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§1. Introduction

The notion of the selfdual cones in a Hilbert space was introduced by Araki [1] and
Connes [2], and it is highly instrumental in determining the algebraic structure of the
standard von Neumann algebra. Our purpose in the present paper is to discuss the
characterization of the tensor product of the selfdual cones associated to the standard

von Neumann algebras.
Let (My, Hy; J1, P1) and (M,, H,, J5, P,) be two standard von Neumann algebras

defined by Haagerup [3] where M; is a von Neumann algebra on a Hilbert space H; and
Ji is an isometric involution on H; and P; is a selfdual cone in H; for i=1, 2. Then the
closure of the algebraic tensor product of two selfdual cones P; and P, i. e.,
PiQP,=co {6Q|EE Py, nE Py)

is not always seldual in H;QH, where co denotes the closed convex hull.

In § 2 we shall characterize the selfdual cone associated to the tensor product of two
standard von Neumann algebras modifying the idea of completely positive maps. With
this characterization, we shall investigate some properties of the abelian standard von

Neumann algebras in § 3.
We refer mainly [6] and [7] for stnandard results in the theory of the operator

algebras, and also refer [8] for the discussion of completely positive maps.
Before going into the discussion, the authors wish to express their hearty thank to

Dr. Katayama for his many valuable suggestions.

§ 2. Characterizations of the tensor product of the selfdual cones

Let M be a von Neumann algebra on a Hilbert space H. Let J be an isometric in-

‘volution on H, and P be a selfdual cone in H, i. e., P coincides with the dual cone P'=

{§€H|(§, n)=0 for all »& P}.
DerINITION 2. 1. ([3; Definition 2.1]). The quadruple (M, H, J, P) is called the

standard form of a von Neumann algebra M if it satisfies the following conditions:
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i)y JMj=M,
il) JeJ=c*, cEMNM,
iii) Jé=§,6EP,
iv) if x belongs to M, then x/x/(P)CP.
DEFINITION 2. 2. Let (M, H, J, P) be a standard von Neumann algebra. A matrix
(€517 ;=1EMn(H) (§i;EH) is said to be J-positive with respect to P if

, i‘laifaj]&ifEP
1, j=

for these elements {ai} of M.
Let M be a von Neumann algebra on a Hilbert space H with a cyclic and separating
vector & and let /¢, be the modular conjugation of the left Hilbert algebra M&,, We put

PEo= {xjfo x]éoEOIxEM}-—

Then, Pg, is the selfdual cone in H and (M, H, ]z, Ps,) is of standard form. In particular,
we put M=B(H»)RIn, H=H,®H, where H, is an n-dimensional Hilbert space with a
complete orthonormal basis {ej, es,..., ex}. Then, 7p=e¢,Qe1+ Qe+ ... +en®exn is the
cyclic and separating vector for M, and we have

J2(§Qm=1KE, & n&Hn,
Py =[(B(H#)RQIn)*70].
LEmMA 2. 3. Keep the notations as above. We identify Ma(H) with HRX(H.QH,) by
the linear map: [§ij]} j:l—zf,]é___ 1&' iQeiQRe;) of Mn(H) onto HR(HnQHn). The canonical cone

Peo @, with respect to the cyclic and separating vector £¢Qmno then coincides with the set of
all Jeo-positive elements with respect to Pe,, and also coincides with the closure of the convex

hull of the elements of matrices [aiJe aile.€ol], j—1 where each ai is an element of M.
Proor. In this proof the modular conjugations /¢ and /4, are simply denoted by J
and 7respectively, and we put M =B(H»)XI». Let x be an arbitrary element of the

weakly dense part of M®M such that x= ﬁlai@)bi, aicM, bi=M. We have then,
~ ~ m ~ ~
2=(JQRJ)x(JRJ )(fo®770)'—fj2___laifajffo®bi] bj Jno.
On the other hand, if bi=9:®1 for yi=[2{?1€ B(Hz), we have
bi b Tno=: QL) T (y; Q1) Tno
=(iRQLY1RYiX :u:lep®ep)
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n

Z‘: Yi ep@)’f ép

p=1

n n
=31 2 ’X(J)ep(X)eq, where yz——[Z(‘)]
=

pig=1i=1
Therefore,
3% aiJa; J&4R0iTbi Tao= 3% N 31 3 25001 APai FeuRAesDeq)
1,7]= i, j= q= =
=3 Jpafo3 Ka) IG D ar) TN enReo).
2 2 (2]
Hence,

(TR (JQTXEd®m0)=3] 31 AL JALJE(RNesReq),

t=1 p,g=1

Q

where Ag’)zﬁ A$Pa;EM. Tt follows that Pe,Ry,Cco {[aifa;Jé0]|aiEM).

i=1
Now, if a: is an arbitrary element of M, then one sees that

31 b:JbjJaiJa; Jeo= 2 biaiJbiaiTE

i,j=1 i-j=1
n n
(Z biai) ](E1 biai)Jo,
i=1 i=
for all elements b; of M. Hence we have
> ) biJbjJaiJa;JEo< Pe,.
i, 5=
Therefore, the matrix [aiJa;J$o] is a J-positive element with respect to P;. Note that
the set of all J-positive elements with respect to Pg, is the closed cone. It follows that
co {[aiJa;j]&]|aiS M} CQ, where @, denotes the set of all J-positive elements with res-

pect to Ps,.
On the other hand, if [£:;] is a J-positive element of f»(H) with respect to P, then

(C&:i5], [az]defo:l)— E (511, aiJa;iJ&y)

i =1

= 3% (@tJat Jeuj, €920
irj

for all elements @i of M. It follows that co {[aiJa;jJéo]|aiEM} C Q.
Therefore, we obtain that Pegr,C @ and PegrnC Q. It follows that Peygy, =&
because of the selfduality of Ps7. Hence we obtain the required results. This com-

pletes the proof. Q.E.D.
Now we characterize the set of all /-positive elements of order » with respect to P
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as the selfdual cone associated to the standard form of the matrix von Neumann algebra
Mn(M). Namely we have the following:

PROPOSITION 2. 4. With (M, ﬁ, ]~, P ) as before where 7-——]% and ?sz,, let (M, H, ],
P) be a standard von Neumann algebra. And let Q be the set of all J-positive elements of
Mn(H) (which is identified with HQH ) with respect to P. Then, Q contains PRP and is the
selfdual cone in HRQH such that (MM, HRH, R, Q) is standard.

Proor. We first assume that M is o-finite. Then we can find a cyclic and separat-
ing vector § in P, and (M, H, J,, P,) is standard where J, and P, denote the modular
conjugation J¢ and the canonical cone P¢, with respect to §, respectively. Since (M, H,
J, P) is standard, by [3; Theorem 2. 18] there exists a unitary » on H such that

x=uxu"' (xEM), J=uJou"l, P=ubP,.

The operator «# belongs to M’. Suppose that [§:;] is Jo-positive with respect to Py, then

‘ﬁ aifaj]ufij=_anudifoaifofifeuPozpy

i,j=1 1,.7=

for each element a: of M. Therefore [#§i;] belongs to Q. By the symmetric argument,
we see that

Q= {[u&i;1E Mn(H)[§i5] is Jo-positive w. r. t. Py} .

Thus, by Lemma 2. 3, we have that Q=(#@®1)Ps®7. Therefore one easily sees that Q is
selfdual and contains P®1'3: Since (M®]\7f, H®ﬁ, ]o®f P¢yx7,) is standatd, we see that
(M®J\7 , H®I7, ]®T, Q) is also standard without dufficulty.

In the general case, choose an increasing net {p,} (@&1I) of o-finite projections in M
which converges strongly to 1. If we put g,=p./p.J, the family {q,} is also an increas-
ing net which converges strongly to 1. Cosider the reduced standard von Neumann
algebra (¢.Mqa, qaH, Jo» q«P) where J, means ¢./q.. Let Q. be the set of all J,-positive
elements of f{,(g.H) with respect to ¢,P. By the first part of the proof, Q. is selfdual
in q.HQH. We shall show that {Q.} is an increasing family. If e;<a, then gu=gu..
By Lemma 2. 3, Q, coincides with the closure of the convex hull of the elements [¢.aiq.
Jg.8a;q.Jq.&] for ai&M and £€q,P. Since

Qa1 @i a1 J Qa1 @5 Qa1 J Qa1 = Qaz Dor @i Par Qs J Gz Py @G Dor Qaz J G §

for ai&M and £&q., PCq., P, we obtain the inclusion Q,,C Q..
On the other hand, if [§:;] is a J-positive element with respect to P, then

. 2"3 4a@i]a@iJaqabii=qa( . i lpaaipa]paajpa]&'f)EQaP

i,j=1 1,J=

for aicM. Therefore [¢.&i;] belongs to Q,. Hence we have (¢.1)QC Q.. Further-
more, the equality

qaai]aaf]a qa5=1’aai1’af.i’aaj15af5, aicM, §&P
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implies that @,C Q. It follows that
QC U(¢.®1)QRC UR.CQ,

and then Q=UQ,. Since {Q,} is an increasing family of selfdual cones in g,H @?17, Q is

selfdual in H®ﬁf We easily see that @ contains P®l7.

Finally, we shall show that (M®Z\Z H®F7, ]®]T Q) is standard. It is easy to see
the conditions i) to iii) in Definition 2. 1. For the condition iv) take an element

xEM@JlZ then there exists a bounded net {x,} of the elements of q,qua®]l7 which con-
verges strongly to x. Hence, for a vector & of @ we have

2(JRNx(JRé= lim %0 (J QT %2 (L)) (2. RQ1)6CQ

by the first part of the proof because (¢, &1)¢<Q,. This completes the proof. Q.E.D.
The above result can easily be generalized to the case where H is an infinite dimen-
sional separable Hilbert space in the following way. Put M=B(K YR, ﬁzK@K, T =J0s

P=P,, where ﬂozni%en®en isa cyclic and separating vector in H for M and {en} isa

countable orthonormal basis in K. Let p. be the projection on K such that pnei =ei
(i=<n), pnei=0(i<n). put gn=(Pp»@1)J($»R1)J which is equal to g«Qps. Since {gn} is
an increasing sequence which converges strongly to 1, we have the following proposi-

tion using Proposition 2. 4.
ProrosiTiON 2. 5. With (M, ﬁ, f: ﬁ) as above, let (M, H, J, P) be the standard form.

Put

L=J {[Ezﬂ,”]_lEH@anl [&:,] is J-positive w.r.t. P}.

Then Q is selfdual in HQH which contains PRQP, and (MQM, HRH, JQT, Q) is standard.
Before going into the discussion of the general case, we need the following lemma.
LeEmMA 2. 6. Let M and N be two von Neumann algebras on H and K both of which

have cyclic and separating vectors &y and vy respectively. Then the closure of the union with

respect to n of all elements Z 5:;@77“ such that [§ij]7 ;=1 and (751} ;=1 are Je and Jyo-

i,7=1

Dositive elements with respect to Ps, and Py, respectively coincides with Peyeno, and therefore
it is selfdual in HRK.

Proor. Let x be an arbitrary element of the strongly dense part of MQN such that

n

=21 aiQbi, a;i=M, bi&N. Then we have

x(f1®fz)x(f1®f2)50®770— 2 azf1ﬂff1 £0Qbi J2b5J270,

l]—

where /; and J, denote the modular conjugations /¢, and [y, respectively. Using Lemma



6 Y. Miura and J. Tomiyama

2. 3, we obtain the required result. Q.E.D.
Let (M,, Hy, J1, P1) and (M, H,, J,, P;) be two standard von Neumann algebras. For

any element § of Hy, let R¢ be the right slice map of H;XH, into H, with respect to &

such that R(§'Q»n")=(¢’, &)/, '€ H,, 7’ =H,. For any element x of H;QH,, we put

r(%)(§)=Re(x), § EH1.

Then, r(x) is a bounded conjugate linear map of H; into H,.

DEeFINITION 2. 7. Keep the notations as above. For each natural number # we shall
call that 7(x) is an n-J-positive map of H; into H, if for any Ji-positive element [£i;]7 i=1
of M»(H1)(§i;E Hy) with respect to Py, [7(x)€:i5)]] ;=1 (EMn(H?)) is Jo-positive with respect
to P,. If r(x) is n-J-positive for all natural number #, it is said to be completely J-posi-
tive. The set of all elements x of H; Q) H, such that (x) is a completely J-positive map
of H, into Hy is denoted by P{QP;.

With this definition we can characterize the selfdual cone associated to the tensor
product of standard von Neumann algebras.

THEOREM 2. 8. Let (M4, Hy, ], P,) and (M, Hs, J,, P,) be two standard von Neumann
algebras. Then the cone P1®P2 contains P,QP, and is the selfdual cone in HiQH, such
that (M @My, HiQHs,, [\QJ2, PIQPy) is standard.

Proor. We fist assume that M; and M, are o-finite. Then both M; and M, have
cyclic and separating vectors §; and 7o in P; and P, respectively. We shall show that

AN m
P:i@Prp,=Peo@ne.  If = D36xkQ@nr is an arbitrary element of the dense part of Pg®no,
k=1

and if [&i;]7 j=1 and [#:i;]], j=1are Jeo and Jyo-positive with respect to Pe, and Py, res-

pectively, then we have

(Lr(x)&iNd, [nisD) = él(r(x)(é'if), i)

i,j=

-3 3 (Ex, £i5)n, 7i)

i,j=1 k=1
=(x, '_‘21&:@%)20
1,77

by Lemma 2. 6. Hence, by Theorem 2. 4, [7(x)(§i5)] is Jy-positive with respect to Py,
It follows that 7»(x) is a completely J-positive map and PE°®70CPEO®P1]0 because of the
closedness of P%@Pm,. Similarly we obtain the converse inclusion using the above
equalities.

Next, we assert that P1®P2=(u1®u2)(Peo®Pm,) for some unitary elements »; and %,
of M’y and M’; respectively. By [3; Theorem 2. 18], there exists unitaries #; and %, in
M’y and M’; respectively such that Py=#,P¢, and P,=wu,P;,.. Take an element x of
P50®Pyo and let [§is] and [%:i] be J; and Jo-positive with respect to P, and P, respec-
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tively, then by the first equalities of the proof we have

(Cr((uQu)x)§i5)], [7ii])=(%, iluf 1 &iiQuy * 7id).

i,7=

Note that [#; ! &:7] and [#5! »ii] are J, and Jy-positive with respect to Pg, and Py, res-
pectively by the proof of Proposition 2. 4. It follows that (u1®u2)P50®PvOCP1®Pz- We
obtain the converse inclusion by the symmetric argument. Therefore, we see that
P1(§)P2 is the selfdual cone in H,QH, which contains PiQP,, and (M1QM,, HIQH,, 1R ]2,
P1®Pz) is the standard form.

In the general case, let P; and P, be o-finite projections of M; and M, respectively.
Put g»=pJ1p1J1 and go=p,J>P2J,. We assert that (¢:1Qq:)XP 1®P 2)C g1 1®QZP 2. In fact
if x belongs to PI@JPZ, we have

([r((:Rg2)x)(q:€14)], [qwz'f])=(x,i §1q15ij®Q277”)
=([r(x)(q:£i5)], [gaii])=0,

where [¢1§:5] and [go7%ii] are g1J1 91 and ¢z ]2 ¢z2-positive with respect to ¢;P; and ¢.P; res-
pectively because [¢::i] and [g27i5] are also J; and J»-positive with respect to P; and P,
respectively by the last half of the proof of Proposition 2. 4. Furthermore, We have

P P m
another inclusion ¢;PiQqsPoC PiQP,. For, if x= > 1q1851®q27)st is an arbitrary element

S»t=
of the dense part of qlPl@quz where [¢16s:] and [q27s:] are ¢1J1¢: and g»J> go-positive
elements with respect to ¢;P; and ¢,P, respectively, and if [§’;;] and [#'i;] are J; and J,-
positive with respect to P; and P, respectively, then by the first part of the proof,
(Lrax€'sn)], (76 D=(x 3 @'15@aan’i5)=0,
i, j=
) A N

because of the selfduality of ¢;P1Xq:P.. Therefore x belongs to PiQP;.

Now, choose two increasing net {p,}(a&TI) and {ps}(BEJT) of o-finite projections of
M, and M, which converge strongly to 1 respectively. Put ga=>p.J10.J1 and rs=ppJ2ps/>.
Then {g,} and {rs} are also increasing nets which converge strongly to 1. By the above

arguments, we have

A Pal A\ N\
PQP,C Uﬁ(%@” B P1QP) UﬁCIaP 1 Q7 8P C PiQPs.

Therefore we have PIQPZ: UGe P1®er2.
a8

By the last half of the proof of Proposition 2.4 and the first half of the proof of this
S
theorem, {g.PiQrsP,} is an increasing family of selfdual cones. Therefore, we see that
PAS
P,QP; is also selfdual in HiQH, and contains P;XP,. It is now easy to see that (M;QM,,
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HQH,, 1XJ,, P1®P2) is standard using the same argument of the last half of the proof
of Proposition 2.4. This completes the proof. Q.E.D.
As an immediate consequence of the above discussion we have the following corol-
lary, which is the extension of Lemma 2. 6.
CoROLLARY 2.9. With standard forms (M., Hy, J1, Py) and (M, H,, Jo, P;) as before,
the cone P1®P2 conincides with the closure of the union with respect to n of all elements

.{l/_;_‘lEiJ'@")ii where [§ii] and [7ii] are J, and Jo-positive elements with respecl to Py and P,

i, 5=
respectively.

§ 3. Some properties of the abelian standard von Neumann algebras

In this section we shall investigate some properties of the abelian standard von
Neumann algebras from the point of view of the tensor product of the selfdual cones.

ProrosiTION 3. 1. Let (M, H, J, P) be a standard form for an infinite dimensional sep-
arable Hilbert space H. Then, M is isomorphic to the algebra 8> of all bounded sequences if
and only if P contains a complete orthonormal basis of H.

Proor. Consider the von Neumann algebra N=4> on the Hilbert space K=¢2. Let
P, be the set of positive g2-sequences. One then easily sees that P, is a selfdual cone in
K and contains a complete orthonormal basis of K. Let J, be the isometric involution on
K such that Ji§=§, §&P,. Without difficulty, one can show that (N, K, Jo, Py) is stand-
ard. If (M, H, ], P) is standard and M is isomorphic to N, then there exists an isometsy
u of K onto H such that P=uP, by [3; Theorem 2.18]. Therefore P contains a complete
orthonormal basis of H.

Conversely, let (M, H, J, P) be a standard form and suppose P contains a countalbe
orthonormal basis {e;} of H. Let M be the algebra of all operators # on H such that xe;
=2;e; and {4;} is a bounded sequence. If we note that P is generated by {e:}, we see
that (M, H, J, P) is the standard form by the first part of the proof. Since M is com-
mutative, we have M=M by [3; Corollary 5.117. Therefore M is isomorphic to the
algebra ¢~. This completes the proof. Q.E.D.

THEOREM 3. 2. Let (M,, Hy, J1, P1) and (M,, H,, J,, P,) be two standard forms. If
either My or M, is abelian, then Pi\QP, is selfdual in H{QH,, and (M QM,, H{QQH,, J1Q/>,
PiQPy) is the standard form.

Proor. Suppose that both M; and M; are o-finite. #We can then find cyclic and
separating vectors &, and 7, in P; and P, respectively. If either M; or M, is abelian,
The convex cone of the algebraic tensor product M @M, is o-weakly dense in (M;Q
My)t.

In fact, let x, be an element of (M;®M,)+ which does not belong to the o-weak
closure of M;f@®M; . By the Hahn-Banach theorem, there exists a o-weakly continuous
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linear functional ¢, on M;@M, such that ¢o(x0)< 0 and ¢o(x)=0 for xEM; @M. How-
ever, if either M, or M, is abelian the functional ¢, must be a positive functional on M;
XM, by [5; Theorem 3. 4], a contradiction.

It follows that M; @M, is also strongly dense in (M;QM,)+. Therefore the closure

of the algebraic tensor product of two convex cones M; §, and My 7, in HiQH, coincides
with that of (M;Q@M)+t(EX ). Put 4=4,X4, where 4, and 4, are the modular opera-
tors with respect to &, and 7, respectively. For an arbitrary element & in (M;QM;)*(€o
&), there exists a sequence {£.} in the algebraic tensor product of Mj &, and M 7,
which is convergent to &. Since 41/29p=41/2Sn= J7 for n&=(M,QM>)*t(5¢Xn) where S and J
denote the #-involution and the modular conjugation with respect to £¢&», respectively,
(cf. [6]). The sequence {4v2£,} is convergent and therefore {4'/4£,} is also convergent.
Thus we obtain

AYAMT &6 A Y M5 no= 4V M1 QM) (§6R0),

that is, P:eQPyp=Psy27,. New by [3; Theorem 2.18], there exists two unitaries #; and
us in M’y and M’, suchthat Jy=uy Jeou7?, Jo=usJeous ! and Py=uPs,, Po=u3P¢,. It follows
that PR Pr=(24:R25)( Pz Pro)=(24: Q) Pzone is a selfdual cone and satisfies required
condition.

In the general case, considering increasing nets of o-finite projections of M; and M,
converging strongly to 1 and the reduced standard von Neumann algebras, we obtain
the conclusion by the similar arguments of the proof of Proposition 2.4. This completes
the proof. Q.E.D.

ProrosiTiON 3.3. Let (ZTI, 17, f P') and (M, H, J, P) are two standard von Neumann
algebras where M= B&EK)RI and H =KQXK for a seqarable Hilbert space K and dim K=2.
If PRP is selfdual, then M is abelian.

Proor. Let {¢'»} be a countable orthonormal basis in K. By [3; Theorem 2.18],
there exists a unitary » on H such that J= uJyut and P=uP,, for a cyclic and separat-

ing vector 77'0———{2} %e’n®e’n in H for M. Let p» be an n-dimensional projection on K such

that puei=ei (i=<n) and pnei=0 (i<n) for a natural number #. Put ¢gn=>0xQ1) [y (HxX1)
Juo, which is equal to pQpn. If P®’1\5 is selfdual, then PQR Py, is also selfdual in H®ﬁ.
Hence one easily sees that PRgnPe, is selfdual in HXq»H for each n. Consequently, if
we consider the reduced standard von Neumann algebra (qnﬂqn, qnﬁ, gnlnoqn, qnPr),
we may assume that M=B(H ) n, H=H WQRH n, E =/, and ﬁ:on where 7, is a canoni-
cal cyclic and separating vector if an n2-dimensional Hilbert space H.QH» used in Lem-
ma 2.3 and n=2.

As usual, we first assume that M is o-finite and consider a cyclic and separating vec-
tor £ in P. Without loss of generality, we may then assume that /=J¢ and P= P,
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Let b=»1 be an element of M where y=[2i;]& B(H»). Then we have

bTbﬁoz

S
L)

kil Air ik eiQe;.

If each a@; and a belong to M, then

( Z 2iJai JeoR(eie), af aJ&/@bTbT70)

i,j=1

~N

i_ 31 2jka*ai Ak a*ailé, &0)

i7=1k=1

I

3YC 3 dwaran ] (33 naran Ty €920,

Note that the cone P®ﬁ is generated by the elements a/aJ 50®b7bﬁ90, aEM, beEM. 1t
follows that the transpose [aiJa;J¢,] belongs to P®7’ if P®'P' is selfdual. By Proposi-
tion 2. 4 we see that t[aiJa;J&,] is a J-positive element with respect to P. Hence we have

0=( 2 xzijfajfatffo: §0)= E (ajfxfatféo, x*Eo)

i, =1 i, j=1

(61141/20* x*eo, x*eo)

1

“uM=

i

for all elements a: and x; of M where 4 is the modular operator with respect to §;,. Let
Ay be the maximal Tomita algebra in the left Hilbert algebra Mé, If we put e=
m(4714ak,), a=n(A,), then

S :a\] a*AVAGFE,, AVAxEE) = Z (aj 420 28y, £560)=0

i,j=1

i,

&

for all elements a; and x; of 7(A,). Note that 41/4A,=A, is dense in H, and we see that
1La; a¥1(EMn(n(Ap))) is positive. Because of the strong *-density of 7(A,) in M, [a;a%]
must be positive for all elements a: of M. However, this is a contradiction if M is not
abelian.

In fact, if M is non-abelian, then there exist two orthogonal projections p and ¢ of
M such that p=wu, g=uuw*, ucM. Put a1=p, ay=u, ai=0 (3<i<n). We obtain

L L [o)-seons
pu* g Il %3

for non-zero vectors § of pH. This implies that t[a,-a;'-‘] is not positive.
In the general case, there exists an increasing net {f:} of o-finite projections of M
which is strongly convergent to the identity of M. We put gi=p:/p:J. Considering the
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reduced standard von Neumann algebra (¢iMqi, q:iH, gi/gi, ¢:P), one easily sees that
qz'P®?5 is selfdual in qu®1?I if P®T’ is selfdual. By the first part of the proof, we see
that ¢:Mgq; is abelian. Therefore, M is abelian. This completes the proof. Q.E.D.
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Added in proof

After we had finished our manuscript we have learned from S. Watanabe about two papers by
L. M. Schmitt and G. Wittstock: Characterization of matrix-ordered standard forms of W*-algebras,
preprint, Univ. of Saarland (1981); Kernel representations of completely positive Hilbert-Schmidt opera-
tors on standard forms, Arch. Math., 38 (1982), 453-458. We have found that parts of their results
are deeply related to ours and their starting Lemma 1.1 in their first paper happens to coincide
essentially with the last half of our Lemma 2. 3. The first different point of our present argument
from theirs is the introduction of the notion of J-positive matrices of order » by which we have
given an intrinsic characterization of the cone 9} (in their notation) and the further characteriza-
tion of the cone P1®P2=(%(1)®%(2>)+. Thus with this notion and with the result (Proposition

2. 4) one can see that our Theorem 2. 8 is actually equivalent to their main theorem in the second

‘ College of Humanities and Social Sciences Niigata University

paper. We should remark here that Theorem 2. 8 may be regarded as the natural counterpart of
the Effros’ theorem about the characterization of the positive portion of the tensor product of von
Neumann algebras as a convex cone of certain completely positive maps from the predual of one von
Neumann algebra into the other. The problems of §3 are not discussed in their papers.
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