C*-algebras having the property (T)

By

Tadashi HURUYA

(Received Nov. 30, 1970)

1. Introduction

If A and B are C*-algebras, $A \odot B$ denotes their algebraic tensor product. A norm $\| \|_{\beta}$ in $A \odot B$ is called *compatible* if the completion of $A \odot B$ by $\| \|_{\beta}$ becomes a C*-algebra, and we denote by $A \otimes_{\beta} B$ the C*-algebra which is the completion of $A \odot B$ with respect to $\| \|_{\beta}$. There are some ways to define compatible norms in $A \odot B$. T. Turumaru [5] introduced the α -norm. As A. Wulfsohn established, the α -norm has the property:

$$\|\sum_{k=1}^{n} x_k \otimes y_k\|_{\alpha} = \|\sum_{k=1}^{n} \pi_1(x_k) \otimes \pi_2(y_k)\|, \ x_k \in A, \ y_k \in B$$

where π_1 and π_2 are any faithful representations of A and B, respectively. M. Takesaki proved in [4] that the α -norm is not necessarily the unique compatible norm in $A \odot B$ and that it is the least one among the all compatible norms.

On the other hand, A. Guichardet defined the ν -norm and showed that it is the greatest one among the all compatible norms. The ν -norm is defined by the formula

$$\|x\|_{\nu} = \sup \|\pi(x)\|, x \in A \odot B$$

where π runs over the set of all representations of $A \odot B$ which are continuous with respect to any compatible norm in $A \odot B$.

We say that a C*-algebra A has the property (T) if, for every C*-algebra B, the α -norm in $A \odot B$ is the unique compatible norm.

This papar is concerned with C*-algebras having the property (T). In § 2, we consider the structure of C*-algebras having the property (T). In §3, we apply the consideration in §2 to tensor products of C*-algebras. Finally in §4 we present that a C*-algebra A has the greatest closed two-sided ideal I having the property (T) and it is the least one such that A/I has no nonzero closed two-sided ideals having the property (T).

2. C*-algebras

We begin with preliminary lemmas.

LEMMA 1. Let A and B be C*-algebras and let I be a closed two-sided ideal in A. Then there exists a closed two-sided ideal J such that

 $(A/I)\otimes_{\alpha}B = (A\otimes_{\alpha}B)/J.$

PROOF. Let π be a representation of A such that the kernel of $\pi = I$ and ι be a faithful representation of B. Then we can consider the canonical homomorphism $\pi \otimes \iota$ of $A \otimes_{\alpha} B$ onto $\pi(A) \otimes_{\alpha} \iota(B)$ and denote its kernel by J. Since $\pi(A) \otimes_{\alpha} \iota(B)$ is isomorphic to $(A/I) \otimes_{\alpha} B$, it follows that $(A/I) \otimes_{\alpha} B = (A \otimes_{\alpha} B)/J$.

LEMMA 2. If a C*-algebra A has the property (T) and φ is a homomorphism of A, then the image $\varphi(A)$ of A under φ has the property (T).

PROOF. Let *B* be a C*-algebra, let π be a representation of $\varphi(A) \odot B$ which is continuous with respect to each compatible norm in $\varphi(A) \odot B$ and let ι be the identity automorphism of *B*. Then we can consider the canonical homomorphism $\varphi \otimes \iota$ of $A \otimes_{\alpha} B$ onto $\varphi(A) \otimes_{\alpha} B$. The composite $\pi \circ \varphi \otimes \iota$ of $\varphi \otimes \iota$ and π is a representation of $A \odot B$ which is continuous with respect to each compatible norm in $A \odot B$. Since *A* has the property (T), $\pi \circ \varphi \otimes \iota$ can be extended to the representation of $A \otimes_{\alpha} B$ which is denoted by ν .

On the other hand, since $\varphi(A) \otimes_{\alpha} B = \varphi \otimes \iota(A \otimes_{\alpha} B)$, for each x in $\varphi(A) \otimes_{\alpha} B$ there exists an element y in $A \otimes_{\alpha} B$ such that $\varphi \otimes \iota(y) = x$. Assume that $\varphi \otimes \iota(y) = \varphi \otimes \iota(z)$, where $y \in A$ $\otimes_{\alpha} B$, $z \in A \otimes_{\alpha} B$. Since the kernel of $\varphi \otimes \iota$ is a subset of the kernel of ν , we have $\nu(y) =$ $\nu(z)$. Therefore, we can define the representation $\widetilde{\pi}$ of $\varphi(A) \otimes_{\alpha} B$ as follows:

$$\widetilde{\pi}(x) = \nu(y), \ x \in \varphi(A) \otimes_{\alpha} B$$

where y is an element in $A \otimes_{\alpha} B$ such that $\varphi \otimes \iota(y) = x$.

Then π is an extention of π . Therefore, the α -norm in $\varphi(A) \odot B$ is greater than the ν -norm in $\varphi(A) \odot B$. This implies the equality of the two norms, and the lemma is proved.

COROLLARY. Let A be a C*-algebra having the property (T) and let I be a closed twosided ideal in A. Then A/I has the property (T).

PROPOSITION 3. Let I be a closed two-sided ideal in a C*-algebra A. Then A has the property (T) if and only if A/I and I have the property (T).

PROOF. Let *B* be a C*-algebra. Assume first that *A* has the property (T). If π is a non degenerate representation of $I \odot B$ which is continuous with respect to each compatible norm in $I \odot B$. By [2: Proposition 1] there exist representations π_1 of *I* and π_2 of *B* such that

$$\pi(x\otimes y) = \pi_1(x)\pi_2(y) = \pi_2(y)\pi_1(x), x \in I, y \in B.$$

Then π_1 is the non degenerate representation of *I* and hence π_1 can be extended to the representation of *A* which is also denoted by π_1 . Moreover, we have

$$\pi_1(x)\pi_2(y) = \pi_2(y)\pi_1(x), x \in A, y \in B.$$

Therefore, we can define the representation $\widetilde{\pi}$ of $A \odot B$ as follows:

$$\widetilde{\pi}(\sum_{i=1}^{n} x_i \otimes y_i) = \sum_{i=1}^{n} \pi_1(x_i) \ \pi_2(y_i), \quad x_i \in A, \ y_i \in B.$$

Since $\widetilde{\pi}$ is continuous with respect to each compatible norm in $A \odot B$, it can be extended to the representation of $A \otimes_{\alpha} B$ which is also denoted by $\widetilde{\pi}$. Since $I \otimes_{\alpha} B$, $\subset A \otimes_{\alpha} B$, $\widetilde{\pi} \mid I \otimes_{\alpha} B$ is the extention of π . Therefore, I has the property (T). By Corollary of Lemma 2. A/I has the property (T).

By Corollary of Lemma 2, A/I has the property (T).

Conversely, assume that A/I and I have the property (T). Let π be a representation of $A \odot B$ on a Hilbert space H_{π} . If π is continuous with respect to each compatible norm in $A \odot B$, there exist representations π_1 of A and π_2 of B such that

$$\pi(x\otimes y) = \pi_1(x)\pi_2(y) = \pi_2(y)\pi_1(x), x \in A, y \in B.$$

Then, in case $\pi_1(I) = \{0\}$, π defines the canonical representation $\overline{\pi}$ of $A/I \odot B$ which is continuous with respect to each compatible norm in $A/I \odot B$. Since $A/I \otimes_{\nu} B = A/I \otimes_{\alpha} B$, $\overline{\pi}$ can be extended the representation of $A/I \otimes_{\alpha} B$ which is also denoted by $\overline{\pi}$. By Lemma 1, $\overline{\pi}$ defines the representation ρ of $A \otimes_{\alpha} B$. Then, $\rho | A \odot B = \pi$.

In case $\pi_1(I) \neq \{0\}$, let H_1 be the closed subspace of H generated by $\{\pi(x) \notin | x \in I \odot B, \xi \in H\}$. π defines the representation π' of $I \odot B$ on H_1 . Then $I \otimes_{\alpha} B$ is a closed two-sided ideal in $A \otimes_{\alpha} B$, so π' can be extended to the representation of $A \otimes_{\alpha} B$ on H_1 which is also denoted by π' . Let (u_{λ}) and (v_{μ}) be approximate identities of I and B, respectively. Then we have

strong-limit
$$\pi(u_{\lambda}\otimes v_{\mu})=I_{H1}$$

where I_{H1} is the identy operator on H_1 , and

$$\lim_{\substack{(\lambda,\mu)}} \pi(x \otimes y) \pi(u_{\lambda} \otimes y_{\mu}) \xi = \lim_{\substack{(\lambda,\mu)}} \pi(x u_{\lambda} \otimes y v_{\mu}) \xi$$
$$= \lim_{\substack{(\lambda,\mu)}} \pi'(x u_{\lambda} \otimes y v_{\mu}) \xi$$
$$= \lim_{\substack{(\lambda,\mu)}} \pi'(x \otimes y) \pi'(u_{\lambda} \otimes v_{\mu}) \xi$$

for $x \in A$, $y \in B$, $\xi \in H_1$.

Hence H_1 is invariant with respect to $\pi(A \odot B)$ and $\pi(x)|H_1 = \pi'(x)$ for $x \in A \odot B$.

Let H_1^+ be the orthogonal complement of H_1 in H and $\pi | H_1^+$ be the restriction of π on H_1^+ . Since $\pi | H_1^+(I \odot B) = \{0\}$, $\pi | H_1^+$ can be extended to the representation of $A \otimes_{\alpha} B$.

Consequently π can be extended to the representation of $A \otimes_{\alpha} B$, and we obtain the conclusion.

3. Tensor products

Using above results, we consider tensor products of C*-algebras which have the property (T).

PROPOSITION 4. Let A and B be C*-algebras and let $A \otimes_{\alpha} B$ be a C*-algebra having the property (T). Then, A and B have the property (T).

PROOF. Let C be a C*-algebra and let π be a representation of $A \odot C$ on a Hilbert space $H\pi$ which is continuous with respect to any compatible norm in $A \odot C$. Then, there exist representations π_1 of A and π_2 of C such that

$$\pi(x\otimes y) = \pi_1(x)\pi_2(y), \quad x \in A, y \in C.$$

Now, let ρ be a non degenerate representation of B on a Hilbert space H_{ρ} . Then we can consider the canonical representation $\rho \otimes \pi_1$ of $B \otimes_{\alpha} A$.

Here, we define the representation ν of $(B \otimes_{\alpha} A) \odot C$ as follows:

$$\nu(x\otimes y) = \rho \otimes \pi_1(x)(I \otimes \pi_2(y)), \quad x \in B \otimes_{\alpha} A, y \in C,$$

where I is the identity operator on H_{ρ} .

 $B \bigotimes_{\alpha} A$ has the property (T), and $(B \bigotimes_{\alpha} A) \bigotimes_{\alpha} C = B \bigotimes_{\alpha} (A \bigotimes_{\alpha} C)$, Therefore, ν can be extended to the representation of $(B \bigotimes_{\alpha} A) \bigotimes_{\alpha} C$ which is also denoted by ν . Then, there exist representations of ν_1 of $A \bigotimes_{\alpha} C$ and ν_2 of B such that

$$\nu(x\otimes y) = \nu_2(x)\nu_1(y), \quad x \in B, \ y \in A \otimes_{\alpha} C.$$

Let ξ be a unit vector in H_{ρ} , that is $||\xi||=1$, and let $\nu_1|\xi \otimes H_{\pi}$ be the restriction of the representation ν_1 on $\xi \otimes H_{\pi}$. Then, $\nu_1|\xi \otimes H_{\pi}|A \odot C$ is unitarily equivalent to π . Therefore A has the property (T).

COROLLARY. Let a norm $\| \|_{\beta}$, in $A \odot B$ be compatible and let $A \otimes_{\beta} B$ be a C*-algebra having the property (T). Then, A and B have the property (T).

PROOF. We can define a homomorphism π_{β} of $A \bigotimes_{\beta} B$ onto $A \bigotimes_{\alpha} B$ as follows:

$$\pi_{\beta}(x) = \| \|_{\alpha} - \lim x_n, x \in A \otimes_{\beta} B,$$

where (x_n) is a sequence in $A \odot B$ converging to x with respect to $\| \|_{\beta}$.

Since $\pi_{\beta}(A \otimes_{\beta} B) = A \otimes_{\alpha} B$, it follows from Lemma 2 and Proposition 3 that A and B have the property (T).

PROPOSITION 5. Let A and B be C^{*}-algebras and I_1 and I_2 be closed two-sided ideals in A and B, respectively. Suppose that A has the property (T), then, we have

$$A/I_1 \otimes_{\alpha} B/I_2 = A \otimes_{\alpha} B/(I_1 \otimes_{\alpha} B + A \otimes_{\alpha} I_2).$$

PROOF. By Proposition 3, we have

$$A/I_1 \otimes_{\alpha} B/I_2 = A/I_1 \otimes_{\nu} B/I_2$$
.

On the other hand, by [3], we have

$$A/I_1 \otimes_{\nu} B/I_2 = A \otimes_{\nu} B/(I_1 \otimes B + A \otimes_{\nu} I_2).$$

Since A has the property (T), we have

$$A \otimes_{\nu} B/I_1 \otimes_{\nu} B + A \otimes_{\nu} I_2 = A \otimes_{\alpha} B/(I_1 \otimes_{\alpha} B + A \otimes_{\alpha} I_2).$$

Consequently we have

$$A/I_1 \otimes B/I_2 = A \otimes_{\alpha} B/(I_1 \otimes_{\alpha} B + A \otimes_{\alpha} I_2).$$

4. Two-sided ideals

In this section, we consider closed two-sided ideals having the property (T).

LEMMA 6. Let I_1 and I_2 be closed two-sided ideals having the property (T) in a C*algebra. Then I_1+I_2 has the property (T).

PROOF. Since $(I_1+I_2)/I_1$ is isomorphic to $I_2/I_1 \cap I_2$, it follows from Corollary of Lemma 2 that $(I_1+I_2)/I_1$ has the property (T). Then, by Proposition 3, I_1+I_2 has the property (T).

PROPOSITION 7. Let A be a C*-algebra. Then there exists the greatest closed two-sided ideal I having the property (T), and it is the least one such that A/I has no nonzero closed two-sided ideals having the property (T).

PROOF. Let $\{I_{\lambda}\}_{\lambda \in A}$ be an increasing family of closed two-sided ideals I_{λ} in A. By [4; Theorem 5], the closure of $\bigcup_{\lambda \in A} I_{\lambda}$ has the property (T). Hence there exists a maximal closed two-sided ideal I having the property (T). By the maximality and Proposition 3, A/I has no nonzero closed two-sided ideals having the property (T). By Lemma 6, I is the greatest.

Now, let J be a closed two-sided ideal in A such that A/J has no non-zero ideals having the property (T). Then, $I/J \cap I$ is isomorphic to the closed two-sided ideal in A/J. Hence $I/J \cap I = \{0\}$. Consequently $J \supset I$, this completes the proof.

NIIGATA UNIVERSITY

T. Huruya

References

- 1. J. DIXMIER: Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- 2. A. GUICHARDEFT: Caractères et représentations de produits tensoriels de C*-algebres, Ann. Ecole Norm. Sup., 81(1964), 189-206.
- 3. _____: Tensor products of C*-algebras, Soviet Math., 6(1965), 210-213. (Translation of Doklady Akademii Nauk SSSR, 160(1965), 986-989.)
- 4. M. TAKESAKI: On the cross-norm of the direct product of C*-algebras, Tohoku Math. Journ., 16(1964), 111-122.
- 5. T. TURUMARU: On the direct product of operator algebras I, Tohoku Math. Journ., 4(1956), 242-251.
- 6. A. WULFSOHN: Produit tensoriel de C*-algèbres, Bull. Sci. Math., 87(1963), 13-27.
- 7. _____: Le produit tensoriel de certaines C*-algèbres, C. R. Acad. Sc. Paris, 258(1964), 6052-6054.