+}{ }_{1}$ be the orthogonal complement of H_{1} in H and $\pi \mid H^{+}{ }_{1}$ be the restriction of π on $H^{\perp}{ }_{1}$. Since $\pi\left|H^{\perp}{ }_{1}(I \odot B)=\{0\}, \pi\right| H^{\perp}{ }_{1}$ can be extended to the representation of $A \otimes_{\alpha} B$.

Consequently π can be extended to the representation of $A \otimes_{a} B$, and we obtain the conclusion.

3. Tensor products

Using above results, we consider tensor products of C^{*}-algebras which have the property (T).

Proposition 4. Let A and B be C^{*}-algebras and let $A \otimes_{a} B$ be a C^{*}-algebra having the property (T). Then, A and B have the property (T).

Proof. Let C be a C^{*}-algebra and let π be a representation of $A \odot C$ on a Hilbert space $H \pi$ which is continuous with respect to any compatible norm in $A \odot C$. Then, there exist representations π_{1} of A and π_{2} of C such that

$$
\pi(x \otimes y)=\pi_{1}(x) \pi_{2}(y), \quad x \in A, y \in C .
$$

Now, let ρ be a non degenerate representation of B on a Hilbert space H_{ρ}. Then we can consider the canonical representation $\rho \otimes \pi_{1}$ of $B \otimes_{a} A$.

Here, we define the representation ν of $\left(B \bigotimes_{a} A\right) \odot C$ as follows:

$$
\nu(x \otimes y)=\rho \otimes \pi_{1}(x)\left(I \otimes \pi_{2}(y)\right), \quad x \in B \bigotimes_{a} A, \quad y \in C,
$$

where I is the identity operator on H_{ρ}.
$B \bigotimes_{\alpha} A$ has the property (T), and $\left(B \otimes_{\alpha} A\right) \otimes_{\alpha} C=B \otimes_{\alpha}\left(A \otimes_{\alpha} C\right)$, Therefore, ν can be extended to the representation of $\left(B \bigotimes_{\alpha} A\right) \otimes_{\alpha} C$ which is also denoted by ν. Then, there exist representations of ν_{1} of $A \otimes_{\alpha} C$ and ν_{2} of B such that

$$
\nu(x \otimes y)=\nu_{2}(x) \nu_{1}(y), \quad x \in B, y \in A \otimes_{\alpha} C .
$$

Let ξ be a unit vector in H_{ρ}, that is $\|\xi\|=1$, and let $\nu_{1} \mid \xi \otimes H_{\pi}$ be the restriction of the representation ν_{1} on $\xi \otimes H_{\pi}$. Then, $\nu_{1}\left|\xi \otimes H_{\pi}\right| A \odot C$ is unitarily equivalent to π. Therefore A has the property (T).

Corollary. Let a norm $\left\|\|_{\beta}\right.$, in $A \odot B$ be compatible and let $A \otimes_{\beta} B$ be a C^{*}-algebra having the property (T). Then, A and B have the property (T).

Proof. We can define a homomorphism π_{β} of $A \bigotimes_{\beta} B$ onto $A \bigotimes_{\alpha} B$ as follows:

$$
\pi_{\beta}(x)=\| \|_{\alpha}-\lim _{n} x_{n}, \quad x \in A \bigotimes_{\beta} B,
$$

where $\left(x_{n}\right)$ is a sequence in $A \odot B$ converging to x with respect to $\left\|\|_{\beta}\right.$.
Since $\pi_{\beta}\left(A \bigotimes_{\beta} B\right)=A \bigotimes_{\alpha} B$, it follows from Lemma 2 and Proposition 3 that A and B have the property (T).

Proposition 5. Let A and B be C^{*}-algebras and I_{1} and I_{2} be closed two-sided ideals in A and B, respectively. Suppose that A has the property (T), then, we have

$$
A / I_{1} \otimes_{\alpha} B / I_{2}=A \bigotimes_{\alpha} B /\left(I_{1} \otimes_{\alpha} B+A \otimes_{\alpha} I_{2}\right) .
$$

Proof. By Proposition 3, we have

$$
A / I_{1} \otimes_{a} B / I_{2}=A / I_{1} \otimes_{\nu} B / I_{2} \text {. }
$$

On the other hand, by [3], we have

$$
A / I_{1} \otimes_{\nu} B / I_{2}=A \otimes_{\nu} B /\left(I_{1} \otimes B+A \otimes_{\nu} I_{2}\right) .
$$

Since A has the property (T), we have

$$
A \otimes_{v} B / I_{1} \otimes_{v} B+A \otimes_{v} I_{2}=A \otimes_{a} B /\left(I_{1} \otimes_{\alpha} B+A \otimes_{a} I_{2}\right) .
$$

Consequently we have

$$
A / I_{1} \otimes B / I_{2}=A \otimes_{\alpha} B /\left(I_{1} \otimes_{\alpha} B+A \otimes_{\alpha} I_{2}\right) .
$$

4. Two-sided ideals

In this section, we consider closed two-sided ideals having the property (T).
Lemma 6. Let I_{1} and I_{2} be closed two-sided ideals having the property (T) in a C^{*} algebra. Then $I_{1}+I_{2}$ has the property (T).

Proof. Since $\left(I_{1}+I_{2}\right) / I_{1}$ is isomorphic to $I_{2} / I_{1} \cap I_{2}$, it follows from Corollary of Lemma 2 that $\left(I_{1}+I_{2}\right) / I_{1}$ has the property (T). Then, by Proposition $3, I_{1}+I_{2}$ has the property (T).

Proposition 7. Let A be a C^{*}-algebra. Then there exists the greatest closed two-sided ideal I having the property (T), and it is the least one such that A / I has no nonzero closed two-sided ideals having the property (T).

Proof. Let $\left\{I_{\}}\right\}_{\text {de }}$ be an increasing family of closed two-sided ideals I_{λ} in A. By [4; Theorem 5], the closure of $\cup_{k \& 1} I_{\lambda}$ has the property (T). Hence there exists a maximal closed two-sided ideal I having the property (T). By the maximality and Proposition 3, A / I has no nonzero closed two-sided ideals having the property (T). By Lemma 6, I is the greatest.

Now, let J be a closed two-sided ideal in A such that A / J has no non-zero ideals having the property (T). Then, $I / J \cap I$ is isomorphic to the closed two-sided ideal in A / J. Hence $I / J \cap I=\{0\}$. Consequently $J \supset I$, this completes the proof.

References

1. J. Dixmier: Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
2. A. Guichardeft: Caractères et représentations de produits tensoriels de C*-algebres, Ann. Ecole Norm. Sup., 81(1964), 189-206.
3. ——: Tensor products of C*-algebras, Soviet Math., 6(1965), 210-213. (Translation of Doklady Akademii Nauk SSSR, 160(1965), 986-989.)
4. M. Takesaki: On the cross-norm of the direct product of C^{*}-algebras, Tohoku Math. Journ., 16(1964), 111-122.
5. T. Turumaru: On the direct product of operator algebras I, Tohoku Math. Journ., 4(1956), 242-251.
6. A. Wulfsohn: Produit tensoriel de C*-algèbres, Bull. Sci. Math., 87(1963), 13-27.
7. : Le produit tensoriel de certaines C^{*}-algèbres, C. R. Acad. Sc. Paris, 258(1964), 6052-6054.
