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Abstract

We give some improvement to the results on the analytical properties with respect
to a spectral parameter of solutions to the exterior boundary value problems for elastic
equations; we remove a restriction on the Gaussian curvatures of the slowness surfaces
and prove that a meromorphic extension of the resolvent remains holomorphic on $R\backslash \{0\}$ .

Introduction

The present paper is concerned with the study of the analytical dependence on a
spectral parameter $k$ of solutions to the exterior boundary value problems

$(0.1)$ $(H-k^{2})u=f$ in $\Omega$ ,

$Hu=-\sum_{m,n=1}^{d}\partial_{m}(A_{mn}(x)\partial_{n}u)$ , $\partial_{m}=\partial/\partial x_{m}$ ,

with homogeneous boundary condition of Dirichlet or Neumann type. Here $u\in C^{d}$ , and
$A_{mn}(x)$ are $d\times d$ real matrices whose $(p, q)$-elements $a_{mpnq}(x)$ are $C^{\infty}$-functions of $x\in R^{d}$

and take constant values $a_{mpnq}^{0}$ outside of a large ball, say for $|x|>b$ . The systems of
elastic equations

$Lu=-\{\mu\Delta u+(\lambda+\mu)grad(divu)\}$ in $2\subset R^{3}$ ,

where the Lam\’e constants $\lambda$ and $\mu$ satisfy $\mu>0$ and $3\lambda+2\mu>0$ come under the theory
developed in this paper.

In our previous paper [5] we have shown that the resolvent $(H-k^{2})^{-1},$ ${\rm Im} k<0$ ,
admits an extension $R(k)$ as a meromorphic function of $k$ to the entire region $D$ (see (1. 2)
for the definition) and that $R(k)$ is holomorphic on the real axis except the origin, in par-
ticular, when $H$ has constant coefficients; the study of the behaviour of $R(k)$ near $k=0$ is
one of the main results in [5] although we do not refer to it in this paper. In proving
that $\Lambda\cap(R\backslash \{0\})=\phi$ with $\Lambda$ being the set of all poles of $R(k)$ , we assumed as one of the
hypotheses that
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$(0.2)$ the slowness surfaces of $A(\xi)=\sum_{m,n=1}^{d}A_{mn}^{0}\xi_{m}\xi_{n}$ with $\xi\in R^{d}$ and $A_{mn}^{0}$

$=(a_{mpnq}^{0})$ never have vanishing Gaussian curvatures at any point.

Using this assumption we investigated the asymptotic behaviour as $|x|\rightarrow\infty$ of the Green
function for $H_{0}-k^{2}$ where $H_{0}=A(-i\partial)$ in $R^{d}$ , and formulated outgoing and incoming

radiation conditions to verify Rellich’s uniqueness theorem.
In this paper we shall remove the condition $(0.2)$ which does not contribute to the

other results in [5] and show that $R(k)$ remains holomorphic on $R\backslash \{0\}$ . The strategy

to the proof is the very one to the limiting absorption principle for the selfadjoint exten-
sion of $H$ and we shall adopt the same approach as in [4] based on the commutator
method due to Mourre [7].

The author would like to thank Professor M. Murata for his suggestion of the re-
movability of the condition $(0.2)$ .

1. Assumptions and Results

Let $\Omega$ be an unbounded domain in $R^{d}$ having a smooth and compact boundary
$\Gamma\subset Bb-1=\{x\in R^{d};|x|<b-1\}$ . Consider the boundary value problem $(0.1)$ with
boundary condition

(1. 1) $Bu=0$ on $\Gamma$ ,

where $Bu$ denotes either of the following two types:

$Bu=u$ ,

$=\sum_{m,n=1}^{d}\nu_{m}(x)A_{mn}(x)\partial_{n}u$ ,

$\nu(x)={}^{t}(\nu_{1}(x), \ldots , v_{d}(x))$ being the unit outward normal to $\Gamma$ at $\chi\in\Gamma$ . We assume that
the dimension $d$ satisfies

(A. 1) $d\geq 3$ .
The following assumptions are imposed upon the coefficients $A_{mn}(x)$ .

(A. 2) $a_{mpnq(x)=apmnq(x)=a_{nqmp}(x),x}\in R^{d}$ .
(A. 3) There exists a constant $C>0$ such that the inequality

$\sum_{m,p,nq=1}^{d},a_{mpnq}(x)_{SnqSmp}\geq C\sum_{m,p=1}^{d}|Smp|^{2}$

holds for any $x\in R^{d}$ and $d\times d$ Hermitian matrix $s=(s_{mp})$ .
(A. 4) The characteristic roots of $A(\xi)$ are of constant multiplicity for all $\xi\in R^{d}\backslash \{0\}$ .

In order to state the results, we introduce the notation and functional spaces. Set
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(1. 2) $D=C$ when $d$ is odd,

$=\{k\in C\backslash \{0\};-\frac{3}{2}\pi<\arg k<\frac{\pi}{2}\}$ when $d$ is even,

$andD_{-=}\{k\in D;{\rm Im} k<0\}$ . Fora domainG of R we set

$L_{a}^{2}(G)=$ { $u\in L^{2}(G;C^{d});u(x)=0$ for $|x|\geq a$}, $a>0$ ;

$L^{2,s}(G)=\{u;\langle x\rangle^{s}u\in L^{2}(G;C^{d})\},$ $\langle x\rangle=(1+|x|^{2})^{1/2}$ ;

$H_{e}^{m}(G)=\{u;\exp(-|x|^{2})\partial^{a}u\in L^{2}(G;C^{d}), a|\leq m\}$ , an integer $m\geq 0$ .

Let $a>0$ be a fixed number so that $b<a$ , and let $B(E, F)$ denote the totality of
bounded operators of $E$ into $F$.

THEOREM 1. 1 ([5]). Suppose that (A. $1$)$-(A. 4)$ are valid. Then there exists an
operatar $R(k)\in B(L_{a}^{2}(\Omega), H_{e}^{2}(\Omega))$ such that $R(k)$ depends meromorphically on the para-
meter $k\in D$ and satisfies the following properties: Let $\Lambda$ denote the set of all poles of $R(k)$

in D. Then,
(i) $\Lambda$ is discrete.
(ii) If $ k\in D\backslash \Lambda$ and $f\in L_{a}^{2}(\Omega)$ , then $u=R(k)f$ solves the problem $(0.1)$ with (1. 1).
(iii) $\Lambda\cap D_{-}=\phi$ .
(iv) If $k\in D_{-}$ , then $R(k)\in B(L_{a}^{2}(\Omega), H^{2}(\Omega))$ .

REMARK. The behaviour of the operator $R(k)$ near $k=0$ is analysed in Theorem 1. 2
of [5].

The purpose of this paper is to prove the following

THEOREM 1. 2. Assume that (A. $1$ )$-(A. 4)$ hold. If $k\in\Lambda\cap(R\backslash \{0\})$ , then there exists
a non-trivial function $u(x)\in C_{0}^{\infty}(\overline{\Omega}_{b} ; C^{d}),$ $\Omega_{b}=\{x\in\Omega;|x|<b\}$ , satisfying

$(H-k^{2})u=0$ in $\Omega$ ,
(1. 3)

$Bu=0$ on $\Gamma$ .
As a corollary of Theorem 1. 2 we obtain by the unique continuation theorem

$CoROLLARY1.3$ . Let $(A. 1)-(A. 4)besatisfiedandA_{mn}(x)\equiv A_{mn}^{0}$ . Then, $\Lambda\cap(R\backslash \{0\})$

$=\phi$ .

2. Preliminaries

This section is devoted to the investigation of the resolvent $G_{0}(z)=(H_{0}-z)^{-1}$ extend-
ed to the real axis. For the operator $H_{0}$ , we use only the property that the symmetric
matrix $A(\xi)$ is positive definite for $|\xi|=1$ which is an immediate consequence of the
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assumptions (A. 2) and (A. 3). This property implies that the domain $\mathfrak{D}(H_{0})$ of $H_{0}$ coin-

cides with $H^{2}(R^{d}; C^{d})$ , the Sobolev space of order two.

We now let $A=-i\sum_{j=1}^{d}(Xjj+jXj)$ in $R^{d}$ , the generator of a dilation unitary group.

The commutator form $i[H_{0}, A]=i(H_{0}A-AH_{0})$ defined on $\mathfrak{D}(A)\cap \mathfrak{D}(H_{0})$ is calculated as
$i[H_{0}, A]=H_{0}$ and has the selfadjoint extension $i[H_{0}, A]^{0}=H_{0}$ . For each $\lambda\in(0, \infty)$ ,

choose $f\in C_{0}^{\infty}(0, \infty)$ so that $0\leq f\leq 1$ and $f=1$ near $\lambda$ . Then the operator $M\equiv f(H_{0})$

$i[H_{0}, A]^{0}f((H_{0})$ is bounded and positive in the sense that $M\geq\alpha f(H_{0})^{2}$, where $\alpha=\inf$

$suppf>0$ . It hence follows that the inverse $G_{0}(\epsilon, z)=(H_{0}-i\epsilon M-z)^{-\iota}$ exists and is

bounded for $z\in C$ with ${\rm Re} z=\lambda$ and $\pm{\rm Im} z>0$ , and $\pm\epsilon\geq 0$ . By analysing $G_{0}(\epsilon, z)$

(cf. Mourre [7]), we have

THEOREM 2. 1. Let I be a compact interval in $(0, \infty)$ and $s>1/2$ .
(i) The inequality

$\Vert\langle x\rangle^{-S}G_{0}(z)\langle x\rangle^{-s}\Vert\leq C$

holds for any $z\in C$ with ${\rm Re} z\in I$ and ${\rm Im} z\neq 0$ .
(ii) For each $\lambda\in I$, the norm limits exist:

$\langle x\rangle^{-s}G_{0}(\lambda\pm iO)\langle x\rangle-S=\lim_{\kappa\downarrow 0}\langle x\rangle^{-S}G_{0}(\lambda\pm i\kappa)\langle x\rangle^{-s}$ .
The following proposition is proved in the same way as in Tamura [8] by using the

fact

$G_{0}(\lambda\pm iO)=\lim_{\pm\epsilon\downarrow 0}G_{0}(\text{{\it \’{e}}}, \lambda)$ in $B(L^{2,1}(R^{d}), L^{2,-1}(R^{d}))$ .

PROPOSITION 2. 2. If $\phi\in L^{2,1}(R^{d})$ and ${\rm Im}(\psi, G_{0}(\lambda\pm i0)\psi)=0$ , where $(\cdot, )$ denotes the

scalar product in $L^{2}(R^{d})$ , then $G_{0}(\lambda\pm iO)\psi\in L^{2,-\delta}(R^{d})$ for any $\delta>0$ .

REMARK. We should note that one can employ Agmon’s method [1] in place of the

commutator method since the system $H_{0}$ satisfies the assumption (A. 4).

3. Proof of Theorem 1. 2

We shall verify Theorem 1. 2 by using the.results in the preceding section.

RROPOSITION 3. 1. Let $k\in\Lambda\cap(R\backslash \{0\})$. Then there exists a non-trivial $C^{\infty}$ $(\overline{\Omega})$-func-
tion $u$ such that $u\in L^{2,-\delta}(\Omega)$ for arbitrary $\delta>0$ , and $u$ satisfies (1. 3).

PROOF. It suffices to verify the proposition in the casekE $\Lambda\cap(0, \infty)$ since the other

case can be similarly treated. Let $k_{0}\in\Lambda\cap(0, \infty)$ and suppose that the operator $R(k)$

has a pole of order $j>0$ at the point $k_{0}$ . By (i) of Theorem 1. 1, we can find a neigh-

bourhood $U$ of $k_{0}$ in $D$ such that $U$ does not contain any other point of the set $\Lambda$ . Put
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$U_{-}=U\cap D_{-}$ . Under the assumption made, there exists a function $f\in L_{a}^{2}(\Omega)$ such that
the limit

$\lim_{U-\ni k\rightarrow k_{0}}(k-k_{0})^{j}R(k)f=u$

exists in $H_{e}^{2}(\Omega)$ and $u\not\equiv O$ . By (ii) of Theorem 1. 1, $R(k)f$ satisfies $(0.1)$ and (1. 1) for $k$

$\in U-$ , so the limit $u$ solves the homogeneous problem (1. 3). Then we also see that
$u\in C^{\infty}(\overline{\Omega})$ since $H$ is elliptic.

It remains to show that $u\in L^{2,-\delta}(\Omega)$ for any $\delta>0$ . Since $R(k)f\in H_{e}^{2}(\Omega)$ for $k\in U-$ ,

we can employ the Lions method to construct an extension $\sim\sim u(k)=u(x;k)\in H_{e}^{2}(R^{d})$ of
$R(k)f$ such that

$\Vert u(k)\Vert_{H^{2}(Bb)}\leq C\Vert R(k)f\Vert_{H^{2}(\Omega_{b})}\sim$ ,

where $C$ is independent of $k$ . We may assume that $ u(k)\sim$ is an $H_{e}^{2}(R^{d})$-valued meromor-
phic function of $k\in U$ and has the only pole of order $j$ at $h=k_{0}$ . Let

$H_{1}=-\sum_{m,n=1}^{d}\partial_{m}(A_{mn}(x)\partial_{n}\cdot)$ in $R^{d}$ ,

(3. 1) $\sim\sim f(k)=(H_{1}-k^{2})u(k)$ in $R^{d}$ .
Then $\overline{f}(k)=f$ in $\Omega$ and $ f(k)\sim$ has the only possible pole of order at most $i$ at $k=k_{0}$. These
imply that the limits

$\sim u=\lim(k-k_{0})^{j}u(k)U-\ni k\rightarrow k_{0}\sim$ in $H_{e}^{2}(R^{d})$ ,

(3. 2)

$\sim\sim f=\lim_{U-\ni k\rightarrow k_{0}}(k-k_{0})^{j}f(k)$ in $L_{a}^{2}(R^{d})$

exist and satisfy

$(H_{1}-k_{0}^{2})u=f\sim\sim$ in $R^{d}$ ,
(3. 3)

$\sim\sim u=u,f=0$ in 2.

For $k\in U_{-}$ we rewrite (3. 1) as
$(H_{0}-k^{2})u(k)=f(k)-(H_{1}-H_{0})u(k)\sim\sim\sim$ ,

and by noting that

(3. 4) $H_{1}\equiv H_{0}$ for $|x|>b$ ,

we have

(3. 5) $\sim u(k)=G_{0}(k^{2})[f(k)-(H_{1}-H_{0})u(k)\sim\sim]$ .
Theorem 2. 1 entails the fact that

(3. 6) $G_{0}(k^{2})\rightarrow G_{0}(k_{0}^{2}-i0)$ in. $B(L_{a}^{2}(R^{d}), H_{e}^{0}(R^{d}))$
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$ask\in U_{-}tendstok_{0}$ . Multiply the both sides of (3. 5) by $(k-k_{0})^{j}andletk\in U$-tend to
$k_{0}$ . Then it follows from (3. 2), (3. 5), and (3. 6) that

$\sim u=G_{0}(k_{0}^{2}-i0)[f-(H_{1}-H_{0})u\sim\sim]$ .

Clearly, $f-(H_{1}-H_{0})u\sim\sim\in L^{2,1}(R^{d})$ . Taking into account the fact that $ u\sim$ satisfies the
same boundary condition on $\Gamma$ as for $u$ , we can use (3. 3), (3. 4), and the symmetry of $H_{1}$

$-H_{0}$ to calculate with $ G=R^{d}\backslash \Omega$ ,

$(f-(H_{1}-H_{0})uu)\sim\sim,\sim$

$=\int_{G}(H_{1}-k)u\sim\cdot=\sim udx-((H_{1}-H_{0})u, \sim u)$

$=\int_{G}u\sim$ . ( $H_{1}$ -leg)) $ dx-(u\sim(H_{1}-H_{0})u)\sim$

$=(uf-(H_{1}-H_{0})u)\sim,$$\sim\sim$ .

Hence, we are led to the fact that ${\rm Im}(f-(H_{1}-H_{0})uu)=0\sim\sim,$
$\sim$ . By applying Proposition

2. 2 we obtain $\sim u\in L^{2,-\delta}(R^{d})$ for any $\delta>0$ and thus $u\in L^{2,-\delta}(\Omega)$ . Q.E.D.

The following theorem is due to HOrmander [2].

THEOREM 3. 2. Let $P(D)$ be a partial differential operator in $R^{d}$ with constant coeffi-
cients such that $P=CP_{1}^{m_{1}}P_{2}^{m_{2}}\ldots P_{\ell}^{m\ell}$ ), where $C$ is a constant and for each $j,$ $Pj(\xi),$ $\xi\in R^{d}$,

is a real and irreducible polynomial such that $gradPJ(\xi)\neq 0$ where $Pj(\xi)=0$ . Let $ u\in$

$S$ ‘ $(R^{d})\cap L_{loc}^{2}(R^{d})$ such that $P(D)u\in \mathcal{E}$
‘ $(R^{d})$ . If $u$ has the asymptotic property

$\lim_{R\rightarrow\infty}R^{-1}\int_{R\leq|x|\leq R}2|u(x)|^{2}dx=0$ ,

then $u\in \mathcal{E}^{\prime}(R^{d})$ . Furthermore, $suppu$ is contained in the convex hull of $suppP(D)u$ .
Theorem 1. 2 is now an immediate consequence of Proposition 3. 1 and Theorem 3. 2.

PROOF OF THEOREM 1. 2. Let $u$ be the function specified in Proposition 3. 1. Take a
number $R<b$ so that $R^{d}\backslash \Omega\subset BR$ . Choose $\varphi\in C^{\infty}(R^{d})$ so that $\varphi=1$ for $|x|\geq R$ and $=0$

in a neighbourhood of $ R^{d}\backslash \Omega$ . Then $v=\varphi u$ satisfies

$(H_{0}-\Re)v=gj$

(3. 7)

$g=-(H_{1}-H_{0})v-(H_{1}\varphi)u+\sum_{m,n=1}^{d}(A_{mn}(x)+A_{nm}(x))\partial_{n}\varphi\partial_{m}u$ .

We denote by $Q_{c}(k)$ and $Qd(k)$ the differential operators whose symbols are the cofactor
matrix and the determinant of the matrix $A(\xi)-k^{2}I$, respectively. Then it follows from
(3. 7) that $Q_{d}(k)v=Q_{c}(k)g$. Note that $suppg\subset\overline{B}b$ and hence $suppQ_{c}(k)g\subset\overline{B}b$ . By ap-
plying Theorem 3. 2 to $v$ , we arrive at the theorem. Q.E.D.
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4. Remarks

In this section we give some characterization to $R(k)f$ for $k\in R\backslash (\Lambda\cup\{0\})$ .
$Letk\in R\backslash \Lambda,$ $k>0,$ $andf\in L_{a}^{2}(\Omega)$ . ThenR $(k)fissaidtobek^{2}$-incoming in the fol-

lowing sense (see Agmon [1]). Let $G_{0}(\lambda\pm i0)$ be the operators introduced in Section 2.
There exists $f_{-}\in L_{a}^{2}(R^{d})$ such that

$R(k)f=G_{0}(k^{2}-i0)f-$ in $\Omega$ .
For $ k\in R\backslash \Lambda$ and $k<0,$ $R(k)f$ is said to be $k^{2}$-outgoing in the sense that there exists

$f+\in L_{a}^{2}(R^{d})$ such that

$R(k)f=G_{0}(k^{2}+i0)f+$ in $\Omega$ .
In fact, these are verified similarly as in Section 3 and the classes defined above cor-
respond to $W_{k}^{-}(\Omega)$ and $W_{k}^{+}(\Omega)$ in [5]. Characterizations of $G_{0}(\lambda\pm i0)$ are given in Agmon
[1], Hormander [3], and Jensen-Mourre-Perry [6].
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