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In the present paper we define microbundles and vector bundles admitted by
cross-sections of fibre bundles, and study relations between properties of fibre
bundles, cross-sections and their admitted bundles.

Milnor has defined piecewise linear microbundles and obtained theorems
analogous to those about vector bundles, and applied them to the smoothing
problem of piecewise linear manifolds in [3]. As he noted, the definitions and
many of the theorems make sense in the category of topological spaces and maps.
Letely their detailes are stated in [6].

We recall in §1 the definitions required in the later, study about microbunles
admitted by cross-sections in §2, study about vector bundles admitted by cross-
sections in §3.

1. Microbundles

DerFINITION 1.1. A microbundle £ of dimension » is a diagram

B—t.p_1_.p
where B,E are topological spaces and i,j are continuous maps; such that the
following local triviality condition is satisfied. For each »=B, there should exist

neighborhoods B, of b, E, of i(b) and a homeomorphism 4:E,;—>ByXx R" so that
the diagram

E, .
i S
Bo h BO

BOXR”

is commutative. Here the notation x0 stands for the map 45— (3,0), p; denotes
the projection into the first factor, and R” denotes Euclidean zn-space.
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It is easily seen that joi: B——B is the identity map of B.
DerFINITION 1.2. A second microbundle

#:B_ L g 1 .p

over the same base space is isomorphic to £ (witten #~%) if there exist neighbor-
hoods E; of i(B) and E;’ of #(B) and a homeomorphism : E;—>E; so that the
diagram

1

is commutative.

The trivial microbundle ¢} means the diagram
BX0 .pxgr_P1,p

Any bundle isomorphic to ¢ is also called a trivial microbundle.
DerFiniTiON 1.3.  The tangent microbundle tpy of a manifold M means the
diagram

M4 MxM-_tim

where 4 denotes the diagonal map.
DerINITION 1.4. Given two microbundles

£,:B_t« LE, Je B a=1,2

over the same base space, the whitney sum £,9%, is the diagram

B—t . E_J B
where ECE{X E, is the set of (e;, es) With jie;=7j.es and ib = (i1b, ish), j(e1, €2) = j101-
DeFINITION 1.5. Given a microbundle

and a map f:B;—>B, the induced microbundle f*% is the diagram
B-4 g1 B

where E;CB;XE is the set of (b;,¢) with f(b) = j(e), and (b)) = (by, if(6))s
71(b1, e;) = by. If f is an inclusion, f*x is called the restriction of £ over B;.
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When the Whitney sum of two microbundles is trivial, we say that they are
inverse to each other. And we have

PrOPOSITION.  Every microbundle over a finite dimensional complex has an inverse.

DerFINITION 1.6. We say that two microbundles ¥ and ¥ over B belong to
the same s-class if e} is isomorphic to ¥@e} for some ¢ and 7.

By above Proposition, the s-classes of microbundles over a finite dimensional
complex B form an abelian group under the composition operation induced by
Whitney sum. This group is denoted by k:op(B).

2. Microbundles contained in fibre bundles

Let B = (E,B,p) be a fiber bundle with the structural group G [5, p.9] having
a cross-section o.
DEeFINITION 2.1. When the diagram

£:B—2>E P, B

is a microbundle, z is said to be a wmicrobundle contained in B and admitted by o, and
is denoted by (B, 0).

THEOREM 2.1. If the fire M of B = (E,B,p) is a manifold, then any cross-
section o admits a microbundle.

Proof. For each b&B, let V; be a coordinate neighborhood containing &,
9;:Vix M—p~1(V;) be the corresponding coordinate function, and ¢; 5 : M——p~1(b)
be defined by setting &; »(¥) = 6;(b,»). Let N(b) be a neighborhood of ¢; »~1(a(b))
in M which is homeomorphic to R*. (= dim M). Then V;x N(b) is a neighbor-
hood of ¢; s~ 1(e(d)) in V;x M, and there is a neighborhood B, of b in B such that

{6;716(x) : xE By} C By X N(b).

Now let 2 : Byx N(b) —> Byx R” be the canonical homeomorphism, and let
D2 ¢ ByXR"— R" be the projection into the second factor. Then E,= ¢;(B,
X N(b)) is a neighborhood of ¢(b), and %4 : E;——>Box R" defined by setting

h(2) = (p2), p22d;i~1(2) —par i~ ap(2)))

is a homeomorphism. The diagram

Eo

By h Bo

BoxR
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is commutative. Thus the diagram B—% — E—2 _.B is a microbundle.
A fibre bundle may contain various isomorphism classes of microbundles.
ExaMmpLE 2.1. Let B = (52x 52,52 p,) be a trivial 2-sphere bundle, and define
cross-sections ¢ and ¢’ by setting

o(x,y) = ((%,9), (b, D)
o’ (%,3) = ((%,%), (x,5))»

where (p,¢) is a fixed point of S2. Then ¢ admits a trivial microbundle and ¢
admits a tangent microbundle of S2 which is not trivial.

When two fibre bundles B = (E, B,p) and ® = (E’, B,p’) are isomorphic each
other [5, p.11], if a cross-section ¢ of B admits a microbundle %, then B’ contains
a microbundle which is isomorphic to 2. In fact, for the homeomorphism
H:E—FE’ which induces the isomorphism between B and %¥’, the microbundle
# which is admitted by the cross-section ¢’ = He-¢ is the required one.

The converse does not hold as seen in the following example.

ExamMpLE 2.2. Let T = S'xS! and represent its point by (x,y) where x,y are
real numbers modulo 1. Let B = (E,S,p) be a bundle over S! with the fibre T
and the structural group G = 0(2)x0(2)xZ; where Z, is the group which is
consist of exchange of two S! in T and identity. Take coordinate neighborhoods
V1 and V, such that V,UV,=S! and V;nV, is the sum of two open arcs I; and I
disjoint each other, and assume that the coordinate transformation

ga ViV ,—G
is given by
(x,y) if bEIL

ga(d(x,y) = { .
(3, —x) if bl

Then B is not trivial. But the cross-section ¢, which is given by ¢(b) = ¢; 5(0, 0)
for j =1 or 2, admits a trivial microbundle, where ¢; is a coordinate function of
B. o(b) is well defined because ¢;s=¢, s at (0,0). Thus B contains a common
microbundle with the trivial bundle T xSt

As seen in Example 2.1, a sphere bundle may contain various microbundles,
but we have;

THEOREM 2.2. Let % be a microbundle contained in an n-sphere bundle B = (E, B, p),
and let Y=CE, B, p) be the associated (n+1)-dimensional vector bundle of B, and v be the
underlying microbundle of Y. Then £3eYy is isomorphic to .

Proof. Let z be admitted by a cross-section ¢, then the diagram of zPel; is

BXO . pxr ¥ B
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where ¢x 0 and p’ are defined by setting

(ex 0@ = (a(®), 0

and

(%, 9) = p(x).
The diagram of y is

B .E_2_.B
where i is the zero-cross-section of Y. (Cf. [6]). B and Y have common families
of coordinate neighborhoods and coordinate transformations, denoted by {V;} and
{gji} respectiely. We denote the families of coordinate functions of B and Y by
{¢;} and {¢;} respectively.

Let A(e(B)) be the set of x=E such that ¢;s-1(e(b)) and ¢;s~1(x) are
mutually antipodal in S”, where b= p(x) and V;=b. An unique x corresponds to
each b, i.e. independently to the choice of j, because g;;(b)c0(n+1). E;=E
—A(e(b)) is a neighborhood of ¢(B) in E, accordingly Eox R! is that of ¢(B)x0
in ExRL

For a point ¥ on a standard n-sphere S” in R"+1, let A(x) be the antipodal
point of x on S*, R: be the tangent n-plane of S” at x and let ax be the projection

of S*"—A(x) onto R? from A(x). Let B. be a translation of R% in R”+1 which
carries x onto the origin of R”*1, and for each z&R! let 7, . be a translation of
this image with the same direction as B, by the distance z.

Now we define a fibre preserving homeomorphism

h:Eox R'——FE
by setting
h(y,2) = ¢j bl x,Bxaxdj b~ 1Y)

where b = p(¥), x = 65,61 (c(b)). When b&V:nV;, denoting x() = ¢;,6~1(a(b)) and
x(f) = 65,671 (a(®))s

i, b7 x(i), 2 Brcid@x(i)Di, 61 (YD

= ¢5,683i(0)T x>, 2 Bxcidtxidg5i(0) 71¢5,6 71 ()

= ¢j,67x(,2BxHAxHP5, 671D

Hence the definition of 4(y,z) is independent of the choice of j, accordingly 4 is
well defined. This homeomorphism induces the isomorphism between ey and .

Let 9C be a space of all homeomorphisms of S” provided with the compact
open topology, then we have,
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THEOREM 2.3. Every microbundle of dimension n over a locally finite finite-dimen-
sional complex B is isomcrphic to some microbundle which is contained in a fibre bundle
over B with the fibre S* and the structural group 9C.

To prove this theorem we recall Kister’s theorem.

DErFINITION 2.2. An n-dimensional microbundle

z:B—t.E_J .p
is said to admit a fibre bundle 7 = (E,, B,p) with fibre R*, if E; is a neighborhood
of zero-cross-section i(b) in E and p=j|E,.

Let 9y be a space of all origin-preserving homeomorphisms of R” provided
with the compact open topology. Kister has proved in [2],

LemMmAa 2.4. Every microbundle of dimension n over a locally finite finite-dimensional
complex admits a fibre bundle with fibre R" and structural group 9Co unique up to
isomorphism.

Proof of Theorem 2.3. Let

E:B——iaE—j—»B

be the n-dimensional microbundle. Let 7 = (Ey, B, p) be a fibre bundle admitted by
£ with fibre R” and structural group 9C,, and let the family of coordinate neighbor-
hoods, that of coordinate functions and that of coordinate transformations be {V;},
{6;} and {gji} respectively. The existence and uniqueness of 7 is seen by Lemma
2. 4.

Let R” be tangent to S* at x0, and R"S0ex,&5". We define the projection
axo of S”"—A(x0) onto R" as in the proof of Theorem 2.2, and define a homeo-

morphism gi(b) : S*—>S" for b&VinV; by setting
gii(B) (@D =azo"gji(B)axo(2) for 2% A(xo)
and
2ii()(A(x0)) = A(x0).

Let 8= (E,B,p) bz the fibre bundle with th fibre S”, the group 9C, and the
family of coordinate transformations {gji}. (Cf. [5, p.14]). We denote the family
of coordinate functions of B by {¢;j}, and define a cross-section o:B—>FE by
setting o(b) = ¢; 5(x0). This is well defined because ¢;, 5~ 1¢i, 6(x0)=%x0 for b&VinV;

Let A (¢()) and E, be defined as A(s(d)) and E, in the proof of Theorem
2.2 using {¢j s} in place of {¢; s}, then we can define a homeomorphism

h: Fo—‘)El
by setting
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h(2) = ¢j, saxoj, 5~ 1(2)
where b=p(2) and b=V ;. This is well defined because, “or b&VinV,;

Gj b 1odi b = gji(h)
and
¢j:b_1°¢i.b :ié]l(b) = ax0~1°gji(b>°axo,
accordingly
&j boaxooPi b7l = @i boaxochi b L.

h induces the isomorphism between (8,¢) and z.

Remark. An equivalent theopem to our Theorem 2.3 is reported in [7].

THEOREM 2.5. If B = (E,B,p) contains a microbundle £ and f: X — B is a map,
then the induced bundle f*B contains ‘ fre.

Proof. Let z = (B,0) and f*B=(E, X, p), then E = {(x,¢) : xEX, e€E, f(x)=pe} .
We define a cross-section ¢ : X—E by setting o(x)=(x, of(x)), then (f*B, s)=r*z.

3. Standard admissible vector bundles

DerFINITION 3.1. When a fibre bundle B = (Z, B,p) contains a microbundle
Z = (B,0) and z admits a vector bundle 7,7 is called a vector bundle contained in

B and admitted by o.
A cross-section of a sphere bundle may admit various vector bnudles. We

define a standard one in them as follows.

Let «(S™) = (E., S",z) be the tangent vector bundle of S”, and denote the
family of coordinate neighborhoods and that of coordinate functions by {U;} and
{21} respectively. Here we assume that the structural group of z(S*) is O(%) in
place of GL(m, R), using 12.9 Theorem of [5] Let B= (E, B, p) be an n-sphere
bundle with the family of coordinate neighbordhoods {VV;} and that of coordinate
functions {¢;}, and assume that B has a cross-section a:B——>E.

Now we define W¢; 1y by

W, n =Vin(e™1¢ipa"(UD)
where p,:V;xS"—>S” is the projection into the second factor, and define
&%G,nd, B Wa, onWq,n—>0m)
by setting for b&Wu, W, b
%G, 0, b)) = A,y leaydj s o diboazxT oAk, x

where y = ¢, 1(6(8)), x = 6i, 672 (6(b) ), ax and a, are defined as in the proof of
Theorem 2. 2.
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Then the #x-dimensional vector bundle 7 = (E* B, p*) with the family of
coordinate neighborhoods {W; 1)} and that of coordinate transformations {g*¢, iy¢, &)
is admitted by o.

DeFiNiTION 3.2. 7 is called the standard admissible vector bundle of ¢, and
denoted by s.a..b. of a.

THEOREM 3.1. The definition of s.a.v.b. of o is independent of the choice of U1}
and {2} of z(S®) up to isomorphism.

Proof. Let another family of coordinate neighborhoods be {’»} and the
corresponding family of coordinate functions be {2’,x}. Then our construction gives
an n-dimensional vector bundle 7 = (E’, B,p’) with the family of coordinate
neighborhoods {W’(:,m)} and that of coordinate transformations {g’ct,m)cs,»)} Where

Wt my = Ven(o~1oepa= 2 (U’ m))

and

g t,ms, ) = Vm,y " leayede b logs poaz™1o2p «
with

y=¢t,671(e(b)) and x = ¢5,671(a(b)).
Let the family of coordinate functions of 7 be {¢*, 1)} and
*G, 0,6 + R'—p*~1(0)
be defined by setting
¢*G,0,6(9) = ¢*¢,15(b, 3D,

and similarly (¢, m)} and {¢’¢c,m), 5} be defined for 7.

We define 4 : E¥*—FE’ by setting

) = (ﬁ’(t,m),bzm,x—lax¢t,b_1¢j,bay—121,y¢*(j,l),b—1(z) .................. a

where b = p*RDEW G, AW t,m)» ¥ = d¢,671(a(b)) and y = ¢; 67 1(a(b)).

1°. This is well defined because the the right side of (1) is independent of
the choice of j,/,#+ and m as seen below. We assume that bW, nnWa k. Let
y = #i, 5" 1(a(d)), then we have

¢*ci, 0,67 Lo d¥G, k), 6 = g¢j, i, (D)
= A,y loayedj b logi boaylodr 5,
accordingly,
Bj, 6oy Yol yod¥i, 10,671 = @i boayTledr, 5o d*a k), 5~ L.

Hence ¢j scay~lods yod*, 1,6~ ! is independent of the choice of j and /. Similarly
&' ct,my,b°Am xoazede bt is independent of the choice of ¢+ and m. Thus 1° is
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proved.

2°. & is a bunndle map which induces the identity map of B as seen below.
Let 4p : p*~1(b)—>p’~1(b) be the map induced by 4, then

& ct,mychood¥j, 1y = Xm,x " leaxode, b7 logj poay™1oay, .

This is an orthogonal transformation of R", because ¢: 5 1-¢; 5 is an orthogonal
transformation of S* which sends y to x. The proof of other properties of # to be
a bundle map is trivial.

1° and 2° complete the proof of the theorem.

THEOREM 3.2. When two n-sphere bundles B = (E,B,p) and B = (E’,B,p") are
isomorphic each other, if a cross-section ¢ of B admits a s.a.v.b. Y, then B has a cross-
section o’ whose s.a.v.b. is isomorphic to .

Proof. For the homeomorphism H : E——FE’ which induces the isomorphism
between B and ¥B’, let ¢’ = Hoo and 7 be the s.a.v.b. of ¢’. Let the families of
coordinate functions of B and B be {4;} and {¢;} respectively, and those of
7= (E* B,p*) and 7 = (E,B,p) be ({¢*i s} and {¢*u )} respectively. For
bEW . nW’a by, Where (Wein} and (W’ ) be the families of coordinate neighbor-
hoods of 7 and 7 respectively, we define a homeomorphism

h: E*—>E
by setting
h(2) = ¥, k), b4k, y " taygi b Hdj pax"121, 0%, 17,67 1(2),

where x = ¢;, 5~ 10(b) and y = ¢i, 5~ 16’(s). Then £ induces the isomorphism between
7 and 7.

The converse of this theorem holds in the sense of Corollary 3.5.

THEOREM 3.3. Every n-dimensional vector bundle over a Cs-space B is isomorphic
with @ s.a.v.b. of some cross-section of an n-sphere bundle.

Proof. Let ¢ = (E, B,p) be an n-dimensional vector bundle with the family of
coordinate neighborhoods {V;} and that of coordinate transformations {g;}. Here
we may assume that the structural group of & is O(n) because B is a C,-space,
using 12.9 theorem of [5]. We define an n-sphere bundle B = (E, B,p) with the
same family of coordinate neighborhoods {VV;} and the family of coordinate trans-

formations {gj}, where
gii 2 ViV —> 0(n+1)

is defined as follows. Let x be a base point of S” and A(x) be the antipodal point
of x, and define a, as in the proof of Theorem 2.2. For »&V:qVj,
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gii(b) : S"——>S"
is defined by setting
. ax"1g;i(Max(2) if 2xA),
gi(b) (@) = .
A(x) if 2= A).

Let the families of coordinate functions of ¢ and B be {¢;} and {¢;} respectivery.
We define a cross-section ¢ : B—>E by setting

a(b) = ¢jp(x)
with j such that &V ;. This is well defined because,
@i b i p(x) = x if bEV AV ;.

Let the s.a.v.b. of ¢ be 7 = (E* B, p*), the families of coordinate neighborhoods
and coordinate transformations be (W} and {g*¢, i, k) respectively. Here we
assume without loss of generality that only one coordinate neighborhood U; of z(S™)
contains x. Then W, =V; and Wik is empty for kx/. Accordingly if there
is a point bEW i, »ynW ¢, 1), then k=/ and

g% i, n(0) = Az oaxogji(B)eax—1o1,x

= ll,x_1°gji(b>°ll,x
= gji(h).

Thus ¢ and 7 have cnmmon families of coordinate neighborhoods and coordinate
transformations, accordingly are isomorphic.

THEOREM 3.4. Let B = (E, B,p) be the associated n-sphere bundle of an (n+1)-
dimensional vector bundle Y = (E, B,p) and let £=(E*, B, p*) be the s.a.v.b. of a cross-
section o of B. Then EDEY is isomorphic with Y, where Y is a trivial 1-dimensional

vector bundle over B.

Proof. Let the families of coordinate neighborhoods and coordinate functions
of B be {V;} and {¢;} respectively, and let those of & be W n} and {&*q n}
respectively. Then the families of coordinate neighborhoods of ¢pelL = (F’, B, p)
is also {(W¢,n} and that of coordinate functions is {¢’¢; 1}, where E* = E*x R and

&G0 WG, DX R 1——p’ " W(W j,15) = p* 1 Wi, n)XR
is defined by setting for b&EW ;1) and (3,2)ER" X R=R"*1
& i, 0,60y, 2) =%, 1),6(3), 2).
Let the family of coordinate functions of Y be {¢;}. We define a homeomorphism

h:E = E*XR—E
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by setting
h(y,2) = ¢j, 67 x,2BxA1,x0%¢, 1,671,

where b= p'(3,2) = p*O)EW G, 1 x = ¢, 5~ (a(b)), 4 is a coordinate function of
the tangent bundle r(S") used in the definition of & B is a translation of R} in
R"+! which carries x¥ onto the origin of R"+! and 74 is also a translation with
the same direction as gx by the distance z. (Cf. Proof of Theorem 2.2). This
definition is independent of the choice of j and / as seen below. Let b&W¢, n W0
and x = ¢i 5-1(6(b)), and let the common family of cordinate transformations of
B and Y be {gji} and that of ¢ be {g*¢ nd,r}. Then

(s, boTx,20Bxo A1,z 6%, 13,6 ") 7o (i, boTx, 20 Bzo Ak, zo 6% i k), 67 1)

= @*,1y, 6041, x Yo fx o Ty e Yohj b Lo hi boT 7 20 Bro Ak, %o O¥ci k), b1
= &%, 15,6041, x Yo Bx LoV x 27 Lo gji(B)oT%, 20 Bxo Ak, 7o 6 i, k), b1

= ¢*, 13,601, x Yo gji(b)o Ak, 7o d* (i k), 671

= ¢¥*¢,1),6°8%, i, (D)o ¥ ky,67 !

= 1.

Thus # is well defined. This homeomorphism induces the isomorphism
between ¢P¢EY and Y. ,

CorROLLARY 3.5.  If two sphere bundles B and B have cross-sections ¢ and o
respectively and the s.a.v.b. of o is isomorphic with that of o, then B is isomorphic with
B

When z-dimensional vector bundles & and ? over a C,-space B are s.a.v.b.s
of cross-sections of a same #xn-sphere bundle, we say that they are c-equivalent.
When ¢ is isomorphic with &, 7 is isomorphic with 7 and ¢ is c-equivalent with
7, we also say that & is c-equivalent with . By Theorem 3.3 and Corollary 3.5
c-equivalence is an equivalence relation. Let CO"(B) be the set of above c-
equivalence classes, and define

h : CO"(B)—>CO™1(B)

by setting A({&}) = (Y}, where { } denotes a c-equivalence class and Y is an
(n+1)-dimensional vector bundle such that ¢ is isomorphic with the s.a.v.b. of
a cross-section of the n-sphere bundle which is associated with Y. Then the limit
set LimCO”(B) is nothing but ko(B) as a set. (Cf. [1D]).

(_);1) microbundles we cannot consider as above because we don’t know the
theorem corresponding to Theorem 3.4, i.e. we don’t know whether the structural
group O(n+1) of B in Theorem 2.2 can or cannot be replaced by 4cC.

THEOREM 3.6. Let B = (E,B,p) be an n-sphere bundle with cross-section o, & be



26

the s.a.v.b. of o and let f: X——>B be a map. Then f*§ is the s.a.v.b. of some cross-

section of f*B.
Proof. About B and ¢, we use notations given in the definition of s.a.v.b.

Let %8 = (E,B,p), then E = ((x,¢) : x€X, ¢EE, f(x) = pe}, and p(x,¢) = x. The
families of coordinate neighborhoods are {f~1V;}, the coordinate function ¢; and
the coordinate transformation gj; are given by

6i(%, ) = (%, 8;(F(x), )
and
£ii(x) = gii(f(x))
respectively. We define a cross-section ¢ : X—>FE by setting
a(x) = (x, af ().

Then the s.a.v.b. of s, denoted by &, is isomorphic to f*¢ as seen below.
The family of coordinate neighborhoods {W’¢ 1} of ¢ is given by

Wi, = (VDN ¢ip2 UD )
where p, : (W) x S»—>S» is the projection into the second factor, and as easily

seen,

W1y =F~UW G 1)) woeeeeeemmmeesnemsinenaiieens .

The coordinate transformation g’cj ¢,k of £ is given by setting, for
xEW’ i, AW’ 1y,

-1 —
£2u.ni,w(F) = At learodj xodixoasloAr, s

where ¢ = ¢; +~1(a(%)), s =7q;,-?:(a_(x)). By definitions,
(x, ;(F(2), ) = 6i(x, 1) = o(x) = (x, of(x)).

Hence
3i(F(x), ) = af(x), i. e. t = &j, sy~ (e (F(x))).
Similarly
s = i, rex Mo (f(x)D)D.
Therefore

&G0, &) = At earodj, fea " Lodi, feayo asT oAk, s
—_ g*(j. l)(i’k)<x> lllllllllllllllllllllllllllllllllllllll (2),

By (1) and (2), ¢ is isomorphic to f*¢.
We say that two cross-sections ¢ and ¢’ of a fibre bundle B are sec-homotopic
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if there is a homotopy between ¢ and ¢ which is a cross-section of B in each
stage.

THEOREM 3.7. Let B = (E, B, p) be an n-sphere bundle over a compact base space
B with cross-sections o and o’, and let & and & be the s.a.v.b.s of them respectively. If
o and o’ are sec-homotopic, then & and & are isomorphic.

Proof. Let the family of coordinate neighborhoods and that of coordinate
functions of B be {/;} and {¢;} respectively.

1°. We assume that ¢ is near enough to ¢ in the following sense; let
¥ =¢;6 W a(d)) and y = ¢;,571(¢’(s)) and regard S” to be the standard n-shere in
R**+1, then xOy is smaller than = for every j and bcV;, where O is origin of
R"*1 and /xQy is regarded to be non-negative. Let R? be the plane generated by
Ox and 537: and R"-1 be the (n—1)-space which contains O and orthogonal to R2.
Let 6;(b) be the element of O(n+1) which fixes R”-! and rotates R2 around O by
£%0y such as 0;(b)(x) =y, then the induced function 8, : V;,—>O(n+1) is a map.
Now we define a map f: E—FE by setting

f(e) = ¢;,60i(b)¢5,571(eDs
where b = p(e)&V ;. When b&VinV;, we have
(67,600;(b)°dj,6 1)1 (i,5°0:(D)=di,6™1)
= ¢,6°0;(0)"1og;i()-0:i (D)= i, o1
= ¢j,6°8ii(b)odi, 5~ =

Thus f is well defined. This map induces an isomorphism of B with itself, and
o’ = foe. This fact means that & is isomorphic with & as seen in the proof of
Theorem 3. 2.

, 2°. In general cace, let the sec-homotopy between ¢ and ¢’ be A (0=¢<1).
Then by the compactness of B, we have a finite decomposition of [0,1],

0 = tO)<TtADT oeereeene <t(m—D<tm) =1,

such that A:ci_y) is near enough to A:u) in the sense of 1° for i=12 --.... , N
Accordingly we have maps f; : E—>FE which induces isomorphism of B with itself
and A:ciy = ficheci—p for each i. The map f = fucofn_1o-+-+ ofsof1 induces the isomorph-
ism of B with itself, and ¢’ = foo. Therefore ¢ is isomorphic with &’.

The converse of this theorem does not hold as follows. '

EXAMPLE 3.1. Let T'=S'xS! and p : T——>S! be the projection into the first
factor, and let B = (T, S, p) be the trivial sphere bundle. Then the set of sec-
homotopy classes of cross-sections corresponds one to one with Z, but the s.a.v.b.
of any cross-section of B is trivial. .

We say a bundle 7 = (E, B,p) to be an extension of £¢=(E, B, p) over B, when
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BCB and ¢ is the restriction of 7 over B. ,

Let B be a locally finite (#+41)-dimensional complex, B™ be its n-skeleton,
and ¢ be a vector bundle over B®». The extension of & over B don’t always exist.
For example a Mobius band ¢ = (M, S%, p) over S! = D? cannot be extended over D2

THEOREM 3.8. Let B and B™ be as above, B = (E, B,p) be an n-sphere bundle
and let BB be the restriction of B over B. Assume that B|B™ has a cross-section
Fi:BM—SFE|B™ and n is even, and let & be the s.a.v.b. of f. Then f is extendable to
a cross-section of B if and only if & is extendable over B.

To prove this theorem we prepare two lemmas.

LEMMA 3.9. Let B be a k-sphere bundle over B with a cross-section f» B|B™ be
the restriction over B™ and let f be the restriction of f over B™. Then the s.a.v.b. of
Fis the restriction of the s.a.v.b. of f over BU®.

This lemma is trivial by the definition of s.a.v.b.

LEMMA 3.10. Let B = (D"*1xS, D"t p)) be a trivial n-sphere bundle, B|S™ be its
restriction over S" = D."“, f be a cross-section of B|S" and let & be the s.a.v.b. of f,
where n is even. Then the following four statements are equivalent.

@ £ has a non-zero cross-section.
® f is extendable to a cross-section of ‘B.
® ¢ is extendable over D"+1.

@ ¢ is trivial.
Proof. Let p,:S"xS"——>S" be the projection into the second factor, then py-f

is a map of S” into S”. By the trivialness of B two cross-sections f and f’ are sec-

homotopic if and only if psof and psof’ are homotopic. Let & be the s.a.v.b. of

f’, then ¢ is isomorphic with & if f is sec-homotopic to f° by Theorem 3.7. So it

suffices to consider in each case when the degree of pyof is 7.

(a). In the case of r =0, £ is trivial.

(b). In the case of r=1, ¢ is isomorphic with z(S*). Because Euler characteristic

of S" =2, ¢ has not any non-zero cross-section. (Cf. [4, Theorem 16 and 227).

(c). In the case of r>>1, ¢ is isomorphic with f*(z(S*)) and has not any non-zero

cross-section, because c¢(§)= f¥c(z(S"))=r+c(z(S*))=2r=0. (Cf. [5, 35.7 Theorem]).
By (a), (b) and (c), &€ has a non-zero cross-section if and only if the degree

of pyof is zero. Hence if @ holds then @ holds. If @ holds then @ holds by

Lemma 3.9. If ® holds then @ holds becase D"+1 is contractible. It is trivial

that if @ holds then @ holds. Thus Lemma 3.10 is proved.
When n is an odd number, various cases can be considered about the maximum

number of independent non-zero cross-sections of &, hence we cannot obtain the
analogous result as Lemma 3. 10.

Proof of Theorem 3.8. Let ¢ be an (n+1)-simplex of B, then B|¢ is trivial,
and f|o is a sross-section of B|s where ¢ is the boundary of ¢. f is extendable to
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a cross-section of B if and lonly if f|s is extendable to a cross-section of B|s for
every (n+1)-simplex ¢ of B, and ¢ is extendable over B if and only if E]t't is
extendable over ¢ for every (n+1)-simplex ¢ of B. Hence Theorem 3.8 follows
to Lemma 3. 10.
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