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\S 1. Introduction

The notion of the selfdual cones in a Hilbert space was introduced by Araki [1] and
Connes [2], and it is highly instrumental in determining the algebraic structure of the
standard von Neumann algebra. Our purpose in the present paper is to discuss the
characterization of the tensor product of the selfdual cones associated to the standard
von Neumann algebras.

Let $(M_{1}, H_{1}, J_{1}, P_{1})$ and $(M_{2}, H_{2}, J_{2}, P_{2})$ be two standard von Neumann algebras
defined by Haagerup [3] where $M$; is a von Neumann algebra on a Hilbert space $Hi$ and
$Ji$ is an isometric involution on $Hi$ and $P_{i}$ is a selfdual cone in $Hi$ for $i=1,2$ . Then the
closure of the algebraic tensor product of two selfdual cones $P_{1}$ and $P_{2},$ $i$ . $e.$ ,

$P_{1}\otimes P_{2}=\overline{co}\{\xi\otimes\eta|\xi\in P_{1}, \eta\in P_{2}\}$

is not always seldual in $H_{1}\otimes H_{2}$ where $\overline{co}$ denotes the closed convex hull.
In \S 2 we shall characterize the selfdual cone associated to the tensor product of two

standard von Neumann algebras modifying the idea of completely positive maps. With
this characterization, we shall investigate some properties of the abelian standard von
Neumann algebras in \S 3.

We refer mainly [6] and [7] for stnandard results in the theory of the operator
algebras, and also refer [8] for the discussion of completely positive maps.

Before going into the discussion, the authors wish to express their hearty thank to
Dr. Katayama for his many valuable suggestions.

\S 2. Characterizations of the tensor product of the selfdual cones

Let $M$ be a von Neumann algebra on a Hilbert space $H$. Let $J$ be an isometric in-
volution on $H$, and $P$ be a selfdual cone in $H,$ $i$ . $e.,$ $P$ coincides with the dual cone $P^{\prime}=$

{ $\xi\in H|(\xi,$ $\eta)\geqq 0$ for all $\eta\in P$}.
DEFINITION 2. 1. ([3; Definition 2. 1]). The quadruple $(M, H, J, P)$ is called the

standard form of a von Neumann algebra $M$ if it satlsfies the following conditions:
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i) $JMJ=M^{\prime}$ ,

ii) $JcJ=c^{*},$ $c\in M\cap M^{\prime}$ ,

iii) $J\xi=\xi,$ $\xi\in P$,
iv) if $x$ belongs to $M$, then $xJxJ(P)\subset P$.
DEFINITION 2. 2. Let $(M, H, J, P)$ be a standard von Neumann algebra. A matrix

$[\xi;j]_{i,j=1}^{n}\in M_{n}(H)(\xi;j\in H)$ is said to be J-positive with respect to $P$ if

$\sum_{i.j=1}^{n}a;Ja_{j}J\xi_{ij}\in P$

for these elements $\{a\iota\}$ of $M$.
Let $M$ be a von Neumann algebra on a Hilbert space $H$ with a cyclic and separating

vector $\xi_{0}$ and let $J_{\xi_{0}}$ be the modular conjugation of the left Hilbert algebra $M\xi_{0}$. We put

$P_{\xi_{0}}=\{xJ_{\xi_{0}}xJ_{\xi_{0}}\xi_{0}|x\in M\}.-$

Then, $P_{\xi_{0}}$ is the selfdual cone in $H$ and $(M, H, J_{\xi_{0}}, P_{\xi_{0}})$ is of standard form. In particular,
we put $\tilde{M}=B(H_{n})\otimes I_{n},\tilde{H}=H_{n}\otimes H_{n}$ where $H_{n}$ is an n-dimensional Hilbert space with a
complete orthonormal basis $\{e_{1}, e_{2}, \ldots, e_{n}\}$ . Then, $\eta_{0}=e_{1}\otimes e_{1}+e_{2}\otimes e_{2}+\ldots+e_{n}\otimes e_{n}$ is the
cyclic and separating vector for $\tilde{M}$, and we have

$J_{\eta_{0}}(\xi\otimes\eta)=\eta\otimes\xi,$ $\xi,$ $\eta\in H_{n}$ ,

$P_{\eta_{0}}=[(B(H_{n})\otimes I_{n})+\eta_{0}]$ .
LEMMA 2. 3. Keep the notations as above. We identify $M_{n}(H)$ with $H\otimes(H_{n}\otimes H_{n})$ by

the linear map: $[\xi ij]_{i.j=1}^{n}\rightarrow.\sum_{ij=1}^{n}\xi ij\otimes(e;\otimes ej)$ of $M_{n}(H)$ onto $H\otimes(H_{n}\otimes H_{n})$. The canonical cone
$P_{\xi_{0}\otimes\eta_{0}}$ with respect to the cyclic and separating vector $\xi_{0}\otimes\eta_{0}$ then coincides with the set of
all $I\epsilon_{0}$-positive elements with respect to $P\epsilon_{0}$ , and also coincides with the closure of the convex
hull of the elements of matrices $[aiJ_{\xi_{0}aj}J_{\xi_{0}}\xi_{0}]_{i,j=1}^{n}$ where each $ai$ is an element of $M$.

PROOF. In this proof the modular conjugations $J_{\xi_{0}}$ and $J_{\eta_{0}}$ are simply denoted by $J$

$andJ\sim$ respectively, and we put $\tilde{M}=B(H_{n}\otimes I_{n}$ . Let $x$ be an arbitrary element of the

weakly dense part of $M\otimes\tilde{M}$ such that $x=\sum_{i=1}^{m}a;\otimes bi,$ $ai\in M,$ $bi\in\tilde{M}$. We have then,

$x=(J\otimes J)x(J\otimes J)(\xi_{0}\otimes\eta_{0})=.\sum_{ij=1}^{m}ai\sim\sim\sim\sim Ja_{j}J\xi_{0}\otimes b_{i}Jb_{j}J\eta_{0}$.

On the other hand, if $b;=y;\otimes 1$ for $yi=[\lambda_{st}^{(i)}]\in B(H_{n})$ , we have

$biJb\sim\sim\sim\sim jJ\eta_{0}=(y;\otimes 1)J(yj\otimes 1)J\eta_{0}$

$=(y\iota\otimes 1)(1\otimes\overline{yj})(\sum_{p=1}^{n}ep\otimes ep)$
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$=\sum_{p=1}^{n}y;ep\otimes\overline{yj}ep$

$=\sum^{n}$ $\sum\lambda_{pt}^{(i}’\lambda_{qt}^{\overline{(j)}}ep\otimes e_{q}n$ where $1it=[\overline{\lambda_{st}^{(i)}}]$ .
$p,q=1t=1$

Therefore,

$\sum_{i.j=1}^{m}a;Ja_{j}J\xi_{0}\otimes b_{J}Jb;J\eta_{0}=\sum_{i,j=1}^{m}\sum_{p,q=1}^{n}\sum_{t=1}^{n}\lambda_{pt}^{(i)}a;J\lambda_{qt}^{(j)}ajJ\xi_{0}\otimes(ep\otimes e_{q})\sim\sim$

$=\sum_{t=1}^{n}\sum_{p,q=1}^{n}(\sum_{i=1}^{m}\lambda_{p^{i}t}^{()}a\oint)J(\sum_{i=1}^{m}\lambda_{qt}^{(i)}a;)J\xi_{0}\otimes(ep\otimes e_{q})$ .

Hence,

$ x(J\otimes J)x(J\otimes J)(\xi_{0}\otimes\eta_{0})=\sum_{t=1}^{n}\sum_{p,q=1}^{n}A_{p}^{(t)}JA_{q}^{(t)}J\xi_{0}\otimes(ep\otimes e_{q})\sim\sim$ ,

where $A_{p}^{(t)}=\sum_{i=1}^{m}\lambda_{pt}^{(i)}a;\in M$. It follows that $P_{\xi_{0}}\otimes_{\eta_{0}}\subset\overline{co}\{[aiJajJ\xi_{0}]|a;\in M$).

Now, if $a$ ; is an arbitrary element of $M$, then one sees that

$\sum_{i.j=1}^{n}b;JbjJa;JajJ\xi_{0}=\sum_{i\cdot j=1}^{n}b;a;JbaJ\xi_{0}$

$=$ ($\sum_{i=1}^{n}$ biai) $J(\sum_{i=1}^{n}b;aj)J\xi_{0}$,

for all elements $bi$ of $M$. Hence we have

$\sum_{i.j=1}^{n}b;Jb_{j}JajJa_{j}J\xi_{0}\in P_{\xi_{0}}$ .

Therefore, the matrix $[a;JaJI\xi_{0}]$ is a J-positive element with respect to $P\epsilon_{0}$ Note that
the set of all J-positive elements with respect to $P_{\xi_{0}}$ is the closed cone. It follows that
co $\{[a;JaJJ\xi_{0}]|aj\in M\}\subset Q_{0}$ where $Q_{0}$ denotes the set of all J-positive elements with res-
pect to $P_{\xi_{0}}$ .

On the other hand, if $[\xi;!]$ is a J-positive element of $M_{n}(H)$ with respect to $P_{\xi_{0}}$ , then

$([\xi tJ], [a;JajJ\xi_{0}])=,\sum_{ij=1}^{n}(\xi;j, a;JajJ\xi_{0})$

$=\Sigma^{n}(a_{i}^{*}Ja_{j}^{*}J\xi_{ij}i.j=1\xi_{0})\geqq 0$

for all elements $at$ of $M$. It follows that $\overline{co}\{[atJajJ\xi_{0}]|a;\in M\}\subset Q_{0}^{\prime}$ .
Therefore, we obtain that $P_{\xi_{0}\otimes\eta_{0}}\subset Q_{0}$ and $P_{\xi_{0}\otimes\eta_{0}}\subset Q_{0}^{\prime}$ . It follows that $P_{\xi_{0}\otimes\eta_{0}}=Q_{0}$

because of the selfduality of $P_{\xi_{0}\otimes\eta_{0}}$ . Hence we obtain the required results. This com-
pletes the proof. Q.E.D.

Now we characteri$ze$ the set of all J-positive elements of order $n$ with respect to $P$
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as the selfdual cone associated to the standard form of the matrix von Neumann algebra
$M_{n}(M)$ . Namely we have the following:

PROPOSITION 2. 4. With $(\tilde{M},\tilde{H}, J, P)\sim\sim$ as before where $\sim J=J_{\eta_{0}}$ and $ P=P_{\eta_{0}}\sim$ , let $(M,$ $H,$ $J$,
$P)$ be a standard von Neumann algebra. And let $Q$ be the set of all $J$-positive elements of
$\ovalbox{\tt\small REJECT}_{n}(H)$ (which is identified with $H\otimes\tilde{H}$) with respect to P. Then, $Q$ contains $P\otimes P\sim and$ is the
selfdual cone in $H\otimes\tilde{H}$ such that $(M\otimes\tilde{M}, H\otimes\tilde{H,}J\otimes J, Q)\sim$ is standard.

PROOF. We first assume that $M$ is a-finite. Then we can find a cyclic and separat-
ing vector $\xi_{0}$ in $P$, and $(M, H, J_{0}, P_{0})$ is standard where $J_{0}$ and $P_{0}$ denote the modular
conjugation $J\epsilon_{0}$ and the canonical cone $P\epsilon_{0}$ with respect to $\xi_{0}$ respectively. Since $(M,$ $H$,
$J,$ $P$) is standard, by [3; Theorem 2. 18] there exists a unitary $u$ on $H$ such that

$x=uxu^{-1}(x\in M),$ $J=uJ_{0}u^{-1},$ $P=uP_{0}$.

The operator $u$ belongs to $M^{\prime}$ . Suppose that $[\xi ij]$ is $J_{0}$-positive with respect to $P_{0}$, then

$\sum_{i.j=1}^{n}a;JajJu\xi ij=\sum_{ij=1}^{n}ua;J_{0}ajJ_{0}\xi;j\in uP_{0}=P$,

for each element $ a\iota$ of $M$. Therefore $[u\xi tJ]$ belongs to $Q$. By the symmetric argument,
we see that

$Q=$ { $[u\xi ij]\in m_{n}(H)[\xi iJ]$ is $J_{0}$-positive $w.r$. t. $P_{0}$}.

Thus, by Lemma 2. 3, we have that $Q=(u\otimes 1)P\epsilon_{0}\otimes\eta_{0}$ . Therefore one easily sees that $Q$ is
selfdual and contains $ P\otimes P\sim$. Since $(M\otimes\tilde{M}, H\otimes\tilde{H,}J_{0}\otimes J\sim P_{\xi_{0}\otimes\eta_{0}})$ is standatd, we see that
$(M\otimes\tilde{M}, H\otimes HJ\otimes JQ)\sim,\sim,$ is also standard without dufficulty.

In the general case, choose an increasing net $\{p_{\alpha}\}(\alpha\in I)$ of a-finite projections in $M$

which converges strongly to 1. If we put $q_{\alpha}=p_{a}Jp_{a}J$, the family $\{q_{a}\}$ is also an increas-
ing net which converges strongly to 1. Cosider the reduced standard von Neumann
algebra $(q_{a}Mq_{a}, q_{a}H, J_{\alpha}, q_{\alpha}P)$ where $J_{a}$ means $q_{\alpha}Jq_{\alpha}$. Let $Q_{\alpha}$ be the set of all $J_{\alpha}$-positive
elements of $M_{n}(q_{\alpha}H)$ with respect to $q_{\alpha}P$. By the first part of the proof, $Q_{\alpha}$ is selfdual
in $q_{a}H\otimes\tilde{H}$. We shall show that $\{Q_{\alpha}\}$ is an increasing family. If $\alpha_{1}\leqq\alpha_{2}$ , then $q_{a1}\leqq q_{a2}$ .
By Lemma 2. 3, $Q_{\alpha}$ coincides with the closure of the convex hull of the elements $[q_{a}a;q_{\alpha}$

$Jq_{a}\xi ajq_{a}Jq_{\alpha}\xi]$ for $a;\in M$ and $\xi\in q_{a}P$. Since

$ q_{\alpha l}aiq_{a\iota}Jq_{\alpha 1}ajq_{\alpha 1}Jq_{\alpha 1}\xi=q_{\alpha 2}p_{\alpha 1}aip_{\alpha 1}q_{\alpha 2}Jq_{a2}p_{a1}a_{J}p_{a1}q_{\alpha 2}Jq_{\alpha 2}\xi$

for $ai\in M$ and $\xi\in q_{a1}P\subset q_{a2}P$, we obtain the inclusion $Q_{\alpha 1}\subset Q_{\alpha 2}$ .
On the other hand, if $[\xi;j]$ is a J-positive element with respect to $P$, then

$\sum_{i\cdot j=1}^{n}iajq_{\alpha};jij)\in q_{a}P$

for $at\in M$. Therefore $[q_{\alpha}\xi\iota J]$ belongs to $Q_{\alpha}$. Hence we have $(q_{\alpha}\otimes 1)Q\subset Q_{\alpha}$ . Further-
more, the equality

$q_{a}a;J_{\alpha}ajJ_{\alpha}q_{a}\xi=p_{a}aip_{a}Jp_{a}a;p_{a}J\xi,$ $a;\in M,$ $\xi\in P$
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implies that $Q_{a}\subset Q$. It follows that

$Q\subset\overline{\bigcup_{\alpha}(q_{\alpha}\otimes 1)Q}\subset\overline{\bigcup_{\alpha}Q_{a}}\subset Q$,

and then $Q=\overline{\cup Q_{a}}$ . Since $\{Q_{\alpha}\}$ is an increasing family of selfdual cones in $q_{a}H\otimes\tilde{H},$ $Q$ is
$a$

selfdual in $H\otimes\tilde{H.}$ We easily see that $Q$ contains $ P\otimes P\sim$

Finally, we shall show that $(M\otimes\tilde{M}, H\otimes\tilde{H,}J\otimes J, Q)\sim$ is standard. It is easy to see
the conditions i) to iii) in Definition 2. 1. For the condition iv) take an element
$x\in M\otimes\tilde{M}$, then there exists a bounded net $\{x_{\alpha}\}$ of the elements of $q_{\alpha}Mq_{\alpha}\otimes\tilde{M}$ which con-
verges strongly to $x$. Hence, for a vector $\xi$ of $Q$ we have

$ x(J\otimes J)x(J\otimes J)\xi=\lim_{a}x_{a}(J_{\alpha}\otimes J)x_{a}(J_{a}\otimes J)(q_{a}\otimes 1)\xi\subset Q\sim\sim\sim\sim$

by the first part of the proof because $(q_{a}\otimes 1)\xi\in Q_{a}$ . This completes the proof. Q.E.D.

The above $re$sult can easily be generalized to the case where $\tilde{H}$ is an infinite dimen-
sional separable Hilbert space in the following way. Put $\tilde{M}=B(K)\otimes I,\tilde{H}=K\otimes K,$ $ J=J_{\eta_{0}}\sim$ ,

$ P=P_{\eta_{0}}\sim$ where $\eta_{0}=\sum_{n=1}^{\infty}\frac{1}{n}e_{n}\otimes e_{n}$ isa cyclic and separating vector in $\tilde{H}$ for iilT and $\{e_{n}\}$ is a

countable orthonormal basis in $K$. Let $p_{n}$ be the projection on $K$ such that $p_{n}e;=e$;

$(i\leqq n),$ $p_{n}ej=0(i<n)$ . put $ q_{n}=(p_{n}\otimes 1)J(p_{n}\otimes 1)J\sim\sim$which is equal to $q_{n}\otimes p_{n}$ . Since $\{q_{n}\}$ is
an increasing sequence which converges strongly to 1, we have the following proposi-
tion using Proposition 2. 4.

PROPOSITION 2. 5. With $(\tilde{M},\tilde{H}, J, P)\sim\sim$ as above, let $(M, H, J, P)$ be the standard form.
Put

$Q=_{n}\bigcup_{=1}^{\infty}${ $[\xi;j]_{i.j=1}^{n}\in H\otimes q_{n}\tilde{H}|[\xi ij]$ is $J$-positive $w.r.t.P$ }.

Then $Q$ is selfdual in $H\otimes\tilde{H}$ which contains $ P\otimes P\sim$, and $(M\otimes\tilde{M}, H\otimes\tilde{H,}J\otimes J, Q)\sim$ is standard.
Before going into the discussion of the $ge$neral case, we need the following lemma.
LEMMA 2. 6. Let $M$ and $N$ be two von Neumann algebras on $H$ and $K$ both of which

have cyclic and separating vectors $\xi_{0}$ and $\eta_{0}$ respectively. Then the closure of the union with

respect to $n$ of all $elements\sum_{i,j=1}^{n}\xi ij\otimes\eta ij$ such that [ $\xi_{tJ]_{i.j=1}^{n}}$ and $[\eta tJ]_{i,j=1}^{n}$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}-$

positive elements with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ respectively coincides with $P_{\xi_{0}\otimes\eta_{0}}$ , and therefore
it is selfdual in $H\otimes K$.

PROOF. Let $x$ be an arbitrary element of the strongly dense part of $M\otimes N$ such that

$x=\sum_{=1}^{n}a;\otimes bi,$ $a;\in M,$$b;\in Nn$ Then we have

$x(J_{1}\otimes J_{2})x(J_{1}\otimes J_{2})\xi_{0}\otimes\eta_{0}=\sum_{i.j=1}^{n}a;J_{1}ajJ_{1}\xi_{0}\otimes b;J_{2}b_{j}J_{2}\eta_{0}$,

where $J_{1}$ and $J_{2}$ denote the modular conjugations $J_{\xi_{0}}$ and $J_{\eta_{0}}$ respectively. Using Lemma



6 Y. Mium and J. Tomiyama

2. 3, we obtain the required result. Q.E.D.

Let $(M_{1}, H_{1}, J_{1}, P_{1})$ and $(M_{2}, H_{2}, J_{2}, P_{2})$ be two standard von Neumann algebras. For
any element $\xi$ of $H_{1}$ , let $R_{\xi}$ be the right slice map of $H_{1}\otimes H_{2}$ into $H_{2}$ with respect to $\xi$

$suchthatR_{\xi}(\xi^{\prime}\otimes\eta^{\prime})=(\xi^{\prime}, \xi)\eta^{\prime},$ $\xi^{\prime}\in H_{1},$ $\eta^{\prime}\in H_{2}$ . $ForanyelementxofH_{1}\otimes H_{2}$ , we put

$r(x)(\xi)=R_{\xi}(x),$ $\xi\in H_{1}$ .
Then, $r(x)$ is a bounded conjugate linear map of $H_{1}$ into $H_{2}$ .

DEFINITION 2. 7. Keep the notations as above. For each natural number $n$ we shall
call that $r(x)$ is an n-J-positive map of $H_{1}$ into $H_{2}$ if for any $J_{1}$-positive element $[\xi;j]_{i.j=1}^{n}$

of $\mathscr{M}_{n}(H_{1})(\xi;j\in H_{1})$ with respect to $P_{1},$ $[r(x)(\xi;j)]_{i,j=1}^{n}(\in Mn(H_{2}))$ is $J_{2}$-positive with respect
to $P_{2}$ . If $r(x)$ is n-J-positive for all natural number $n$ , it is said to be completely J-posi-
tive. The set of all elements $x$ of $H_{1}\otimes H_{2}$ such that $r(x)$ is a completely $J$-positive map
of $H_{1}$ into $H_{2}$ is denoted by $ P_{1}\otimes P_{2}\wedge$ .

With this definition we can characteri$ze$ the selfdual cone associated to the tensor
product of standard von Neumann algebras.

THEOREM 2. 8. Let $(M_{1}, H_{1}, J_{1}, P_{1})$ and $(M_{2}, H_{2}, J_{2}, P_{2})$ be two standard von Neumann
algebras. Then the cone $ P_{1}\otimes P_{2}\wedge$ contains $P_{1}\otimes P_{2}$ and is the selfdual cone in $H_{1}\otimes H_{2}$ such
that $(M_{1}\otimes M_{2}, H_{1}\otimes H_{2}, J_{1}\otimes J_{2}, P_{1}\otimes P_{2})\wedge$ is standard.

PROOF. We fist assume that $M_{1}$ and $M_{2}$ are a-finite. Then both $M_{1}$ and $M_{2}$ have
cyclic and separating vectors $\xi_{0}$ and $\eta_{0}$ in $P_{1}$ and $P_{2}$ respectively. We shall show that
$P_{\epsilon_{0}\otimes P_{\eta_{0}}=P_{\xi_{0}\otimes\eta_{0}}}^{\wedge}$ . If $x=\sum_{k=1}^{m}\xi k\otimes\eta k$ is an arbitrary $e$lement of the dense part of $P_{\text{\’{e}} 0\otimes\eta_{0}}$ ,

and if $[\xi ij]_{i.j=1}^{n}$ and $[\eta tj]_{i.j=1}^{n}$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}$-positive with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ res-
pectively, then we have

$([r(x\chi\xi;j)], [\eta ij])=.\sum_{ij=1}^{n}(r(x)(\xi ij), \eta tJ)$

$=\sum_{i.j=1}^{n}\sum_{k=1}^{m}(\xi_{k}, \xi_{ij})(\eta_{k},$ $\eta_{ij)}$

$=(x,\sum_{i\cdot j=1}^{n}\xi_{ij}\otimes\eta_{ij})\geqq 0$

by Lemma 2. 6. Hence, by Theorem 2. 4, $[r(x)(\xi ij)]$ is $J_{\eta_{0}}$-positive with respect to $P_{\eta_{0}}$ .
It follows that $r(x)$ is a completely J-positive map and $P_{\xi_{0}\otimes\eta_{0}}\subset P_{\xi_{0}\otimes P_{\eta_{0}}}^{\wedge}$ because of the
closedness of $P_{\epsilon_{0}\otimes p_{\eta_{0}}}^{\wedge}$ . Similarly we obtain the converse inclusion using the above
equalities.

Next, we assert that $ P_{1}\otimes P_{2}=(u_{1}\otimes u_{2})(P_{\xi_{0}}\otimes P_{\eta_{0}})\wedge\wedge$ for some unitary elements $u_{1}$ and $u_{2}$

of $M_{1}^{\prime}$ and $M_{2}^{\prime}$ respectively. By [3; Theorem 2. 18], there exists unitaries $u_{1}$ and $u_{2}$ in
$M_{1}^{\prime}$ and $M_{2}^{\prime}re$spectively such that $P_{1}=u{}_{1}P\text{\’{e}}_{0}$ and $P_{2}=u_{2}P_{\eta_{0}}$ . Take an element $x$ of
$P_{\xi_{0}\otimes P_{\eta_{0}}}^{\wedge}$ and let $[\xi tj]$ and $[\eta;;]$ be $J_{1}$ and $J_{2}$-positive with respect to $P_{1}$ and $P_{2}$ respec-
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tively, then by the first equalities of the proof we have

$([r((u_{1}\otimes u_{2})x)(\xi_{iJ})], [\eta;j])=(x,\sum_{i,j=1}^{n}u_{1}^{-1}\xi jJ\otimes u_{2}^{-1}\eta jj)$ .

Note that $[u_{1}^{-1}\xi iJ]$ and $[u_{2}^{-1}\eta tJ]$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}$ -positive with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ res-
pectively by the proof of Proposition 2. 4. It follows that $(u_{1}\otimes u_{2})P_{\xi_{0}\otimes P_{\eta 0}\subset P_{1}\otimes P_{2}}^{\wedge\wedge}$ . We
obtain the converse inclusion by the symmetric argument. Therefore, we see that
$ P_{1}\otimes P_{2}\wedge$ is the selfdual cone in $H_{1}\otimes H_{2}$ which contains $P_{1}\otimes P_{2}$, and $(M_{1}\otimes M_{2},$ $H_{1}\otimes H_{2},J_{1}\otimes J_{2}$ ,
$ P_{1}\otimes P_{2})\wedge$ is the standard form.

In the general case, let $P_{1}$ and $P_{2}$ be a-finite projections of $M_{1}$ and $M_{2}$ respectively.

Put $q_{1}=p_{1}J_{1}p_{1}J_{1}$ and $q_{2}=p_{2}J_{2}P_{2}J_{2}$ . We assert that $(q_{1}\otimes q_{2})(P_{1}\otimes P_{2})\subset q_{1}P_{1}\otimes q_{2}P_{2}\wedge\wedge$ . In fact
if $\chi$ belongs to $ P_{1}\otimes P_{2}\wedge$ , we have

$([r((q_{1}\otimes q_{2})x)(q_{1}\xi_{iJ})], [q_{2}\eta;j])=(x,\sum_{i,j=1}^{n}q_{1}\xi;j\otimes q_{2}\eta_{iJ})$

$=([r(x)(q_{1}\xi_{iJ})], [q_{2}\eta_{iJ}])\geqq 0$ ,

where $[q_{1}\xi jj]$ and $[q_{2}\eta;j]$ are $q_{1}J_{1}q_{1}$ and $q_{2}J_{2}q_{2}$-positive with respect to $q_{1}P_{1}$ and $q_{2}P_{2}$ res-
pectively because $[q_{1}\xi ij]$ and $[q_{2}\eta;i]$ are also $J_{1}$ and $J_{2}$-positive with respect to $P_{1}$ and $P_{2}$

respectively by the last half of the proof of Proposition 2. 4. Furthermore, We have

another inclusion $ q_{1}P_{1}\otimes q_{2}P_{2}\subset P_{1}\otimes P_{2}\wedge\wedge$ . For, if $x=\sum_{st=1}^{m}q_{1}\xi_{st}\otimes q_{2}\eta_{st}$ is an arbitrary element

of the dense part of $ q_{1}P_{1}\otimes q_{2}P_{2}\wedge$ where $[q_{1}\xi_{st}]$ and $[q_{2}\eta_{st}]$ are $q_{1}J_{1}q_{1}$ and $q_{2}J_{2}q_{2}$-positive
elements with respect to $q_{1}P_{1}$ and $q_{2}P_{2}$ respectively, and if $[\xi^{\prime}jj]$ and $[\eta^{\prime}jj]$ are $J_{1}$ and $J_{2^{-}}$

positive with respect to $P_{1}$ and $P_{2}$ respectively, then by the first part of the proof,

$([r(x)(\xi_{ij}^{\prime})], [\eta^{\prime}iJ])=(x,\sum_{i,j=1}^{n}q_{1}\xi_{jj}^{\prime}\otimes q_{2}\eta^{\prime}iJ)\geqq 0$ ,

because of the selfduality of $ q_{1}P_{1}\otimes q_{2}P_{2}\wedge$ . Therefore $\chi$ belongs to $ P_{1}\otimes P_{2}\wedge$ .
Now, choose two increasing net $\{p_{a}\}(a\in I)$ and $\{p\beta\}(\beta\in J)$ of a-finite projections of

$M_{1}$ and $M_{2}$ which converge strongly to 1 respectively. Put $q_{a}=p_{\alpha}J_{1}p_{\alpha}J_{1}$ and $r\beta=p\beta J_{2}p\rho J_{2}$ .
Then $\{q_{a}\}$ and $\{\gamma\beta\}$ are also increasing nets which converge strongly to 1. By the above
arguments, we have

$P_{1}\otimes P_{2}\subset\bigcup_{a,\beta}(q_{\alpha}\otimes r\beta)(P_{1}\wedge_{\otimes}P_{2})\subset\bigcup_{a,\beta}q_{\alpha}P_{1}\wedge_{\otimes}r\beta\wedge\overline{\wedge}\overline{\wedge}\wedge P_{2}\subset P_{1}\otimes P_{2}$ .

Therefore we have $P_{1}\otimes P_{2}=\bigcup_{a,\beta}q_{\alpha}P_{1}\wedge_{\otimes}r\beta P_{2}\wedge\overline{\wedge.}$

By the last half of the proof of Proposition 2. 4 and the first half of the proof of this
theorem, $\{qP\otimes r\beta P_{2}\}$ is an increasing family of selfdual cones. Therefore, we see that
$ P_{1}\otimes P_{2}\wedge$ is also selfdual in $H_{1}\otimes H_{2}$ and contains $P_{1}\otimes P_{2}$ . It is now easy to see that $(M_{1}\otimes M_{2}$,
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$H_{1}\otimes H_{2},$
$J_{1}\otimes J_{2,1^{\wedge}}P\otimes P_{2}$) is standard using the same argument of the last half of the proof

of Proposition 2. 4. This completes the proof. Q.E.D.

As an immediate consequence of the above discussion we have the following corol-
lary, which is the extension of Lemma 2. 6.

COROLLARY 2. 9. With standard forms $(M_{1}, H_{1}, J_{1}, P_{1})$ and $(M_{2}, H_{2}, J_{2}, P_{2})$ as before,

the cone $ P_{1}\otimes P_{2}\wedge$ conincides with the closure of the union with respect to $n$ of all elements

$\sum_{ij=1}^{n}\xi;j\otimes\eta tJ$ where $[\xi;j]$ and $[\eta;j]$ are $J_{1}$ and $J_{2}$-positive elements with respect to $P_{1}$ and $P_{2}$

respectively.

\S 3. Some properties of the abelian standard von Neumann algebras

In this section we shall investigate some properties of the abelian standard von
Neumann algebras from the point of view of the tensor product of the selfdual cones.

PROPOSITION 3. 1. Let $(M, H, J, P)$ be a standard form for an infinite dimensional sep-
arable Hilbert space H. Then, $M$ is isomorphic to the algebra $\ell^{\infty}$ of all bounded sequences if
and only if $P$ contains a complete orthonormal basis of $H$.

PROOF. Consider the von Neumann algebra $N=\ell^{\infty}$ on the Hilbert space $K=\ell^{2}$ . Let
$P_{0}$ be the set of positive $\ell^{2}$-sequences. One then easily sees that $P_{0}$ is a selfdual cone in
$K$ and contains a complete orthonormal basis of $K$. Let $J_{0}$ be the isometric involution on
$K$ such that $J_{0}\xi=\xi,$ $\xi\in P_{0}$. Without difficulty, one can show that $(N, K, J_{0}, P_{0})$ is stand-
ard. If $(M, H, J, P)$ is standard and $M$ is isomorphic to $N$, then there exists an isometsy
$u$ of $K$ onto $H$ such that $P=uP_{0}$ by [3; Theorem 2. 18]. Therefore $P$ contains a complete
orthonormal basis of $H$.

Conversely, let $(M, H, J, P)$ be a standard form and suppose $P$ contains a countalbe
orthonormal basis $\{e;\}$ of $H$ . Let $\tilde{M}$ be the algebra of all operators $x$ on $H$ such that $xe$;

$=\lambda;e$; and $\{\lambda;\}$ is a bounded sequence. If we note that $P$ is generated by $\{e;\}$ , we see
that $(\tilde{M}, H, J, P)$ is the standard form by the first part of the proof. Since $\tilde{M}$ is com-
mutative, we have $M=\tilde{M}$ by [3; Corollary 5. 11]. Therefore $M$ is isomorphic to the
algebra $\ell\infty$ This completes the proof. Q.E.D.

THEOREM 3. 2. Let $(M_{1}, H_{1}, J_{1}, P_{1})$ and $(M_{2}, H_{2}, J_{2}, P_{2})$ be two standard forms. If
either $M_{1}$ or $M_{2}$ is abelian, then $P_{1}\otimes P_{2}$ is selfdual in $H_{1}\otimes H_{2}$ , and $(M_{1}\otimes M_{2},$ $H_{1}\otimes H_{2},$ $J_{1}\otimes J_{2}$ ,
$P_{1}\otimes P_{2})$ is the standard form.

PROOF. Suppose that both $M_{1}$ and $M_{2}$ are $\sigma- finite$ . We can then find cyclic and
separating vectors $\xi_{0}$ and $\eta_{0}$ in $P_{1}$ and $P_{2}$ respectively. If either $M_{1}$ or $M_{2}$ is abelian,

The convex cone of the algebraic tensor product $M_{1}^{+}\otimes M_{2}^{+}$ is a-weakly dense in $(M_{1}\otimes$

$M_{2})+$ .
In fact, let $x_{0}$ be an element of $(M_{1}\otimes M_{2})+which$ does not belong to the a-weak

closure of $M_{1}^{+}\otimes M_{2}^{+}$ By the Hahn-Banach theorem, there exists a a-weakly continuous
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linear functional $\phi_{0}$ on $M_{1}\otimes M_{2}$ such that $\phi_{0}(x_{0})<0$ and $\phi_{0}(x)\geqq 0$ for $x\in M_{1}^{+}\otimes M_{2}^{+}$ . How-
ever, if either $M_{1}$ or $M_{2}$ is abelian the functional $\phi_{0}$ must be a positive functional on $M_{1}$

$\otimes M_{2}$ by [5; Theorem 3. 4], a contradiction.
It follows that $M_{1}^{+}\otimes M_{2}^{+}$ is also strongly dense in $(M_{1}\otimes M_{2})^{+}$ . Therefore the closure

of the algebraic tensor product of two convex cones $M_{1}^{+}\xi_{0}$ and $M_{2}^{+}\eta_{0}$ in $H_{1}\otimes H_{2}$ coincides
with that of $(M_{1}\otimes M_{2})^{+}(\xi_{0}\otimes\eta_{0})$ . Put $\Delta=\Delta_{1}\otimes\Delta_{2}$ where $\Delta_{1}$ and $\Delta_{2}$ are the modular opera-
tors with respect to $\xi_{0}$ and $\eta_{0}$ respectively. For an arbitrary element $\xi$ in $(M_{1}\otimes M_{2})^{+}(\xi_{0}$

$\otimes\eta_{0})$ , there exists a sequence $\{\xi_{n}\}$ in the algebraic $te$nsor product of $M_{1}^{+}\xi_{0}$ and $M_{2}^{+}\eta_{0}$

which is convergent to $\xi$ . Since $\Delta^{1/2}\eta=\Delta^{1/2}S\eta=J\eta$ for $\eta\in(M_{1}\otimes M_{2})^{+}(\xi_{0}\otimes\eta_{0})$ where $S$ and $J$

denote the #-involution and the modular conjugation with respect to $\xi_{0}\otimes\eta_{0}$ respectively,
(cf. [6]). The sequence $\{\Delta^{1/2}\xi_{n}\}$ is convergent and therefore $\{\Delta^{1/4}\xi_{n}\}$ is also convergent.
Thus we obtain

$\Delta_{1}^{1/4}M_{1}^{+}\xi_{0}\otimes\Delta_{2}^{1/4}M_{2}^{+}\eta_{0}=\Delta^{1/4}(M_{1}\otimes M_{2})^{+}(\xi_{0}\otimes\eta_{0})$ ,

that is, $P_{\xi_{0}}\otimes P_{\eta_{0}}=P_{\xi_{0}\otimes\eta_{0}}$ . New by [3; Theorem 2. 18], there exists two unitaries $u_{1}$ and
$u_{2}$ in $M_{1}^{\prime}$ and $M_{2}^{\prime}$ suchthat $J_{1}=u_{1}J_{\xi_{0}}u_{1}^{-1},$ $J_{2}=u_{2}J_{\xi_{0}}u_{2}^{-1}$ and $P_{1}=u{}_{1}P_{\xi_{0}},$ $P_{2}=u{}_{2}P_{\xi_{0}}$ . It follows
that $P_{1}\otimes P_{2}=(u_{1}\otimes u_{2})(P_{\xi_{0}}\otimes P_{\eta_{0}})=(u_{1}\otimes u_{2})P_{\xi_{0}\otimes\eta_{0}}$ is a selfdual cone and satisfies $re$quired
condition.

In the $ge$neral case, considering increasing nets of $\sigma\cdot finite$ projections of $M_{1}$ and $M_{2}$

converging strongly to 1 and the reduced standard von Neumann algebras, we obtain
the conclusion by the similar arguments of the proof of Proposition 2. 4. This completes
the proof. Q.E.D.

PROPOSITION 3. 3. Let $(\tilde{M},\tilde{H}, J, P)\sim\sim$ and $(M, H, J, P)$ are two standard von Neumann
algebras where $\tilde{M}=B(K)\otimes I$ and $\tilde{H}=K\otimes K$ for a seqarable Hilbert space $K$ and $\dim K\geqq 2$ .
If $P\otimes P\sim is$ selfdual, then $M$ is abelian.

PROOF. Let $\{e_{n}^{\prime}\}$ be a countable orthonormal basis in $K$. By [3; Theorem 2. 18],

there exists a unitary $u$ on $\tilde{H}$ such that $\sim J=uJ_{\eta_{0^{l}}}u^{-1}$ and $ P=uP_{\eta_{0^{\prime}}}\sim$ for a cyclic and separat-

ing vector $\eta_{0}^{\prime}=\sum_{=n1}^{\infty}\frac{1}{n}e_{n}^{\prime}\otimes e_{n}^{\prime}$ in $\tilde{H}$ for $\tilde{M}$. Let $p_{n}$ be an n-dimensional projection on $K$ such

that $p_{n}e;=ej(i\leqq n)$ and $p_{n}e;=0(i<n)$ for a natural number $n$ . Put $q_{n}=(p_{n}\otimes 1)J_{\eta_{0}^{\prime}}(p_{n}\otimes 1)$

$J_{\eta_{0}^{J}}$ , which is equal to $p_{n}\otimes p_{n}$ . If $ P\otimes P\sim$ is selfdual, then $P\otimes P_{\eta_{0}^{l}}$ is also selfdual in $H\otimes\tilde{H}$.
Hence one $e$asily sees that $P\otimes q{}_{n}P_{\xi_{0}^{\prime}}$ is selfdual in $H\otimes q{}_{n}H$ for each $n$ . Consequently, if
we consider the reduced standard von Neumann algebra $(q_{n}\tilde{M}q_{n}, q{}_{n}\tilde{H}, q_{n}J_{\eta_{0}^{J}}q_{n}, q_{n}P_{\eta_{0}^{J}})$,

we may assume that $\tilde{M}=B(H_{n})\otimes I_{n},\tilde{H}=H_{n}\otimes H_{n},$ $ J=J_{\eta_{0}}\sim$ and $ P=P_{\eta_{0}}\sim$ where $\eta_{0}$ is a canoni-
cal cyclic and separating vector if an $n^{2}$-dimensional Hilbert space $H_{n}\otimes H_{n}$ used in Lem-
ma 2. 3 and $n\geqq 2$ .

As usual, we first assume that $M$ is $\sigma\cdot finite$ and consider a cyclic and separating vec-
tor $\xi_{0}$ in $P$. Without loss of generality, we may then assume that $J=J_{\xi_{0}}$ and $P=P_{\xi_{0}}$ .
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Let b $=y\otimes lbeane1ementof\tilde{M}wherey=[\lambda;J]\in B(H_{n})$ . Then we have

$bJbJ_{\eta_{0}}=\sum_{i\cdot j=1}^{n}\sum_{k=1}^{n}\lambda ik\overline{\lambda}\sim\sim jke;\otimes ej$ .

If each ai anda belong to M, then

$(\sum_{i.j=1}^{n}ajJa;J\xi_{0}\otimes(ei\otimes eJ), aJaJ\xi_{0}\otimes bJbJ\eta_{0})\sim\sim$

$=(\sum_{i\cdot j=1}^{n}\sum_{k=1}^{n}\lambda Jka^{*}ajJ\lambda_{jk}a^{*}aiJ\xi_{0}, \xi_{0})$

$=\sum_{k=1}^{n}((\sum_{i=1}^{\hslash}\lambda;ka^{*}aj)J(\sum_{i=1}^{n}\lambda;ka^{*}a;)J\xi_{0}, \xi_{0})\geqq 0$ .

Note that the cone $ P\otimes P\sim$ is generated by the elements $aJaJ\xi_{0}\otimes bJbJ\eta_{0}\sim\sim,$ $a\in M,$ $b\in\tilde{M}$. It
follows that the transpose $t[aiJaJI\xi_{0}]$ belongs to $ P\otimes P\sim$ if $ P\otimes P\sim$ is selfdual. By Proposi-
tion 2. 4 we se $e$ that $t[a;JajJ\xi_{0}]$ is a $I\cdot wsitive$ element with respect to $P$. Hence we have

$0\leqq(\sum_{i.j=1}^{n}x;JxjJajJa;J\xi_{0}, \xi_{0})=\sum_{i.j=1}^{n}(ajJxja;J\xi_{0}, x_{i}^{*}\xi_{0})$

$=\sum_{i,j=1}^{n}(a_{j}\Delta^{1/2}a_{j}^{*}x_{\dot{l}}^{*}\xi_{0}, x_{i}^{*}\xi_{0})$

for all elements $a$ ; and $x$; of $M$ where $\Delta$ is the modular operator with respect to $\xi_{0}$. Let
$A_{0}$ be the maximal Tomita algebra in the left Hilbert algebra $M\xi_{0}$. If we put $a=$

$\pi(\Delta^{-1/4}a\xi_{0}),$ $a\in\pi(A_{0})$ , then

$\sum_{i,j=1}aja_{i}^{*}\Delta^{1/4}x_{i}^{*}\xi_{0}n\wedge\wedge\Delta^{1/4}x_{i}^{*}\xi_{0})=\sum_{i.j=1}^{n}(a_{j}\Delta^{1/2}a_{i}^{*}x_{j}^{*}\xi_{0}, x_{i}^{*}\xi_{0})\geqq 0$

for all elements $a$; and $Xi$ of $\pi(A_{0})$ . Note that $\Delta^{1/4}A_{0}=A_{0}$ is dense in $H$, and we see that
$l[a_{j}a_{j}^{*}](\in\ovalbox{\tt\small REJECT}_{n}(\pi(A_{0})))$ is positive. Because of the strong $*$-density of $\pi(A_{0})$ in $M,$ $t[a_{i}a_{j}^{*}]$

must be positive for all elements $at$ of $M$. However, this is a contradiction if $M$ is not
abelian.

In fact, if $M$ is non-abelian, then there exist two orthogonal projections $p$ and $q$ of
Msuch that p $=u^{*}u,$ $q=uu^{*},$ $u\in M$. $Puta_{1}=p,$ $a_{2}=u,$ $a;=0(3\leqq i\leqq n)$ . We obtain

$(\left\{\begin{array}{ll}p & up\\pu^{*} & q\end{array}\right\}\left\{\begin{array}{l}qu\xi\\-p\xi\end{array}\right\},$ $\left\{\begin{array}{l}qu\xi\\-p\xi\end{array}\right\})=-2(p\xi, \xi)<0$,

for non-zero vectors $\xi$ of $pH$. This implies that $t[a_{i}a_{j}^{*}]$ is not positive.

In the general case, there exists an increasing net $\{pi\}$ of $\sigma\cdot finite$ projections of $M$

which is strongly convergent to the identity of $M$. We put $qi=ptJpiJ$. Considering the
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$re$duced standard von Neumann algebra $(q;Mq;, q_{i}H, q_{i}Jq_{i}, q_{i}P)$ , one easily sees that
$ qiP\otimes P\sim$ is selfdual in $qiH\otimes\tilde{H}$ if $ P\otimes P\sim$ is selfdual. By the first part of the proof, we see
that $q;Mq$; is abelian. Therefore, $M$ is abelian. This completes the proof. Q.E.D.
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Added in proof

After we had finished our manuscript we have learned from S. Watanabe about two papers by

L. M. Schmitt and G. Wittstock: Characterization of matrix-ordered standard forms of $W^{*}$-algebras,

preprint, Univ. of Saarland (1981); Kernel representations of completely positive Hilbert-Schmidt opera-
tors on standard forms, Arch. Math., 38 (1982), 453-458. We have found that parts of their results
are deeply related to ours and their starting Lemma 1. 1 in their first paper happens to coincide
essentially with the last half of our Lemma 2. 3. The first different point of our present argument

from theirs is the introduction of the notion of J-positive matrices of order $n$ by which we have
given an intrinsic characterization of the cone $\mathscr{C}_{n}^{+}$ (in their notation) and the further characteriza-
tion of the cone $ P_{1}\otimes P_{2}=(\mathscr{H}^{(1)}\otimes \mathscr{H}^{(2)})^{+}\wedge$ . Thus with this notion and with the result (Proposition

2. 4) one can see that our Theorem 2. 8 is actually equivalent to their main theorem in the second
paper. We should remark here that Theorem 2. 8 may be regarded as the natural counterpart of
the Effros’ theorem about the characterization of the positiv $e$ portion of the tensor product of von
Neumann algebras as a convex cone of certain completely positive maps from the predual of one von
Neumann algebra into the other. Th $e$ problems of \S 3 are not discussed in their papers.
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