On infinitesimal CL-transformations of compact normal contact metric spaces

By

Kichiro TAKAMATSU and Hideo MIZUSAWA

(Received in November 30)

Y. Tashiro and S. Tachibana have introduced a transformation in a normal contact space which carries C-loxodromes. In this place a C-loxodrome means a loxodrome cutting geodesic trajectories of ξ^i with constant angle. The transformation thus defined is called a CL-transformation [6].

They have shown some relations between a normal contact space and a C-Fibinian space under a CL-transformation. Recently S. Kôto and M. Nagao have obtained invariant tensors under a CL-transformation [1].

The main purpose of the present paper is to show that in a compact normal contact metric space an infinitesimal CL-transformation is necessarily projective. In §1 we state the fundamental identities of normal contact spaces. In §2 we shall deal with a C-loxodrom and a CL-transformation. In §3 we shall prepare some lemmas used to prove the main theorem. The last §4 is devoted to the proof of the main theorem.

1. Normal contact metric space.

Let M be an n(=2m+1)-dimensional contact manifold with (φ,ξ,η,g) structure. We know the relations between a tensor field φ_j^i , contravariant vector field ξ^i , covariant vector field η_i and a positive definit metric tensor field g_{ji} such that

(1.	1)	$\xi^i\eta_i=1$,
(1.	2)	$rank \varphi_{j}^{i} =n-1,$
(1.	3)	$arphi_{j}^{i}\xi^{j}=0$,
(1.	4)	$arphi_j i \eta_i = 0$,
(1.	5)	$arphi_j i arphi_k {}^j = - \delta_k {}^i + \eta_k \xi^i,$
(1.	6)	$g_{ji}\xi^j=\eta_i,$
(1.	7)	$g_{ji}\varphi_k{}^j\varphi_h{}^j=g_{hk}-\eta_h\eta_k.$

A space is called a normal contact metric space, if the tensor N_{jk}^{i1} vanishes. In normal cotact metric space, the structure satisfies the equations

$$\nabla_{j}\eta_{i}=\varphi_{ji},$$

$$\nabla_k \varphi_{ji} = \eta_j g_{ki} - \eta_i g_{kj}$$

where ∇_j denotes the covariant derivative with respect to the Riemannian connection of g_{ji} and $\varphi_{ji} = \varphi^l g_{li}$.

Moreover in the normal contact metric space we have the identities²⁾

$$(1. 10) \eta_r R_{kji} = \eta_k g_{ji} - \eta_j g_{ki},$$

$$(1. 11) \varphi_{jr}R_{l}^{r} + \frac{1}{2} \varphi^{rk}R_{rkjl} = (n-2)\varphi_{jl},$$

$$(1. 12) \eta_r R_j^r = (n-1)\eta_j$$

where R_{kji}^r and R_{lr} are Riemannian curvature tensor and Ricci's tensor respectively. In the following paragraph we use a notation η^i instead of ξ^i .

2. C-loxodromes and CL-transformations.

In a normal contact metric space, we consider a parameterized curve u(s) which satisfies differential equation

$$\frac{\delta^2 u^h}{ds^2} = \alpha \eta_j \varphi_i h \frac{du^j}{ds} \frac{du^i}{ds}$$

where s indicates arc-length and δ covariant differential along the curves u(s) and α is a certain scalar. If α is constant, above equation shows that its integral curve is a C-loxodrome which was introduced by Y. Tashiro and S. Tachibana, that is, the curve is a loxodrome cutting trajectories of ξ^i with constant angle.

Now let us consider a relation between symmetric affine connections in an almost contact manifold. If it carries C-loxodromes to C-loxodromes, then it will be called a CL-transformation. By standard arguments, we can express it by the following relation:

$$'\Gamma_{ji}^{h} - \Gamma_{ji}^{h} = \rho_{j}\delta_{i}^{h} + \rho_{i}\delta_{j}^{h} + \alpha(\eta_{j}\varphi_{i}^{h} + \eta_{i}\varphi_{j}^{h})$$

where ρ_i is a vector field and α is a cretain scalar.

In a normal contact metric space, a vector v^i is called an infinitesimal CL-transformation if it satisfies

¹⁾ The tensor was defined by S. Sasaki and Y. Hatakeyama [5].

²⁾ M. Okamura [3].

where \mathcal{L}_{v} is the operator of Lie drivative and $\binom{h}{ji}$ is Riemannian connection.

Contracting h and j in (2. 2), we see that ρ_i is a gradient.

From (2. 2) we have

(2. 3)
$$\nabla_{k} \mathcal{L}_{v}^{h} \{ j_{i}^{h} \} = \nabla_{k} \rho_{j} \delta_{i}^{h} + \nabla_{k} \rho_{i} \delta_{j}^{h} + \alpha (\varphi_{i}^{h} \nabla_{k} \gamma_{j} + \gamma_{j} \nabla_{k} \varphi_{i}^{h} + \varphi_{j}^{h} \nabla_{k} \gamma_{i} + \gamma_{i} \nabla_{k} \varphi_{j}^{h}) + \nabla_{k} \alpha (\gamma_{j} \varphi_{i}^{h} + \gamma_{i} \varphi_{j}^{h})$$

and

(2. 4)
$$\nabla_{j} \mathcal{L}_{v} \left\{ k_{i}^{h} \right\} = \nabla_{j} \rho_{k} \delta_{i}^{h} + \nabla_{j} \rho_{i} \delta_{k}^{h} + \alpha (\varphi_{i}^{h} \nabla_{j} \eta_{k} + \eta_{k} \nabla_{j} \varphi_{i}^{h}) + \varphi_{k}^{h} \nabla_{j} \eta_{i} + \eta_{i} \nabla_{j} \varphi_{k}^{h}) + \nabla_{j} \alpha (\eta_{k} \varphi_{i}^{h} + \eta_{i} \varphi_{k}^{h}).$$

Substituting (2. 3) and (2. 4) into the following identity of Lie derivation³⁾

(2. 5)
$$\mathcal{L}_{n} R_{kji}^{h} = \nabla_{k} \mathcal{L}_{n}^{h} \{_{ji}^{h}\} - \nabla_{j} \mathcal{L}_{n}^{h} \{_{ki}^{h}\}$$

and using (1. 9) and (1. 10), we get

(2. 6)
$$\pounds R_{kji}{}^{h} = \delta_{j}{}^{h} \nabla_{k} \rho_{i} - \delta_{k}{}^{h} \nabla_{j} \rho_{i} + \alpha \left\{ 2\varphi_{kj} \varphi_{i}{}^{h} + \eta_{i} (\eta_{j} \delta_{k}{}^{h} - \eta_{k} \delta_{j}{}^{h}) + \eta_{j} (\eta_{i} \delta_{k}{}^{h} - \eta_{h} g_{ki}) - \eta_{k} (\eta_{i} \delta_{j}{}^{h} - \eta_{h} g_{ji}) + \varphi_{ki} \varphi_{j}{}^{h} - \varphi_{ji} \varphi_{k}{}^{h} \right\}$$

$$+ \varphi_{i}{}^{h} (\nabla_{k} \alpha \eta_{j} - \nabla_{j} \alpha \eta_{k}) + \eta_{i} (\nabla_{k} \alpha \varphi_{j}{}^{h} - \nabla_{j} \alpha \varphi_{k}{}^{h}).$$

Contracting k and h in (2. 6), we have

(2. 7)
$$\pounds_{v} R_{ji} = -(n-1)\nabla_{j}\rho_{i} + 2\alpha(n\eta_{i}\eta_{j} - g_{ij}) + \eta_{j}\varphi_{i}r\nabla_{r}\alpha + \eta_{i}\varphi_{j}r\nabla_{r}\alpha.$$

Transvecting (2. 6) with η_h , we have

(2. 8)
$$\eta_h \pounds_{n} R_{kji}^h = \eta_j \nabla_k \rho_i - \eta_k \nabla_j \rho_i + \alpha (\eta_k g_{ji} - \eta_j g_{ki}).$$

3. Some Lemmas.

In this section we shall prepare some lemmas which are useful to prove the main theorem.

LEMMA. 3. 1. In a normal contact metric space, if vi is an infinitesimal CL-trans-

³⁾ K. Yano [7].

formation, then the following relation holds good:

$$\mathfrak{L}_{g}g_{ji} = -\nabla_{j}\rho_{i} + \beta^{\eta_{j}}\eta_{i} + \alpha(g_{ji} - \eta_{j}\eta_{i})$$

where α and β are certain scalars.

PROOF. Taking the Lie derivative of the both sides of (1. 10) and substituting (2. 8) into the equation thus obtained, we get

$$(3. 2) R_{kji}{}^{h} \underset{v}{\pounds} \eta_{h} = g_{ji} \underset{v}{\pounds} \eta_{k} + \eta_{k} \underset{v}{\pounds} g_{ji} - g_{ki} \underset{v}{\pounds} \eta_{j} - \eta_{j} \underset{v}{\pounds} g_{ki} - \eta_{j} \nabla_{k} \rho_{i}$$
$$+ \eta_{k} \nabla_{j} \rho_{i} + \alpha (\eta_{j} g_{ki} - \eta_{k} g_{ji}).$$

Transvecting (3. 2) with g^{ji} , we have

(3. 3)
$$R_k{}^h \mathcal{L}^{\eta_h} = (n-1) \mathcal{L}^{\eta_k} + \eta_k (g^{ji} \mathcal{L}^{gji} + \nabla_r \rho^r) - \eta^r (\mathcal{L}^{gkr} + \nabla_k \rho_r) + \alpha^{\eta_k} (1-n).$$

Similarly transvecting (3. 2) with η_k and using (1. 10), we get

(3. 4)
$$\pounds g_{ji} = -\nabla_{j}\rho_{i} + \eta_{j}(\eta_{r} \pounds g_{ri} + \eta_{r} \nabla_{i}\rho_{r}) + \alpha(g_{ji} - \eta_{j}\eta_{i}).$$

On the other hand, transvecting (3. 2) with φ^{kj} we have

$$(3. 5) \qquad (\varphi^{kj}R_{kji}h + 2\varphi_ih) \pounds^{\eta_h} = 0.$$

Transvecting (3. 3) with φ_j^k , we have

(3. 6)
$$\varphi_{j}^{k}R_{k}^{h} \mathcal{L}^{\eta_{k}} = \{ (n-1) \mathcal{L}^{\eta_{k}} - \eta^{r} (\mathcal{L}g_{kr} + \nabla_{k}\rho_{r}) \} \varphi_{j}^{k}$$

from which

$$(3. 7) \qquad (\varphi^{rk}R_{rkj}^{h} + 2\varphi_{j}^{h}) \, \pounds \, \eta_{h} = 2\varphi_{j}^{k} (\eta^{r} \, \pounds \, g_{kr} + \eta^{r} \nabla_{k} \rho_{r}).$$

If we put $\beta = \frac{\eta_r \eta_s}{\ell_v} (\pounds_v g_{rs} + \nabla_r \rho_s)$, taking account of (1. 2), from (3. 5) and

(3. 7) we get

(3. 8)
$$\eta_r(\underset{v}{\pounds}g_{ir} + \nabla_i \rho_r) = \beta \eta_i.$$

Substituting (3. 8) into (3.4), we can get (3. 1)

LEMMA. 3. 2. Between α and β in (3. 1), the following relation holds good:

$$2\alpha = \beta$$
.

Proof. Taking the Lie derivative of the both sides of (1. 12) we have

$$R_k{}^h \underset{v}{\mathcal{L}} {}^{\eta_h} + {}^{\eta_h} \underset{v}{\mathcal{L}} R_k{}^h = (n-1) \underset{v}{\mathcal{L}} {}^{\eta_k}.$$

This equation can be written as

$$(3. 9) \eta_h R_{kr} \underset{n}{\mathcal{L}} g^{hr} + \eta_r \underset{n}{\mathcal{L}} R_{kr} = (n-1) \underset{n}{\mathcal{L}} \eta_k - R_{kh} \underset{n}{\mathcal{L}} \eta_h.$$

Substituting (3. 3) and (2. 7) into (3. 9), we have

(3. 10)
$$\eta_{h}R_{kr} \underset{v}{\pounds} g^{hr} + \eta_{r} \{ (1-n) \nabla_{k}\rho_{r} + 2\alpha (n\eta_{k}\eta_{r} - g_{kr}) + (\eta_{k}\varphi_{r}h + \eta_{r}\varphi_{k}h) \nabla_{h}\alpha \}$$

$$= -\eta_{k} (g^{ji} \underset{v}{\pounds} g_{ji} + \nabla_{r}\rho^{r}) + \eta_{r} (\underset{v}{\pounds} g_{kr} + \nabla_{k}\rho_{r}) + \alpha (n-1)\eta_{k}.$$

Substituting (3. 1) into (3. 10) and using (1. 1) and (1. 12), we get

(3. 11)
$$\eta_h R_{kr} \nabla^h \rho^r - \beta(n-1)^{\eta_k} + \eta^r (1-n) \nabla_k \rho_r + 2\alpha(n-1)^{\eta_k} + \varphi_k^r \nabla_r \alpha$$

$$+ \eta_k (\beta - \alpha + n\alpha) - \beta \eta_k - \alpha(n-1)^{\eta_k} = 0.$$

Transvecting (3. 11) with η_k and using (1. 12) we get

$$(n-1)(2\alpha-\beta)=0.$$

Thus we have $2\alpha = \beta$.

q. e. d.

Lemma. 3. 3. In an n(n>3) dimensional compact normal contact metric space, if an infinitesimal transformation v^i satisfies

$$\mathfrak{L}_{n}g_{ji}=\lambda(g_{ji}+\eta_{j}\eta_{i})$$

where λ is a certain scalar, then we have $\lambda = 0$.

Proof. Substituting (3. 12) into the identity⁴⁾

$$\pounds_{v}^{\{h\}} = \frac{1}{2} g^{hr} (\nabla_{j} \pounds g_{ri} + \nabla_{i} \pounds g_{rj} - \nabla_{r} \pounds g_{ji}),$$

we get

(3. 13)
$$\mathcal{L}_{v}^{\{h\}} = \frac{1}{2} \left\{ \lambda_{j} (\delta_{i}^{h} + \eta_{h} \eta_{i}) + \lambda_{i} (\delta_{j}^{h} + \eta_{h} \eta_{i}) - \lambda^{h} (g_{ji} + \eta_{j} \eta_{i}) + \lambda (\varphi_{j}^{h} \eta_{i} + \varphi_{i}^{h} \eta_{j}) \right\}$$

where $\lambda_j = \nabla_j \lambda$.

Operating ∇_k to (3. 13), using (1. 8), we get

$$(3. 13) \qquad \nabla_{k} \pounds_{v}^{h} \{_{ji}^{h}\} = \frac{1}{2} \{ \nabla_{k} \lambda_{j} (\delta_{i}^{h} + \eta^{h} \eta_{i}) + \lambda_{j} \eta_{i} \varphi_{k}^{h} + \lambda_{j} \eta^{h} \varphi_{k}^{i} + \nabla_{k} \lambda_{i} (\delta_{i}^{h} + \eta^{h} \eta_{j}) + \lambda_{i} \varphi_{k}^{h} \eta_{j} + \lambda_{i} \varphi_{k}^{j} \eta^{h} - \nabla_{k} \lambda^{h} (g_{ji} + \eta_{j} \eta_{i}) - \lambda^{h} \eta_{i} \varphi_{kj} - \lambda^{h} \eta_{j} \varphi_{ki} + \lambda_{k} (\eta_{i} \varphi_{j}^{h} + \eta_{j} \varphi_{i}^{h}) + \lambda (\eta_{i} \nabla_{k} \varphi_{j}^{h} + \varphi_{j}^{h} \varphi_{ki} + \eta_{j} \nabla_{k} \varphi_{i}^{h} + \varphi_{i}^{h} \varphi_{ki}) \}$$

Interchanging i and k in (3. 14) and substituting the equation thus obtained

⁴⁾ K. Yano [7].

and (3. 14) into (2. 5), we get

$$\mathcal{L}_{v}R_{kji}h = \frac{1}{2} \left\{ \varphi_{k}h\lambda_{i}\eta_{j} - \varphi_{j}h\lambda_{i}\eta_{k} + \varphi_{i}h(\lambda_{k}\eta_{j} - \lambda_{j}\eta_{k}) \right.$$

$$+ \nabla_{k}\lambda_{i}(\delta_{j}h + \eta_{h}\eta_{j}) - \nabla_{j}\lambda_{i}(\delta_{k}h + \eta_{h}\eta_{k}) - \nabla_{k}\lambda_{h}(g_{ji} + \eta_{j}\eta_{i})$$

$$+ \nabla_{j}\lambda_{h}(g_{ki} + \eta_{k}\eta_{i}) + \lambda_{h}(\eta_{k}g_{ji} - \eta_{j}\varphi_{ki} - 2\eta_{i}\varphi_{kj})$$

$$+ \eta_{h}(\lambda_{j}\varphi_{ki} - \lambda_{k}\varphi_{ji} + 2\lambda_{i}\varphi_{kj}) + \lambda_{k}\eta_{j}\varphi_{i}h - \lambda_{j}\eta_{k}\varphi_{i}h$$

$$+ 4\lambda\eta_{i}(\eta_{j}\delta_{k}h - \eta_{k}\delta_{j}h) + 2\lambda\eta_{h}(\eta_{k}g_{ji} - \eta_{j}g_{ki}) \right\}.$$

Transvecting (3. 15) with η_h and using (1. 4), we get

(3. 16)
$$\eta_{h} \mathcal{L}_{v} R_{kji}{}^{h} = \frac{1}{2} \left\{ 2\eta_{j} \nabla_{k} \lambda_{i} - 2\eta_{k} \nabla_{j} \lambda_{i} - \eta_{h} \nabla_{k} \lambda^{h} (g_{ji} + \eta_{j} \eta_{i}) \right. \\ \left. + \eta_{h} \nabla_{j} \lambda^{h} (g_{ki} + \eta_{k} \eta_{i}) + \lambda_{j} \varphi_{ki} - \lambda_{k} \varphi_{ji} + 2\lambda_{i} \varphi_{kj} \right. \\ \left. - \eta_{h} \lambda^{h} (\eta_{j} \varphi_{ki} - \eta_{k} \varphi_{ji} + 2\eta_{i} \varphi_{kj}) + 2\lambda (\eta_{k} g_{ji} - \eta_{j} g_{ki}) \right\}.$$

Now taking the Lie derivative of both sides of (1. 10), we have

(3. 17)
$$R_{kji}{}^{h} \mathcal{L}^{\eta_{h}} + \eta_{h} \mathcal{L}^{R_{kji}{}^{h}} = g_{ji} \mathcal{L}^{\eta_{k}} - g_{ki} \mathcal{L}^{\eta_{j}} + \eta_{k} \mathcal{L}^{g_{ji}} - \eta_{j} \mathcal{L}^{g_{ki}}.$$
Substituting (3. 16) and (3. 12) into (3. 17), we have

$$(3. 18) R_{kji}{}^{r} \mathcal{L}_{v}^{\eta_{r}} = g_{ji} \mathcal{L}_{v}^{\eta_{k}} - g_{ki} \mathcal{L}_{v}^{\eta_{j}} - \frac{1}{2} \left\{ 2\eta_{j} \nabla_{k} \lambda_{i} - 2\eta_{k} \nabla_{j} \lambda_{i} - \eta_{r} \nabla_{k} \lambda^{r} (g_{ji} + \eta_{j} \eta_{i}) + \eta_{r} \nabla_{j} \lambda^{r} (g_{ki} + \eta_{k} \eta_{i}) + \varphi_{ki} \lambda_{j} - \varphi_{ji} \lambda_{k} + 2\varphi_{kj} \lambda_{i} - \eta_{r} \lambda^{r} (\varphi_{ki} \eta_{j} - \varphi_{ji} \eta_{k} + 2\varphi_{kj} \eta_{i}) \right\}.$$

Transvecting (3. 18) with φ^{kj} and $\varphi_l^k g^{ji}$, we find respectively

$$(3. 19) \qquad \frac{1}{2} \varphi^{kj} R_{kji} {}^r \mathcal{L}^{\eta_r} = -\varphi_i {}^r \mathcal{L}^{\eta_r} + \frac{1}{2} \left\{ -\varphi_i {}^r \eta_s \nabla_r \lambda^s - n(\lambda_i - \eta_r \lambda^r \eta_i) \right\}$$
and

 $(3. 20) \quad \varphi_i^{k} R_k^{r} \, \mathcal{L}_v^{\eta_r} = (n-1) \varphi_i^{r} \, \mathcal{L}_v^{\eta_r} + \frac{1}{2} \left\{ (n-2) \varphi_i^{r} \eta_s \nabla_{r} \lambda^s + 3(\lambda_i - \eta_r \lambda^r \eta_i) \right\}.$

Adding (3. 19) and (3. 20), and taking account of (1. 11), we get

(3. 21)
$$\lambda_i - \eta_r \lambda^r \eta_i - \varphi_i \eta_s \nabla_r \lambda^s = 0, \quad (n > 3)$$

Tranvecting (3. 21) with φ_{j}^{r} , we have

$$(3. 22) \eta_r \nabla_i \lambda^r = \mu \eta_i - \varphi_i \gamma^r \lambda_r$$

where $\mu = \eta r \eta s \nabla_r \lambda_s$.

Moreover, transvecting (3. 18) with ηk and using (1. 10) and (3. 22), we get

$$(3. 22) 2\nabla_{j}\lambda_{i} = \mu(-g_{ji} + 3\eta_{j}\eta_{i}) - 2(\eta_{i}\varphi_{j}r\lambda_{r} + \eta_{j}\varphi_{i}r\lambda_{r}).$$

Operating ∇_k to (3. 22) and transvecting the equation thus obtained with φ^{kj} , we get

$$(3. 23) 2\varphi^{kj}\nabla_k\nabla_i\lambda_i = \varphi_i^r\nabla_r\mu + (3n-5)\mu\eta_i + 2\eta_i\nabla_r\lambda^r.$$

By (1. 11), this equation can be written as

$$(3. 24) \qquad \varphi_i^r \left\{ 2(n-2)\lambda_r - R_{rs}\lambda^s + \nabla^r \mu \right\} + (3n-5)\mu^{\eta_i} + 2\eta_i \nabla_r \lambda^r = 0.$$

Transvecting (3. 24) with η_i , we have

(3. 25)
$$2\nabla_r \lambda^r + (3n-5)\mu = 0.$$

On the other hand, transvecting (3. 23) with g^{ji} , we have

(3. 26)
$$2\nabla_r \lambda^r + (n-3)\mu = 0.$$

Comparing (3. 25) and (3. 26), it follows that $\nabla_r \lambda^r = 0$.

Consequently by Green's theorem we have $\lambda = constant$.

Again applying Green's theorem to

$$\nabla r v^r = \frac{n+1}{2} \lambda$$

which is obtained from (3.12), we have $\lambda = 0$.

q. e. d.

4. Infinitesimal CL-transformation in compact normal contact metric spaces.

Let v^i be an infinitesimal CL-transformation in compact normal contact metric space. Then from lemmas 3. 1 and 3. 2, we have

(4. 1)
$$\mathfrak{L}_{v}g_{ji} = -\nabla_{j}\rho_{i} + \alpha(g_{ji} + \eta_{j}\eta_{i}).$$

Above equation can be written as

(4. 2)
$$\nabla_j v_i + \nabla_i v_j + \nabla_j \rho_i = \alpha(g_{ji} + \eta_j \eta_i).$$

In (4. 2), since $\nabla_j \rho_i = \nabla_i \rho_j$, putting $w_i = v_i + \frac{1}{2} \rho_i$, then we have

(4. 3)
$$\pounds_{w} g_{ji} = \nabla_{j} w_{i} + \nabla_{i} w_{j} = \alpha (g_{ji} + \eta_{j} \eta_{i}).$$

By lemma 3. 3, we have $\alpha = 0$.

Thus we have following

THEOREM. 4. 1. In an n(n>3) dimensional compact normal contact metric space, an infinitesimal CL-transformation is necessarily projective.

By theorem 4. 1, we have immediately the following

COLORARY 4. 1. In an n(n>3) dimensional compact η -Einstein space, an infinite-simal CL-transformation is necessarily an isometry.

An η -Einstein space is a normal contact metric space with Ricci's tensor satisfying $R_{ji} = ag_{ji} + b\eta_j\eta_i$, where a and b are constants and its example was given by M. Okumura [4].

COLOLLARY 4. 26). Let M be a compact normal contact netric space of consant scalar curvature $R \neq n(n-1)$ and ρ_i be an associated vector of an infinitesimal CL-transorfmation, then $\eta_r \rho_r = 0$.

Next, let M be an Einstein normal contact metric space, then

$$(4. 4) R_{ji} = kg_{ji}$$

where k is constant.

Transvecting (4. 4) with η_i , we have

$$\eta i R_{ji} = k \eta_j.$$

Comparing (1. 12) and (4. 5), we have

(4. 6)
$$k = n-1$$
.

Taking the Lie derivative of the both sides of (4. 4), we get

$$\mathbf{\pounds}_{n}R_{ji}=(n-1)\mathbf{\pounds}_{n}g_{ji}$$

Now, let v^i be an infinitesimal CL-transformation, then substituting (2. 7) and (4. 1) into (4. 7), we have

$$(4. 8) (1-n)\nabla_{j}\rho_{i}+2\alpha(n^{\eta_{i}\eta_{j}}-g_{ij})+\eta_{j}\varphi_{i}^{r}\nabla_{r}\alpha+\eta_{i}\varphi_{j}^{r}\nabla_{r}\alpha$$
$$=(n-1)\{-\nabla_{j}\rho_{i}+\alpha(g_{ji}+\eta_{j}\eta_{i})\}.$$

Transvecting (4. 8) with g^{ji} , we have

$$(n^2-1)\alpha=0.$$

Hence, we have

$$\alpha = 0$$
.

Thus we have the following

THEOREM 4. 2. In an Einstein normal contact metric space, an infinitesimal CL-transformation is necessarily projective.

NIIGATA UNIVERSITY

References

- 1. S. KOTÔ and M. NAGAO, On an invariant tensor under a CL-transformation, to appear.
- 2. H. MIZUSAWA, On infinitesimal transformations of K-contact and normal contact metric spaces, Journ.

⁶⁾ See H. Mizusawa [2].

- Fac. Sci. Niigata Univ., Ser. A, 1(1964), 5-18.
- 3. M. OKUMURA, Some remarks on space with a certain contact structure, Tôhoku Math. Journ., 14 (1962), 135-145.
- 4. M. OKUMURA, On infinitesimal and projective transformations of normal contact spaces, Tôhoku Math. Journ., 14 (1962), 398-412.
- 5. S. SASAKI and Y. HATAKEYAMA, On differential manifolds with contact metric structures, Journ. Math. Soc. Japan, 14 (1962), 249-271.
- 6. Y. TASHIRO and S. TACHIBANA, On Fubunian and C-Fubinian manifold, Kôdai Math. Sem. Rep., 15 (1963), 62-78, 167-175.
- 7. K. YANO, The theorey of Lie derivatives and applications. Amsterdam, 1957.