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1. Introduction

Recently, the decision problems in $R^{n}$ ordered by a convex cone have been inves-
tigated by many authors (cf. [1], [2], [4] and [7]). In [7], Yu used the nonpositive

orthant $R_{-}^{n}$ as a convex cone $C$ and defined the cone extreme points. Further, he in-
troduced the concept of acute to the convex cone $C$ and showed that this led some
properties of cone extreme points. Hartley introduced also the concept of cone compact-

ness and showed that this is sufficient to guarantee the existence of an efficient point in
[1]. Moreover, in [6], Tanino and Sawaragi introduced the concepts of $R_{+}^{p}$-bounded-
ness and $R_{+}^{p}$-closedness, and gave some properties to $R_{+}^{p}$-bounded sets and $R_{+}^{p}$ -closed
sets.

In this paper we give the concepts of cone compactness, cone boundedness and cone
closedness and investigate the characterization of the set of all cone extreme points of a
subset $A$ under a given cone $C$, denoted by $Ext[A|C]$ . And we study the following:

$(i)$ $Ext[A|C]\neq\phi$ ,

(ii) $A\subset Ext[A|C]+C$,

and

(iii) compactness or cone compactness of $Ext[A|C]$ .

This paper is organized in the following way. In Section 2, we discuss the various
properties of acute convex cones and $Ext[A|C]$ . In Section 3, we study (i), (ii) and
(iii) under $C$-compactness of a set $A$ . In Section 4, we show them under $C$-boundedness
and $C$-closedness of a set $A$ . In addition, we investigate the relations among cone com-
pactness, cone boundedness, and cone closedness.

2. Preliminaries and Cone Extreme Points

For a set $A\subset R^{n}$ , its closure, interior, and relative interior are denoted by c1A, intA,

and $riA$ , respectively.
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DEFINITION 2. 1. $A$ cone $C\subset R^{n}$ is said to be acute if there exists an open half-space
$H$ such that cl $C\subset H\cup\{0\}$ . $A$ cone $C\subset R^{n}$ is said to be poined if $C\cap(-C)=\{0\}$ .

Note that if $C$ is acute then $C$ is pointed. Moreover if $C\subset R^{n}$ is a convex cone, then,
by [2], the following facts are equivalent:

$(i)$ $C$ is acute,

(ii) cl $C$ is pointed,

and

(iii) cl $C$ is acute.

Throughout the paper, we will use a cone with the origin $0$ as the vertex in $R^{n}$ .

DEFINITION 2. 2. Let $C$ be a cone in $R^{n}$ . $A$ point $x_{0}\in A$ is said to be a C-extreme
$pointofAifthereisnopointsx\in Asuchthatx\neq x_{0}andx_{0}\in x+C$. We denote the set of
all C-extreme points of $A$ by $Ext[A|C]$ .

By Lemma 4. 1 in [71, we have

$Ext[A|C_{2}]\subset Ext[A|C_{1}]$ if $C_{1}\subset C_{2}$ (1)

and

$Ext[A+C|C]\subset Ext[A|C]$ . (2)

If $C$ contains no nontrivial subspaces, then

$Ext[A|C]\subset Ext[A+C|C]$ , (3)

and, from (2) and (3), $Ext[A|C]=Ext[A+C|C]$ .

PROPOSITION 2. 1. Let $C$ be an acute convex cone in $R^{n}$ . Then $Ext[A+riC^{0}|C]$

$=Ext[A|C]$ where ri $C^{0}=riC\cup\{0\}$ .
PROOF. In order to show $Ext[A+riC^{0}|C]\subset Ext[A|C]$ , for any $x_{0}\in Ext[A+riC^{0}|$

$C]$ , suppose that $x_{0}\not\in A$ . Then there $arex\in Aandd\wedge\wedge\in riC^{0}$ such that
$X_{0^{=x+d}}^{\wedge\wedge}$ (4)

Since $A\subset A+riO$ and ri $C\subset C$, we have
$\wedge x\in A+riC^{0}$ and $0\neq d\wedge\in C.$ (5)

But, (4) and (5) contradict the fact that $x_{0}\in Ext[A+riC^{0}|C]$ . Hence, we have $x_{0}\in A$ .
Since $x_{0}\in Ext[A+riC^{0}|C]$ , there is no $x\in A,$ $x\neq x_{0}$ , such that $x_{0}\in x+C$, that is $x_{0}\in Ext$

$[A|C]$ .
Conversely, take any $x_{0,\wedge}\not\in Ext[A+riC^{0}|C]$ . If $x_{0}\not\in A$ , then $x_{0}\not\in Ext[A|C]$ . Assume

that $x_{0}\in A$ , then there are $x\in A+riC^{0}$ and non$zerod\wedge\in C$ such that
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$x_{0}=x+\wedge\wedge d$ . (6)

And there is $\sim x\in A$ and $\overline{d}\in riC^{0}$ such that
$\wedge\sim\sim x=x+d$ . (7)

From (6) and (7), we have
$ x_{0}=x+(d+d)\sim\sim\wedge$ . (8)

Since ri $C^{0}$ is an acute convex cone and ri $C^{0}+C\subset C$, we have
$ 0\neq d+d\in C\sim\wedge$ . (9)

From (8) and (9), we have

$x_{0}\not\in Ext[A|C]$ .

$PROPOSITION2.2$ . Let Cand $Dbe$ two cones in $R^{n}$ . The following results hold:

$(i )$ $Ext[A+B|C]\subset Ext[A|C]+Ext[B|C]$

and

(ii) $Ext[A+Ext[B|D]|C]\subset Ext[A|C]+B$ .

PROOF. Take any $z\not\in Ext[A|C]+Ext[B|C]$ . If $z\not\in A+B$ then $z\not\in Ext[A+B|C]$ .
$Supposethatz\in A+B$, that is, $therearex\in Aandy\in Bsuchthatz=x+y$ . $Thenx\not\in Ext$

$[A|C]$ or $y\not\in Ext[B|C]$ . If $x\not\in Ext[A|C]$ , then there is $x^{\prime}\in A$ such that $x^{\prime}\neq x$ and
$x\in x^{\prime}+C$. This clearly implies that

$x+y\in x^{\prime}+y+C$ and $x^{\prime}+y\neq x+y$ ,

hence,

$z=x+y\not\in Ext[A+B|C]$ .

Similarly, if $y\not\in Ext[B|C]$ , then $z\not\in Ext[A+B|C]$ . Thus $Ext[A+B|C]\subset Ext[A|C]$

$+Ext[B|C]$ . The remaining statements follow immediately.

PROPOSITION 2. 3. Let $C$ be a convex cone in $R^{n}$ . Then, for any $x\in A$ ,

$Ext[(x-c1C)\cap A|C]\subset Ext[A|C]$ .

PROOF. Let $x\in A$ , and take any $x_{0}\not\in Ext[A|C]$ . If $x_{0}\not\in(x-c1C)\cap A$ , then $x_{0}\not\in Ext$

$[(x-c1C)\cap A|C]$ . Assume $x_{0}\in(x-c1C)\cap A$ , then there is $ d^{\prime}\in$ cl $C$ such that $x_{0}=x-d^{\prime}$ .
Since there $arex\in Aandd\in C\wedge\wedge$ such that

$\wedge x\neq x_{0}$ and $x_{0}=\wedge\wedge x+d$, (10)

we have $\wedge x+\wedge d=x-d^{\prime}$ , that is, $\wedge\wedge x=x-(d+d^{f})$ . Since cl $C$ is a convex cone, $\wedge d+d^{\prime}$ EclC, and
hence $\wedge x\in x-c1C$. Thus
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$\wedge x\in(x-c1C)\cap A$ ,

and from (10),

$x_{0}\not\in Ext[(x-c1C)\cap A|C]$ .
This completes the proof.

3. Cone Compactness

DEFINITION 3. 1. Let $C$ be a cone in $R^{n}$ . A set $A$ is said to be C-compact if $(x-c1C)$

$\cap A$ is compact for any $x\in A$ .

A compact set is C-compact. However, taking $C$ to be $R_{-}^{2}$ in $R^{2}$ and $A=\{x\in R^{2}|x_{1}$

$+x_{2}\leq 1\}$ , we can see that $A$ is $R_{-}^{2}$-compact but not compact (cf. p. 214 in [1]).

LEMMA 3. 1. Let $C_{1}$ and $C_{2}$ be two cones in $R^{n}$ . If $A$ is $C_{2}$-Compact and $C_{1}\subset C_{2}$ then
$A$ is $C_{1}$-compact.

PROOF. For any $x\in A,$ $x-c1C_{1}$ is closed and $(x-c1C_{2})\cap A$ is compact. It follows
that $(x-c1C_{1})\subset(x-c1C_{2})$ from $C_{1}\subset C_{2}$ . So, we have $(x-c1C_{1})\cap A=(x-c1C_{1})\cap(x-c1C_{2})$

$\cap A$ , which shows that $(x-c1C_{1})\cap A$ is compact. Therefore $A$ is $C_{1}$-compact.

If $C$ is a convex cone in $R^{n}$ , by Theorem 6.3 in [3], the following (i), (ii) and (iii) are
equivalent:

$(i)$ A is C-compact,

(ii) A is clC-compact,

and

(iii) A is riC-compact.

THEOREM 3. 1. Let $A$ and $C$ be a nonempty subset and an acute convex cone in $R^{n}$ ,
respectively. If $A$ is C-compact, then $Ext[A|C]\neq\emptyset$ . Moreover, if $C$ is closed, then
ACExt $[A)C]+C$ .

PROOF. For any $x_{0}\in A,$ $(x_{0}-c1C)\cap A$ is compact and cl $C$ is acute. By using Corol-
lary 4.6 in [7], it follows that

$Ext[(x_{0}-c1C)\cap A|c1C]\neq\phi$ . (11)

From (1) and Proposition 2.3,

$Ext[(x_{0}-c1C)\cap A|c1C]\subset Ext[A|C]$ , (12)

which implies that $Ext[A|C]\neq\phi$ .
Next, let $C$ be closed then cl $C=C$, and take any $x_{0}\in A$ . By (11), there is $y\in(x_{0}-C)\cap A$

such that
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$y\in Ext[(x_{0}-C)\cap A|C]$ .

From this it follows that $x_{0}\in y+C\subset Ext[(x_{0}-C)\cap A|C]+C$ .
Further, from (12), $x_{0}\in Ext[A|C]+C$ .

THEOREM 3. 2. Let $C$ be an acute convex cone in $R^{n}$ . If $A$ is C-compact, and

$(C\backslash \{0\})+c1C\subset C$ , (13)

then $A\subset Ext[A|C]+C$ .
PROOF. Suppose that there is $x_{0}\in A\backslash (Ext[A|C]+C)$ . If $x_{0}\in Ext[A|C]$ , then

$x_{0}=x_{0}+0$ EExt $[A|C]+C$ since $O\in C$ . This is a contradiction. Therefore, there exist
$x_{1}\in A$ and nonzero $d_{1}\in C$ such that $x_{0}=x_{1}+d_{1}$ , and so $x_{1}=x_{0}-d_{1}\in x_{0}-C$ . Thus, $x_{1}\in(x_{0}$

$-C)\cap A$ . If $x_{1}\in Ext[A|C]$ , then

$x_{0}=x_{1}+d_{1}$ EExt $[A|C]+C$ .
This is a contradiction. Thus, $x_{1}\not\in Ext[A|C]$ . Since $(x_{0}-c1C)\cap A$ is clC-compact,
from Theorem 3.1, Proposition 2.3 and (1), it follows that

$x_{1}\in(x_{0}-C)\cap A$

$\subset Ext[(x_{0}-c1C)\cap A|c1C]+c1C$

$\subset Ext[A|C]+c1C$ .
Thus, there exist $\wedge x$ EExt $[A|C]$ and $\wedge d\in c1C$ such that $X_{1^{=x+d}}^{\wedge\wedge}$, and hence $x_{0}=x_{1}+d_{1}$

$=x+\wedge d+d_{1}\wedge$ . Since $\wedge d\in$ cl $C$ and $0\neq d_{1}\in C$ , we have $\wedge d+d_{1}\in C$ by the assumption (13).
Therefore,

$x_{0}\in Ext[A|C]+C$ .
This contradicts the fact that $x_{0}\not\in Ext[A|C]+C$ .

In general, it is known that ri $C+c1C=riC$ for any convex cone $C$ (cf. [3]). But it
is not necessary that

$(C\backslash \{0\})+c1C\subset C$ . (13)

However, closed or open convex cones satisfy this property (13). Moreover, if a cone $C$

can be expressed as an intersection of arbitrary number of closed or open convex cones,
then $C$ also satisfies (13), (cf. p. 112 in [2]).

COROLLARY 3. 1. Let $C$ be an acute convex cone with the property (13) in $R^{n}$ . If $A$ is
C-compact then

$A+C=Ext[A|C]+C$ (14)

PROOF. Clearly, $A+C\supset Ext[A|C]+C$ . On the other hand, from Theorem 3.2, it
follows that $A+C\subset Ext[A|C]+C$ by $C+C=C$ . Thus (14) holds.
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COROLLARY 3. 2. Let $C_{1}$ and $C_{2}$ be two acute convex cones in $R^{n}$ . Assume that

$(i)$ A is $C_{2}$-compact,

(ii) $(Ci\backslash \{0\})+c1Ci\subset Ci,$ $i=1,2$

and

(iii) $C_{1}\subset C_{2}$ .
Then

$A\subset Ext[A|C_{1}]+C_{1}\subset Ext[A|C_{2}]+C_{2}$ . (15)

PROOF. The proof is straightforward from Corollary 3. 1.

COROLLARY 3. 3. Let $C$ be an acute convex cone with the property (13) in $R^{n}$ . If $A$ is
C-compact then

$Ext[A|riC^{0}]+riC^{0}\subset Ext[A|C]+C\subset Ext[A|c1C]+c1C$ . (16)

Further, if int $ C\neq\phi$ , then

$Ext[A|intC^{0}]+intC^{0}\subset Ext[A|C]+C\subset Ext[A|c1C]+c1C$, (17)

where int $C^{0}=intC\cup\{0\}$ .
PROOF. Clearly $A$ is both clC-compact and riC-compact. Since $C$ , c1C and $riC$

satisfy the property (13), by Corollary 3. 1,

$A+C=Ext[A|C]+C$ ,

$A+c1C=Ext[A|c1C]+c1C$

and

$A+riC^{0}=Ext[A|riC^{0}]+riC^{0}$ .
Thus (16) holds. Further, if int $ C\neq\phi$ then ri $C=intC$, and hence (17) holds.

Next we study compactness and cone compactness of the set of all cone extreme
points.

THEOREM 3. 3. Let $A$ be a nonempty compact set in $R^{n}$ and let $C$ be a cone in $R^{n}$ such
that $C\backslash \{0\}$ is open. Then $Ext[A|C]$ is compact. Further, if $C$ is acute then $Ext[A|C]$

$\neq\phi$ .
PROOF. $BycompactnessofAandA\supset Ext[A|C],$ $itsufficestoshowthatExt[A|C]$

is closed. Suppose that there is a sequence $\{x_{n}\}$ CExt $[A|C]$ converging to $x\not\in Ext[A|C]$ .
Since $\overline{x}\in A$ and $\overline{x}\not\in Ext[A|C]$ , there exists $\overline{y}\in A$ and nonzero $\overline{c}\in C$ such that $\overline{x}=\overline{y}+\overline{c.}$

Since $C\backslash \{0\}$ is open, there exists an open neighborhood $U$ of $\overline{c}$ such that
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$U\subset C$ and $O\not\in U$. (18)

Consequently $\overline{y}+U$ is a neighborhood of $\overline{x}$ and hence there is a number $N>0$ such that
$Xh\in\overline{y}+U$ for any $k>N$. Therefore, for any $k>N$, there exists $Ck\in U$ such that $Xk$

$=\overline{y}+Ck$ . From (18), $0\neq Ck\in C$ and $\overline{y}\in A$ , and from this it follows that $Xk\not\in Ext[A|C]$ .
This is a contradiction. Thus $Ext[A|C]$ is closed. Furthermore, if $C$ is acute then
$Ext[A|C]\neq\phi$ by Theorem 3. 1.

If we drop the assumption that $C\backslash \{0\}$ is open then $Ext[A|C]$ is not always compact.

EXAMPLE 3. 1. Let

$A=\{(x, y)\in R^{2}|-3\leq y\leq(x+2)^{2}-3, -2\leq x\leq-1\}$

$\cup\{(x, y)\in R^{2}|-3\leq y\leq 2x, -1\leq x\leq 0\}$

$\cup\{(x, y)\in R^{2}|-3\leq y\leq-2x, 0\leq x\leq 1\}$

$\cup\{(x, y)\in R^{2}|-3\leq y\leq(x-2)^{2}-3,1\leq x\leq 2\}$ ,

and

$C=\{(x, y)\in R^{2}|y\leq-2|x|\}$ .
It is seen that $Ext[A|C]$ is not compact;

$Ext[A|C]=\{(0,0)\}$

$\cup\{(x, y)\in R^{2}|y=(x+2)^{2}-3, -2\leq x<-1\}$

$\cup\{(x, y)\in R^{2}|y=(x-2)^{2}-3,1<x\leq 2\}$ .

THEOREM 3. 4. Let $A$ and $c_{+}$ be a compact subset and a cone in $R^{n}$ , respectively, and
$C_{-}=-C_{+}$ . We assume that

$c_{+}\backslash \{0\}$ is open, or else

$c_{+}$ is closed.

Then $Ext[A|C_{-}]$ is $c_{+}$ -compact.
PROOF. In case $c_{+}\backslash \{0\}$ is open, the conclusion is immediately obtained by Theorem

3.3. $WeassumethatC_{+}$ is closed, and hence so is C-. If Ext $[A|C_{-}]=\phi$ , the conclusion
is clear, and assume that $Ext[A|C_{-}]\neq\phi$ . We show that $(x_{0}-c1C_{+})\cap Ext[A|C_{-}]$ is
compact for every $x_{0}\in Ext[A|C_{-}]$ . Suppose that there is $\wedge x\neq x_{0}$ such $thatx\in\wedge(x_{0}-c1C_{+})$

$\cap Ext[A|C_{-}]$ . Then there exists nonzero $c^{\prime}\in C$-such that $x=x_{0}+c^{f}$ . This follows
that $x\not\in Ext[A|C_{-}]$ , which is a contradiction. Thus $(x_{0}-c1C_{+})\cap Ext[A|C_{-}]=\{x_{0}\}$ ,

which is compact in $R^{n}$ , and hence $c_{+}$ -compact.

In Example 3.1, $Ext[A|C]$ is $(-C)$-compact. The following example shows that
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$Ext[A|C_{-}]$ is not compact even if $A$ is convex. However, it is $c_{+}$ -compact.

EXAMPLE 3. 2. Let

$A=\{(x, y, z)\in R^{3}|x^{2}+y^{2}\leq(\frac{1}{2}z)^{2},$ $x\leq 0,$ $-4\leq x\leq 0\}$

$\cup\{(x, y, z)\in R^{3}|\frac{x^{2}}{4}+y^{2}\leq(\frac{1}{2}z)^{2},$ $x\geq 0,$ $-4\leq z\leq 0\}$

and

$C_{-=}\{(x, y, z)\in R^{3}|x^{2}+y^{2}\leq(\frac{1}{2}z)^{2},$ $z\leq 0\}$ .

It is seen that $Ext[A|C_{-}]$ is not compact;

$Ext[A|C_{-}]=\{(x, y, z)\in R^{3}|\frac{x^{2}}{4}+y^{2}=(\frac{1}{2}z)^{2}$ , $x>0,$ $-4\leq z\leq 0\}$ .

In general, it is known that $A+B$ is compact if $A$ and $B$ are two compact sets in a
topological vector space. However, even if both $A$ is compact and $B$ is C-compact in $R^{n}$ ,
$A+B$ is necessarily neither compact nor C-compact in $R^{n}$ .

$ExAMPLE3.3$ . Consider Ext $[A|C]$ of Example3.1as B, that is,

$B=\{(0,0)\}$

$\cup\{(x, y)\in R^{2}|y=(x+2)^{2}-3, -2\leq x<-1\}$

$\cup\{(x, y)\in R^{2}|y=(x-2)^{2}-3,1<x\leq 2\}$ .
Let

$A=\{(x, y)\in R^{2}|y=\frac{1}{2}x,$ $0\leq x\leq 2\}$

and

$C=\{(x, y)\in R^{2}|y\leq-2|x|\}$ .
It is seen that $A+B$ is not C-compact.

4. Cone Boundedness and Cone Closedness

DEFINITION 4. 1. Let $C$ be a cone in $R^{n}$ . $A$ set $A$ is said to be C-bounded if there is
$a_{0}\in R^{n}suchthatA\subset a_{0}+C$ . $AndaSetAissaidtobeC- cloS^{2difA+c1Cisclosed},$ .

The following proposition may be easily proved (cf. [4] and [6]).

PROPOSITION 4. 1. Let $A$ and $Cbe$ a nonempty subset and an acute convex cone in $R^{n}$ ,
respectively. If $A$ is C-bounded and C-closed, then $A+c1C$ is C-compact and $Ext[A|C]\neq\phi$ .
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Then we have the following result.

THEOREM 4. 1. Let $C$ be an acute convex cone with the property (13) in $R^{n}$ . If $A$ is
C-bounded and C-closed then

$A\subset Ext[A|c1C]+c1C\subset Ext[A|C]+c1C$

and

$A\cap\{A+(C\backslash \{0\})\}\subset Ext[A|C]+C$ .
PROOF. Since $A+c1C$ is C-compact by Proposition 4.1, we have

$A+c1C\subset Ext[A+c1C|c1C]+c1C$ ,

by Theorem3.2and Coro11ary3.3. By using (1) and (2),

$A\subset Ext[A|C]+c1C$ .
Moreover, since $(C\backslash \{0\})+c1C\subset C$ ,

$A+(C\backslash \{0\})\subset Ext[A|C]+c1C+(C\backslash \{0\})\subset Ext[A|C]+C$ .
This completes the proof.

COROLLARY 4. 1. Let $C$ be an acute closed convex cone in $R^{n}$ . If $A$ is C-bounded and
C-closed, then $A\subset Ext[A|C]+C$ .

PROOF. The proof is a direct consequence of Theorem 4. 1.

COROLLARY 4. 2. Let $C$ be an acute convex cone with the property (13) in $R^{n}$ . If $A$ is
C-bounded and C-closed then

$A+c1C=Ext[A|c1C]+c1C$ .
$Fu\gamma ther$, if $C$ is closed then

$A+C=Ext[A|C]+C$ .

PROOF. Clearly, $A+c1C\supset Ext[A|c1C]+c1C$. Conversely, by Theorem 4.1, $A\subset Ext$

$[A|c1C]+c1C$ . And hence $A+c1C\subset Ext[A|c1C]+c1C$ . Further, if $C$ is closed, the
conclusion is clear.

Theorem 4.1, Corollary 4.1 and Corollary 4.2 correspond to Theorem 3.2, Theorem
3.1 and Corollary 3.1, respectively, but there is no relation of inclusion between each of
these.

COROLLARY 4.3. Let $C_{1}$ and $C_{2}$ be two acute convex cones in $R^{n}$ such that $C_{1}\subset C_{2}$ . If
$A$ is $C_{2}$-bounded and $C_{2}$-closed, then
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$A\subset Ext[A+c1C_{2}|c1C_{1}]+c1C_{1}$

$\subset Ext[A+c1C_{2}|c1C_{2}]+c1C_{2}$

$\subset Ext[A|c1C_{2}]+c1C_{2}$

$\subset Ext[A|C_{2}]+c1C_{2}$

$\subset Ext[A|C_{1}]+c1C_{2}$ .

PROOF. Since the acute convex cones cl $C_{1}$ and cl $C_{2}$ satisfy the conditions (i), (ii)

and (iii) of Corollary 3.2,

$A\subset Ext[A+c1C_{2}|c1C_{1}]+c1C_{1}\subset Ext[A+c1C_{2}|c1C_{2}]+c1C_{2}$ .

The remaining statements are clear from (1) and (2).

If a subset $A$ is compact, it is also C-closed for every cone $C$ , but it is not necessari-
ly C-bounded. We assume that

(a) $A$ is compact and there is $a_{0}\in R^{n}$ such that

$A\subset[C]+a_{0}$ ,

where $[C]$ denotes the subspace generated by $C$ , or else
(b) $A$ is compact and int $ C\neq\phi$ .

Then $A$ is C-bounded.

EXAMPLE 4. 1. Let

$A=\{(x, y)\in R^{2}|(x-2)^{2}+(y-2)^{2}\leq 1\}$ ,

and

$C=\{(x, y)\in R^{n}|y=x, x\leq 0\}$ .

It is seen that $A$ is compact and convex but not C-bounded.

Moreover, even if $A$ is C-compact, it is necessarily neither C-bounded nor C-closed.
Conversely, even if $A$ is C-bounded and C-closed, it is not necessarily C-comapct. The
following example shows that there exist cases satisfying precisely one of the following
three properties: C-compact, C-bounded, and C-closed.

EXAMPLE 4. 2. Let

$C=t(x, y)\in R^{2}|y\geq 2|x|\}$

and three convex sets

$A_{1}=\{(x, y)\in R^{2}|1\leq y<-x+1\}$ ,
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$A_{2}=\{(x, y)\in R^{2}|x>0, y>0\}\cup\{(x, 0)\in R^{2}|x\geq 0\}$

and

$A_{3}=\{(x, y)\in R^{2}|y>2|x|+1\}$ .

It is seen that $A_{1}$ is C-compact but neither C-bounded nor C-closed, $A_{2}$ is C-closed but
neither C-compact nor C-bounded, and that $A_{3}$ is C-bounded but neither C-compact nor
C-closed.

And ifCisanacute closed convex cone, $thereexistsanonemptyconvexsetA\subset R^{n}$

such that

$(i )$ $A\subset Ext[A|C]+C$ ,

(ii) $A$ is not C-compact,

(iii) $A$ is not C-bounded

and

(iv) $A$ is not C-closed.

EXAMPLE 4. 3. Let

$A=\{(x, y)\in R^{2}|x>0, y\geq 0\}$

and

$C=\{(x, y)\in R^{2}|y\geq 2|x|\}$ .
Then it is clear that $A$ satisfies the desired properties.

Further, even if $A$ is a nonempty compact convex set and $B$ is C-compact, C-bounded
and C-closed where $C$ is an acute closed convex cone in $R^{n},$ $A+B$ is not necessarily

C-compact.

EXAMPLE 4. 4. Let
$A=\{(x, y)\in R^{2}|y=3x, 0\leq x\leq 1\}$ ,

$B=\{(x, y)\in R^{2}|y=-(x-3)^{2}+2,2\leq x<4\}\cup\{(\frac{9}{2}$ , $0)\}$ ,

and

$C=\{(x, y)\in R^{2}|y\geq 2|x|\}$ .

It is seen that $A+B$ is not C-compact.
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