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1. Introduction

Let (M, £) be a Riemannian manifold with the Riemannian metric tensor g&. We
denote by vV and R the Riemannian connection and the curvature tensor of (M, g), respec-
tively. - The Ricci curvature tensor R; of (M, g) is obtained by a contraction of the cur

 vature tensor R, and (M, g) is called an Einstein space when R;=ag holds on M for some

constant @. For example, an irreducible Riemannian symmetric space is necessarily an
Einstein space. Let (M, J, ) be an almost Hermitian manifold with the almost Hermitian
structure (/, ). For (M, ], g) there is another useful contraction of the curvature tensor
which is called the Ricci * curvature tensor. The Ricci * curvature tensor Ry* is defined
by

1D RFX, V)=L(Trace of (2>R(Y, IX)2),

for tangent vectors X, Y of M.

An almost Hermitian manifold (3, /, g) is called nearly Kaehlerian manifold (also known
as K-space or almost Tachibana space) provided that the almost Hermitian structure (/, £)
satisfies the condition (Vx/) X=0 for any tangent vector X of M. In a nearly Kaehlerian
manifold (M, J, g), it is well known that the Ricci curvature tensor R; and the Ricci ¥
curvature tensor Ry* satisfy the followings:

1.2) R Y)=R(Y,X) R Y)=RUX,JY),
(1.3 R¥X, V)=Rf(Y,X) RfX Y)=RfUX,JY),

for all tangent vectors X, Y of M.

The first Chern form of a nearly Kaehlerian manifold is represented by the 2-form 7,
(known as the generalized first Chern form) which is defined using the tensor fields R,
R¥ and J as follows:

(L4  8&mn(X, Y)=5R{JX, Y)—-R (JX, Y),

for all tangent vectors X, Y of M (cf. [2], [10]).
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In [17, Gray has introduced the notion of Riemannian 3-symmetric space and obtained
many interesting results in connection with the geometry of almost Hermitian manifolds.
For example, he showed that every Riemannian 3-symmetric space is a homogeneous
almost Hermitian manifold together with the canonical almost complex structure associ-
ated with the Riemannian 3-symmetric structure, and some of Riemannian 3-symmetric
spaces are nearly Kaehlerian manifold. In this paper, we shall calculate the Ricci cur-
vature tensors and the Ricci * curvature tensors of some compact Riemannian 3-symme-
tric spaces which are defined by the inner automorphisms of compact, simple classical
Lie groups of order 3 and state some related results. For example, we may give some
new examples of Einstein spaces and show that a complex projective space CP? of com-
plex dimension 3 admits an Einstein metric which is not symmetric one. The authors
wish to express their hearty thanks to Prof. T. Watabe for his kind advices.

2. The classical Lie algebras

Let G be a connected Lie group and g be the Lie algebra of G. We denote by Aut (G)
(resp. Aut (g)) the automorphism group of G (resp. g). Each element ¢& Aut (G) induces
an element of Aut (g) in the natural way. So, we also denote by the same letter ¢ the
corresponding element of Aut (g). We now recall the Lie algebras of the compact classi-
cal Lie groups. In the sequel, we denote by R, C and H the set of all real numbers, com-
plex numbers and quaternionic numbers, respectively, and furthermore by gl(N, R), gl
(N, C) and gl (N, H) the sets of all Nx N real matrices, complex matrices and quaternionic
matrices, respectively.

(An) a=38u(n+1)= {(XCal(n+1, C); ! X=—X, Trace X=0}.
We put
2.1 Uij=Eij—Eji,
Uis =/ =T (Eij+Eii), 1<i, j=n+1,
where E;; denotes the (n+1)x(z+1) matrix whose 7-th row and s-th column is given by
dir 0js.

Let ti=v/—1 (Eii—Ei+1 i+1) (1= i <n). Then the Lie subalgebra of su(z41) gene-
rated by {#i(1=i=<n)) over R is a maximal abelian subalgebra of 3u(z+1). We may

easily see that {(+/2/(:247)) ‘él at, 1<i=<n); Uij, Uij 1=i<j=n+1)} forms an ortho-

normal basis for 8u(n+1) with respect to the inner product <, >> on8u(n+1) defined by
<X, Y>=—% Trace XY, X, YE3u(n+1). We note that the inner product <, > on 8u
(n+1) induces a biinvariant Riemannian metric on the Lie group G=SU(#n+1). From
(2. 1), the Lie multiplication table is given by

2.2) LUij, Uab]1=08;aUis— 85 Uia—8iaUjp+8i5Uja,
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LUij, Uab]l=0;aU'i6+06U'ia—0iaU jb—0is U ja,
LU ij, Uasl=—0jaUis—0;s Uia—0iaUjs —0is Uja.
(Bn) g=8(2n+1)={XcEgl2n+1, R); ' X=—X}.
We put Upo=Epo—Egp, and

(2.3) =1/§(u1 nt1+iturivr), Ui= 1/2 (Un+1 i+1FUnt1+i 1),

1
Uij=—F=(i+1 j+1— Un+1+i n+1+7)
V2

"t 1
Uij= =i +1 nt1+i—Uit1 nt1+i),
)

Vij —1/—‘(%1+1 jH1 T Unt1+i nt1+7)

V'ij=71—2=(%i+1+z‘ i1t Unt1+7 it1), 1<, 1<,

where Epg denotes the (27+1)x (2#+1) matrix whose S-th row and 7-th column is given
by dps doT.

Let ti=(1/1/2)V'ii 1=i=n). Then the Lie subalgebra of 80(2#+1) generated by {¢:
(1< i <n)} over R is a maximal abelian subalgebra of 80(2n+1). We may easily see that
{ti(A=<i <m); Uij, Uij, Vij, V'ij(1=<i<j=n)} forms an orthonormal basis for 80 (2n+1)
with respect to the inner product <, > defined by <X, Y>=—% Trace XY, X, Y80

(2n+1). We note that the inner product <, >> on 80(2%-+1) induces a biinvariant Rie-
mannian metric on the Lie group G=SO(2#n+1). From (2. 3), the Lie multiplication table
is given by

2.4) [(Ua, Usl= (1/v/"2) (Uba+Vba), LUz, Usl=1/1/2) (V'ab— Uas),
[Ua, Ubl=1/4/"2) (Uab—Vab), [Ui, Uast]=1/v/"2) (0iaUp—0ipUb),
LU, Uabl=1/vV"2) (0:aU's—0:aU'p),

LU, Uas1=(/v/"2) 0i6U'a—8iaU's),

LU, Uabl=1/4/"2) (0:aUp—0i5Ua),

(Ui, Varl=1/4/2) (0iaUs—08is Uy),

LUi, Viarl=—1/4/2) (0:aU's+0is U'a),

LU Varl=1/4v/2) (0iaUs—08:isU'a),

LU, Viesl= (1/1/2) BiaUp+3is Ua),

LUij, Uas1=1/v/2) (3jaVie—08jsVia+0isVia—0iaVjs),
[Uij, Uabl=1/v/2) 0jaV'is—086 V' ia+0is V' ja—8ia V' js),
(U s, Uasl=1/v/2) (8jaVie—38js Via+0is Via—8iaVjs),
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[Uij, Vasl= A /v/2) (0;aUis—0;6Uia+3i6U ja—0iaUjs),
LUij, Viae]=1 /v 2) 0iaU j5—06 U ia+0is U ja—0jaU'ip),
LU, Vias =1/ 2) BjaUis+0i6Uia—0:aUjs— i Uja),
(Ui, Vabl=(1/v/2) (0;aU'ib—3i6U'ia+0i6 U ja—08iaU jb),
[Vii, Vael=1/1v/"2) ((0jaVie—0jsVia—08ia Vs +03is V ja),
[(Vii, V'as]l=(1/1/2) BiaV'is+88 V' ia—0iaV' js—8is V' ja),
(V'ij, Viabl=—Q1/4/2 (3jaVis+8isVia+8iaVjs+8ib V ja),
(Cw) g=8p(n) = {(XSgl(n, H); ' X=—X}.

We suppose that H is generated by {ey=1, e1, ¢, es} over R. Any quaternion g is
written as g= (@y+a16,) + (a2+ase;) s, and R1+ Re; is isomorphic with C by the mapping
é:ap+ae,—>ap++v/— 1 @;. By this isomorphism ¢ we may identify R1-+ Re, with C. We
not put

go= {X=( f E)EQI (2n, C);tA=—A, 'B=B, A, B=gl(n, C)}.
—B A
Writing gi=zi+2n+162 (1=1i <#), we obtain an isomerphism Z: 8p(n)—>g, by the con-
onical way. We may identify 8p(»#) with the Lie algebra gy (and hence the Lie group Sp
(n) with the Lie group exp go by the canonical isomorphism Z which is induced by the iso
morphism ). We put

(2.5) Wii=1/v/2) (Ei n+i+Ej n+;—En+i j—En+j i),

Wii=—1/V2) (Ei n+it+Ej ntitEnti j+En+ji),

Uij=(1/v/2) (Eij—Eji+En+i n+i—En+i nti),

U’ij:('\/_‘ 1 /’\/?) (Eij+Eji—En+i nvi—Entj nvid), 1=i, ]én,
where Epg denotes the (2n)x(2#) matrix whose S-th row and 7-th column is given by
dps dgr. Let ti=(1/4/2) Uii(1=i=mn). Then the Lie subalgebra of 8p(n#) generated by
{t: 1< i<n)} over R is a maximal abelian subalgebra of 8p(n#). We may easily see that
{ti(l=i=n): Wi=1/+/2) Wi, Wi=Q/v/ 2 Wii(l=i=n); Wij, Wi;(1=i<j=n); Uij,
Uij 1<i<j=n)} forms an orthonormal basis for 8p(n#) with respect to the inner product

<, > defined by <X, Y> = —% Trace XY, X, Y&E8p(n).  We note that the inner pro-

duct <, > on 8p(n) induces a biinvariant Riemannian metric on the Lie group G=Sp(n).
From (2. 5), the Lie multiplication table is given by

(2.6) LUij, Uap]=QQ/4/2) (B;aUis—0iaUjs— 356 Uia+0is Uja),
(Ui, Uab1=1/v/2) BiaUis+06iaU jb—3856U'ia—0:is U ja),
LU, Uasl=—1/v/2) BjaUis+0iaUjp+ 358 Uia+3is Uja),
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(Wi, Wap1=—11/"2) (05aUis+0iaUjp 4056 Uia+0is Uja),
(Wi, Was]=—1/v/2) (0;aUi6+0iaU jo+ 06U ia+0is U ja),
(Wi, War]l=—1/v/2) 0jaUis+0iaUjp 406 Uia+0is Uja),
[Wij, Uabl=(1/1/2) (3jaWis+0iaWjs—03j6 Wia—0is Wia),
[Wij, Uss1=1/v/2) (0jaW'is+0ia W jo— 06 W'ia—0:i6 Wja),
[Wii, Uasl=—1/4/2) 0jaW'is+0iaW jo+06 Wia+0i6 W' ja),
(Wi, Uabl=A/1/2) (0jaWis+0iaWis+0j6Wia+0i6Wija).
(Dn) g=38(2n) = {XEg 2n, R); I X=—X]}.

Weput wupg=FEpg—Egp, and

2.7 Uii=1/v'2) tij—tn+i n+i),
Uii=Q/vV/2) Wi nvi—tji n+i),
Vij=/v'2) Wijt+tnti ntj),
Vij=1/v2) Un+i jtuntii), 1=i, j=n.

where Epg denotes the (2#)x (2%) matrix whose S-th row and 7-th colum is given by dps
oQT.

Let ti=(1/4/2) V'ii(1=i=<mn). Then the Lie subalgebra of 80(2x#) generated by {#
(1=i=n)} over R is a maximal abelian subalgebra of 280(2n). We may easily see that
{t: (A< i <n); Uij, U'ij, Vij, V'ij 1<i=<j=<n)} forms an orthonormal basis for & (2»#) with
respect to the inner product <7, > defind by <X, Y >= —% Trace XY, X, Yc80(2n). We
note that the inner product <, > on 80(2%) induces a biinvariant Riemannian metric the
on Lie group G=S0(2#n). From (2. 7), we see that the Lie multiplication table for 8o(2n)

takes the same forms as (2. 4)15~(2. 4)1.

3. Riemannian 3-symmetric spaces.

Let (M, g) be a connected Riemannian manifold. 'We now suppose that (M, g) admits
an isometry 0, of (M, g) for each point p=M such that

GB.1)  62=1, |
3.2) p is an isolated fixed point of 6,
@3.3) the tensor field 6 defined by 6,= (df})p is of class C*.

Then there exists an almost complex structure / on M naturally associated with the
family {f,} pem. The tensor field J is given by

(3. 4) g J=0+1 1
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and called the canonical almost complex structure associated with the family {0,} pen.

DEFINITION. A Riemannian manifold (M, g) is called a Riemannian 3-symmetric
space if it admits a family of isometries {0} pem of (M, g) satisfying the conditions (3. 1)
~(3. 3) and furthermore

(3.5)  dOy-J=J-df, on M,

where J is the canonical almost complex structure.

Gray [1] showed that a Riemannian 3-symmetric space is characterized by a triple
(G, K, o) satisfying the following conditions (1)~(3):

) G is a connected Lie group and ¢ is an automorphism of G of order 3,

2 K is a closed subgroup of G such that Gy’ C KC G°, where G°= {x=G; o¢(x) =41}

and Gy’ denotes the identity component of G°.

Let g and f be the Let algebra of G and K, respectively, and m= {X&gq; (62+0+ 1) X=

0}. Then we have the following direct sum decomposition (cf. [1]):

(3.6) g=Ft+m Ad(K)m=mn.
3 There exists a positive-definite inner product <, >> on m which is both Ad

(K)-invariant and ¢-invariant.
The inner product <, > in (3) induces a G-invariant Riemannian metric g on the
homogeneous space M= G/K, and (G/K, £) is a Riemannian 3-symmetric space. The
canonical almost complex structure J on G/K is given by

GB.7) Zzij —L It olm, atthe origin k€ G/K.

Gray [1] also showed that the corresponding almost Hermitian manifold (G/K, J, £)
is a quasi-Kaehlerian manifold (also known sa O*-space), and the that (G/K, J, g) is a
nearly Kaehlerian manifold if and only if (G/K, g) is a naturally reductive Riemannian
homogeneous space with respect to the decomposition (3. 6) It is well known that the
Riemannian connection and the curvature tensor of a naturally reductive Riemannian
homogeneous space are given respectively by the followings at eK:

3.8)  VxY=1[X, Yu,
3.9 REX, Y)Z=—[[X, Y1t, Z1-§ [(X, Y1n, Z]n

— L [LY, 200, X1p — 1 112 X1y, Y1,

for X, Y, Z&m (cf. [3]).

Wolf and Gray [1] have obtained the complete classification table of indecomposable
Riemannian 3-symmetric. Let (G, K=G?, o) be a triple such that G is a connected, com-
pact classical simple Lie group and ¢ is an inner automorphism of G of order 3, and g be
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the G-invariant Riemannian metric on the homogeneous space G/K which is induced by
a biinvariant Riemannian metric on G. Then, we may easily see that the corresponding
compact Riemannian 3-symmetric space (G/K, J, g) together with the canonical almost com-
plex structure J is a nearly Kaehlerian manifold. From the classification table by Wolf
and Gray, we see that if (G/K, J, £) is not Kaehlerian, then the corresponding triple (G,
K=G’, 0=Ad (exp(27v))) are listed in the following table:

Table 1.
G v K=G°
SU(n+1) V=1 h S(Uh) x Um—h) x Un—m—+1))
1) (2n+2—h—m) ZEW
F(itlmh=m) 3 Eas
a=h+1
n+1
— (h+m) 2} Eqa)
a=m+1
A=h<m=n)
SO(2n+1) _1 ﬁ u SO0(2n—2m+1) x U(m)
3 = 1+a n+1+a
2=m=<n)
Sp(n) ‘\/_—1- ﬁ (Eaa—‘En+a n+a) Sp(n—m) X U(m)
a=1
1=m=<n—-1)
SO (2n) _% é ta nea SO(2n—2m) x U(m)
C=m=n—1, n=<4)

4. Some results

In this section, we shall consider the homogeneous spaces listed in Table 1. First,
we shall prove the following

THEOREM A. Let (G, K=G°, 6=Ad (exp(2r v))) be any one of the triples in Table 1
and g be the G-invariant Riemannian metric on the homogeneous space G/ K which is induced
by a biinvariant Riemannian metvic on G. Then the corrvesponding Riemannian 3-symmetric
space (G/K, J, &) is irreducible and not locally symmetric, and furthermore is Einsteinian if
and only if G/K is one of the followings:

(1) SUBm)/S(U(m)x U(m)x U(m)), m=1,

(ii) SOBm—1)/(SO(m—1)x U(m)), m=2,

(iii) Sp(Bm—1)/(Sp(m)x U(2m—1)), m=1.
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If G/K is one of the spaces in (1)~(iii), then Ri—5R*=0 holds on G/K, and hence the
generalized first Chern form of the corresponding nearly Kaehlerian manifold (G/K, ], &)
vanishes, where J denotes the canonical almost complex structure.

We now recall the definitions of the Ricci curvature tensor and the Ricci * curvature
tensor of a 2N-dimensinnal almost Hermitian manifold (M, J, g). Let {E;..., En, JE,, ...,
JEN} be an orthonormal basis of the tangent space to M at a point p=M. Then the Ricci

curvature tensor R; and the Ricci * curvature tensor R¥ are given respectively by

4.1  RiX, Y):é(R(E,-, X, Y, En+R(JE;, X, Y, JE)),

N
(4- 2) R?(X, Y):Z=}1R(Y’ ]X, ]Ei, El');

where we put R(X, Y, Z, W)=g(R(X, Y)Z, W), for all tangent vectors X, Y, Z, W at p.
For the proof of Theorem A, it suffices to check the following four cases (I)~(IV).

(1) G/K=SUm+1)/S(UM) x Ulm—h) x U(n—m+1)).

Then, from Table 1 and (2. 1), we may easily see that the Lie subalgebra 8u(z+1)? of
8u(n+1) is given by the linear span of {t:(1=i<n); Ui;, Ui;(A=i=<j<h); Uij, Uij(h+
1=:<j=m); Uij, Uii(m+1=i<j=mn+1)} over R, and hence the subspacem of 3u(z-+1)
in the decomposition (3. 6) is given by m=m;+m;+m3 (directsum), where m;, my, and mg are
the subspaces of m generated respectively by {Uij, U'ii 1<i<h, h+1<j=<m)}, {Uij, U'ij
(A=ish, m+1=<j=n+1)} and {Uij, Uij(k+1<i<m, m+1<j<n-+1)} over R Taking
account of (2. 2), we may easily see that the linear isotropy action of S(U(k) x U(m—h) x U
(n—m+1)) on each space ms gives rise to an irreducible representation (s=1, 2, 3). From
(3. 7) and Table 1, we see that the canonical almost complex structure J is given as fol-
lows:

4.3)  JUij=Usij, JUij=—"Uij, for Uij, UijEm,,

JUij=—"Uij, JUi;=Uij, for Uij, Uij&my,

JUij=U'j, JUij=—Uij, for Uij, Uij&ms.
From the hypothesis of Theorem A, without loss of essentiality, we may assume that
Riemannian metric on the homogeneous space SU(n+1) /S(UA)YX U(m—h)xX U(n—m—+1))
is induced by the inner product <X, Y >= —% Trace XY, X, Y&8u(n+1). First, we cal-

culate the Ricci tensor R;. Let Uss&my. Then, from (3. 9), taking account of (2. 2), we
get

4.4) R(Uij, Uab) Uij=—0ia Uis+28ia 3j6U;i—38j5 Uaj,
RU'ij, Uab) U'ij=—0ia Uib—20ia 3jb Uij—08jb Uaj,

for U;j, U'ij&Em,.
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Similarly, we get
(4.5) R(Uij, Uap) Uij=— (1/4)0ia Uis,
R(U'ij, Uab) U'ij=— (1/4)0ia Uip, for Uij, U's;Emy,
(4.6)  R(Uij, Uas) Uij=— (1/4)3is Uai,
R(U'ij, Uap) U'ij=— (1/4)0ip Uai, for Uij, U'ij&Em,.
From (4. 1), (4. 3)~(4. 6), we get
.7 Ry (Uas, Uca) =Ry (Uas, JUca) =0, for Ucatms(s=2, 3).
Similarly, we get
4.8) Ri(Uas, Uca) =R (Uab, JUca) =0, for Uasp=ms, Uca&mi

(s#b).
Let Uap, Uca&my. Then for (4. 4)~(4. 6), we get

4.9 >3 RUij, Uas, Uij, Uca) =— (m—2)dac 0pa,

15i=h

> R(U'ij, Uas, Uiy Uca) =— (m+2)ac ea,
h+11§}5fi¢

SZSh R(Uij, Uas, Uij, Uca) =— (1/4) (n+1—m)dac 0ba,
m+11—§,:7'_§n+1

S};‘ShR(Ulij, Uas, U'ij, Uca) =— (1/4) (n+1—m)0ac Osa,
m+i§;§n+1

21 R(Uij, Uas, Uij, Uca) =— (1/4) (n+1—m)dac dba,
h+1=i=m
m+lsjs=n+l

>V RU'sj, Uas, U'ij, Uca) =— (1/4) (n+1—1m)0ac Opa.
h+1=i=m
m+lsjs=n+l

From (4. 1), (4. 3) and (4. 9), we get

(4.10) R1(Uab, Uca) = (n+m—~+1)dac 0pa, for Uas, UcaEm.
Similarly, we get

(4.11) Ri(Uab, Uca) = 2(n+1) —m+h)dac 0ba,
for Uas, Ucacmy,

(4.12) Ry (Uab, Uca) = @Cn+2—h)dac 0sa,

for Uas, Uca&ms.
From (4. 4)~(4. 5), we get easily

(4.13) Ri(Uas, JUca) =0, for Uass, UcaTmy.
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Similarly, we get
| (4.14) Ry(Uas, JUca) =0, for Uass, Uca=ms (s=2, 3).

Next, we calculate the Ricci * curvature tensor Rf. Let Uss—=m; and Ueq©&m,. Then,
from (3. 9), taking account of (2. 2) and (4. 3), we get

4. 15) R(Ugs, fUcd)fUij:—R(Uab, Ulc'd) U'ij

=—1 3, Obj Uia—L- 8. 0jp Uaa, for Uij&Emy,
\ 2 4

(4.16)  R(Uas, fUcd)]UijZ—]z'— 3ac 3a; Uib—% 8ai 8ja Ues, for UijCmy,

4.17) R(Uas, JUca)JU:;=0, for U;;&Ems.

From (4. 2), (4. 15)~(4. 17), we get

(4.18) R¥(Uas, Uca) =0, for Uspemy, Uca&ms.
Similarly, we get

(4.19) R¥(Uas, JUca) =0, for UssEmy, UcaEm,.
Moreover, we get generally

(4. 20) R¥(Uas, Uca) = R¥(Uas, JUca)=0,

for UspEms, Ucaeeme(s#¢).
Let Uas, Uca&=my. Then, from (3. 9), taking account of (2. 2) and (4. 3), we get

(4.21) SZ]S R(Uas, JUca, JUij, Uij) =2mbac dsa,
heiZiem

> R(Uas, JUca, JUij, Uij)= —‘%(n'l"l—-”’l)aac 0bd,
1=ish
h+1=i=m

>V R(Uas, JUca, JUij, Uz‘j)z—%(n'f'l'—m)aac Obd.
h+1=i=m
m+l1sjisn+l

From (4. 2) and (4. 21), we get
(4.22) R¥(Uas, Ueca) = (5m—3n—23)dac 0pa, for Ugs, UcaSm;.
Similarly, we get

4. 23) R’lk(Uab, Ucd) = (2%"5m+5h+2)5ac 0va, for Uas, Uca&=my,

(4.24) R¥(Uas, Uca) = 2n—5h~+2)8ac 0pa, for Ugs, UcaCms.
Furthermore, we get also

(4. 25) R’lk(Uab, ]Ucd) =0, for Uab, UcaEms (1§S§3)
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Thus, from (4. 7), (4. 8), (4. 10)~(4. 14) and (4. 18)~(4. 20), (4. 22)~(4. 24), taking acco-
unt of (1. 2) and (1. 3), we see that the Riemannian 3-symmetric space
SUmn~+1) /S(UR) xU(m—h) x U(n—m+1)), ], £ is an Einstein space if and only if m=
2h and n+1=3A. Furthermore, R,—5R¥=0 holds for (SUBA)/S(U )< Uh)x U(h)), ], &
(A=1). From (3. 8) and (3. 9), taking account of (2. 2), we may easily see that (SU(n+1)/
S(UMRXxU(m—h)xUmn—m+1)), g) is irreducible and not locally symmetric.

(II) G/K=S0(2n+1)/ (SO@2n—2m~+1)x U(m)).

Then, from (2. 3) and Table 1, we may easily see that the Lie subalgebra 8 (2n+1)’
of 80(2%+1) is given by the linear span of {#;(1=<i<n); Ui, Ui(m~+1=<i<n); Uij, U'ij(m+
1<i<ny; Vig, ViiA1Zi<d<m); Vij, V'ij(m+1=i<j<n)} over R, and hence the subspace
m in the decomposition (3. 6) is given by m=m;+my+mz+my, (direct sum), where my, n,, m;
and m, are the subspaces of m generated respectively by (Ui, Ui(1<i<m)}, {Uij, U'ij
A=i<<j=m)y, (Uij, UijA<i<m, m+1<j<m)}, and (Vij, V'i;A=<i=m, m+1=j=<n))
over R. Taking account of (2. 4), we may easily see that the linear isotropy action of SO
2n—2m+1)x U(m) on the space m,+ms-+m, (or my) gives rise to an irreducible represen-
tation over R. From (3. 7), taking account of (2. 3) and Table 1, we see that the canoni-
cal almost complex structure J is given as follows:

(4. 26) JU:=U%, JUi=—U;, for U; Uicem,
JUij=—U'ij, JU ij=Uij, for Uij, Uij&my,
JU:i;=U's;, JU i;,=Ui;, for Uij, Uij&ms,
JVii=V'ij, JV'ij=—Vij;, for Vij, V'ijcmy.
From the hypothesis of Theorem A, without loss of essentiality, we may assume that
the Riemannian metric g on the homogeneous space SO@2n+1)/SO2n—2m+41)x U(m)) is
induced by the inner product <X, Y>:—% Trace XY, X, YE80(2nr+1). First, we cal-

culate the Ricci curvature tensor R;.  From (2. 4), (3. 9) and (4. 1), by the similar calcula-
tions as in the case (I), we get

4.27) R (X, Y)=0, for X&Ems, Yem: (s#1¢),
and furthermore
(4.28) Ri(Ue, Ua) =(1/2) (d4n—m—1) Oca,
R, (Uc, JUa) =0, for Ue, Ua&my,
(4.29) R (Uas, Uca) = (1/2) @2n+2m—3) dac dba,
Ry (Uas, JUca) =0, for Uas, UcaEmy,
(4. 30) Ri(Uas, Uca)= (1/2) (4n—m—1) dac 0sa,
Ri(Uas, JUca) =0, for Uas, Ucacms,
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(4.31) Ri(Vas, Vea) = (1/2) (4n—m—1) Oac pa,
R, (Vas, JVeca) =0, for Vas, VeaEmy.
Next, we calculate the Ricci * curvature tensor K¥ . From (2. 4), (3.9), (4. 1) and (4.
26), by the similar calculations as in the case (I), we get
(4.32) R¥(X, Y)=0, for X&ms, YEM: (s+1),
and furthermore

(4.33) R¥(U., Ua) = (1/2) (4n—5m—+3) dca,

R¥(U¢, JUa)=0, for Uc, UsCmy,
(4.34) R¥(Uas, Uca) = (1/2) (10m—6n+T) dac dbd,

R¥(Uas, JUca) =0, for Uas, Uca&my,
(4.35) R¥(Uas, Uca) = (1/2) (4n—5m+3) dac 8ba,

R¥(Uas, JUca) =0, for Uas, Uca&mg,
(4. 36) R¥(Vas, Vea) = (1/2) (dn—5m~+3) dac dsa,

R¥(Vas, JVea) =0, for Vas, VeaEmy.

Thus, from (1. 2), (4. 27)~(4. 31) and (1. 3), (4. 32)~(4. 36), we see that the Riemannian
3-symmetric space (SO@2n+1)/(SO2n—2m+1)x U(m)), ], &) is an Einstein space if and
only if 2(n+1)=3m. Furthermore, R,—5R¥=0 holds for (SO(3m—1) /(SO(m—1)x U(m)),
J, & (mis even). From (3. 8) and (3. 9), taking account of (2. 4), we may easily see that
(SO2n+1)/(SO2n—2m+1)x U(m)), g) is irreducible and not locally symmetric.

(D)  G/K=Sp(m)/ (Sp(n—m)x U(m)).

Then, from (2. 5) and Table 1, we may easily see that the Lie subalgebra 38p(»)? of
8p(n)is given by the linear span of {t: (1=i<n); Wi, Wilm+1=<i<n); Wi;, Wii(m+1<i
<j=m); Uij, Ui; Q<i<gj<m); Uij, Uij(m+1=<i<j<n)} over R, and hence the subspace
m of 8p(n) in the decomposition (3. 6) is given by m=m;+my+mz+m, (direct sum), where
my, My, my and my are the subspaces of m generated respectively by (Wi, Wi(l=i<m},
{(Wij, Wi;A=i<j=<m)}, (Wij, Wi; A=i<m, m+1=j=<n)}, {(Uij, Ui; QA=<i<m, m+1=<j
=mn)}, over R. Taking account of (2. 6), we may easily see that the linear isotropy action
of Sp(n—m)x U(m) on the space m;+m; (or mz+m,) gives rise to an irreducible represen-
tation over R. From (3. 7), taking account of (2. 5) and Table 1, we see that the canoni-
cal almost complex structure J is given as follows:

(4.37) IWi=—W'i, JWi= Wi, for Wi, Wicm,
JWij=—W'ij, JWij=Wij, for Wij, Wiicm,,
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IWii=Wis, JWij=—Wij, for Wi, W'ij&ms,
JUii=U'ij, JU ij=—Uij, for U;j, U'ijEmy.
Form the hypothesis of Theorem A, without loss of essentiality, we may assume that
the Riemannian metric g on the homogeneous space Sp(n)/ (Sp(n—m)x U(m)) is induced
by the inner product <X, Y >= —% Trace XY, X, Y&8p(n). By the similar calculations

as in the previous cases, we see that the Ricci curvature tensor R; and the Ricci * curva-

ture tensor RF are given as follows.
(4.38) Ri(X, Y)=0, for X&ms, YEm: (s#2),
and furthermore
(4. 39) Ri(Wa, We) = (n+m—+2) dac,
Ri(Wa, JWe)=0, for Wa, We=my,
(4. 40) Ry (Was, Wea) = (n+m—+2) dac 0sa,
Ry (Was, JWea) =0, for Was, Wea&my,
(4.41) Ri(Wab, Wea) = (1/2) (dn—m—+3) dac 054,
Ry (Wab, JWea) =0, for Was, WeaSms,
(4.42) R1(Uas, Uca) = (1/2) (dn—m—3) dac Oba,
Ri(Uas, JUca)=0,  for Uas, Uca&=my.
(4.43) R¥(X, YV)=0, for XCms, YEm (s#2),
and furthermore

(4.44)  R¥(Wa, Weo) = (—3n+5m+2) dac,
R¥(Wa, JW)=0,  for Wa, Weemy,
(4. 45) R¥(Was, Wea) = (—3n+5m~+2) dac 884,
RF¥(Was, JWea) =0, for Was, WeaEmy,
(4.46)  R¥(Wab, Wea) = (1/2) (4n—5m—1) dac dsa,
R¥(Was, JWea) =0, for Was, Wea=my,
(4.47) R¥(Uas, Uca) = (1/2) (4n—m~+3) dac 0ba,

R?(Uab, ]Ucd) :O, for Uab, UchnL}-

Thus, from (1. 2), (4. 38)~(4. 42) and (1. 3), (4. 43)~(4. 47), we see that the Riemannian
3-symmetric space (Sp(n)/(Sp(n—m)*x U(m)), ], &) is an Einstein space if and only if 2n=
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3m+1. Furthermore, R,—5RF¥=0 holds for (Sp(3m—1) /(Sp(m) x U2m—1)), ], &) (m=1).
From (3. 8) and (3. 9), taking account of (2. 6), we may easily see that (Sp(n) /(Sp(n—m) X
U(m)), g) is irreducible and not locally symmetric.

(Iv) G/K=S0(2n) [ (SO2rn—2m) x U(m)).

Then, from (2. 7) and Table 1, we may easily see that the Lie subalgebra 80(2#)° of
80(2#x) is given by the linear span of {#i(1<<i<n); Ui;, U'i;(im+1=i<j<n); Vij, V'i; 1<i
<j=m); Vij, V'ij(m+1<i<j=<mn)} over R, and hence the subspace m of 80(2#) in the de-
composition (3. 6) is given by m=m;+my+my (direct sum), where m;, m; and mgy are the
subspaces of m generated respectively by {Uij, U'i; 1<i<j<m)}, {Uij, Ui;(1=i<m, m+
1<j<n)} and (Vij, Vii(A=<i<m, m+1<j=<n)} over R. Taking account of (2. 4), we
may easily see that the linear isotropy action of SO(2n—2m)x U(m) on the space m, (or
my+113) gives rise to an irreducible representation over R. From (3. 7), taking account of
(2.7) and Table 1, we see that the canonical almost complex structure J is given as fol-
lows:

(4.48)  JUij=—U'j;, JUij=Uij, for Uij, UijEmy,
JUii=U'ij, JUij=—"Uij, for U;j, U'ij&my,
JVii=V'ij, JV'ij=—Vij, for Vij, V'ij&Ems.

From the hypothesis of Theorem A, without loss of essentiality, we may assume that
the Riemannian metric g on the homogeneous space SO(2#%) / (SO(2rn—2m) x U (m)) is in-

duced by the inner product <X, Y >= ——% Trace XY, X, YE8 (2n). By the similar cal-

culations as in the previous cases, we see that the Ricci curvature tensor R; and the Ricci

* curvature tensor K¥ are given as follows.
(4.49) Ri(X,Y)=0, for X&ms YEm: (s#8),
and furthermore
(4.50) Ri(Uab, Uca) = (n+m—2) 8ac Oba,
Ry (Uab, JUca) =0, for Uass, Uca=my,
(4.51) Ri(Uas, Uca) = (1/2) (dn—m—3) 3ac 04,
Ry (Uas, JUca) =0, for Uas, Uca=my,
(4.52) Ry (Vab, Uca) = (1/2) (dn—m—3) dac Oba,
Ri(Vas, JVea) =0, for Vas, VeaEms.
4.53) R (X,Y)=0, for XEm, YEm (s#8),
and furthermore

(4.54) R¥(Uas, Uca) = (5m—3n—2) 34cB ba,
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R¥(Uas, JUca) =0, for Uas, Uca&1y
(4.55) R¥(Uas, Uca) = (1/2) (4n—5m~+1) dac 0p4,
R¥(Uas, JUca) =0, for Uas, Uca=my,
(4.56) R¥(Vas, Vea) = (1/2) (dn—5m~+1) 8acd a,

R¥(Vas, JVea) =0, for Uas, VeaEma.

Thus, from (1. 2), (4. 49)~(4. 52) and (1. 3), (4. 53)~(4. 56), we see that the Riemannian
3-symmetric space (SO(2n)/(SO2n—2m)x U(m)), J, £) is an Einstein space if and only if
2n=3m—1. Furthermore, Ri—5R}=0 holds for (SOBm—1)/(SO(m—1)x U(m)), ], &) (m
is odd). From (3. 8) and (3. 9), taking account of (2. 4), we may easily see that (SO(2n)/
(SO@2n—2m)x U(m)), g) is irreducible and not locally symmetric. Summing up the above
arguments in (I)~(IV), we have finally Theorem A. Let (M, J, g) be a nearly Kaehlerian
manifold and S; be the tensor field on M of type (0, 2) given by S;=R;—R¥. Thenitis
known that, the tensor field S; gives rise to a symmetric (by (1. 2), (1. 3), positive semi-
definite bilinear form on each tangent space of M (cf. [10]). We denote by S! the field
of symmetric endomorphism which corresponds to the tensor field Sj, that is, g(S' X, Y)
=51(X, Y), for all tangent vectors X, Y of M. From the arguments in the proof of
Theorem A, we have easily the following (for the related results, see [17, [4], [5], [6]).

THEOREM B. Let (G, K=G’, 0=Ad(exp 27v)) be any one of the triples listed in the
Table 1 and g be the G-invariant Riemannian metric on the space G|/K which is determined
by the inner product <, > on the Lie algebra g of G defined by <X, Y>:——%— Trace XY,
Jor X, YEq. Then the eigenvalues {2} of the symmetric endomorphism St of the correspond-

ing Riemannian 3-symmetric space (G/K, ], &) are given as follows:

G/K 2 Multiplicities
SU+1) /S(Uh) x U(m—k) x U(n—m—+1)) dn—m+1) 2h(m—h)

(1=h< m=n) 4(m—nh) 2h(n—m+1)

4k 2(m—h) (m—m~+1)

S0@2n+1)/(S0(2n—2m+1) x U(m)) 2(m—1) 2m(2n—2m+1)

A<m=n) 2(2n—2m+1) | m@m+1)
Sp(n) / (Sp(n—m) x U(m)) 4(n—m) m(m+1)

(I=m=n-1) 2(m+1) Am(n—m)
50(2n) / (SO(2n—2m) x U(m)) 4(n—m) m(m—1)

C=m=n—1, n=4) 2(m—2) 4m (n—m) B
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5. On the space Sp(2)/(Sp1)xUQ))

Let (SP(2)/(Sp(1)x U()), ], &) be the Riemannian 3-symmetric space appeared in the
proof of Theorem A. Then, by Theorem A, we see that (Sp(2)/(Sp(1)x U(1)), £) is an
Einstein space. We now show that the homogeneous space Sp(2)/(Sp(1)x U(1)) is diffeo-
morphic with a complex projective space CP? of complex dimension 3. Let g=38p(2) and
t=8p(2)’=8p(1) + R (direct sum). Then, from the argumenst developed in the case (IIT)
(with =2, m=1) of the proof of Theorem A, we may easily see that f is given by the

linear span of

{(61 0) (ez 0) (83 0) (0 0)} R
) ) ) over R.

0 0 0 O, 0 0 0 a

Thus, we have

(5.1) f=8p(1) +Re1£—>§p 1) +8p(1) —‘2—>§p 2,

where ¢, ¢; denote the respective natural inculusions. Taking account of (5. 1). we have
the following fibration:

(.2) {xUD—>5p2) /(Sp(D) x {1})—>5p(2) [(Sp(1) x UQ)).

In the above fibration (5. 2), the action @ of the group {1} X U(1) on the space Sp(2) /
(Sp(1)x {1})=S" is given as follows:

1 0 du 12
(5.3) (@ ( N ( ) (Sp()x {1})
0 g Qa1 42
qu qi2\[{1 O
=( ) (Sp(1)x {1}),
g1 g2/ \0 4

where g=cos #+ (sin #)e;, u=R.
Taking account of (5. 2) and (5. 3), we may easily see that the space Sp(2) /(Sp(1)x U
(1)) is diffeomorphic with a 3-dimensional complex projective space CFP3.
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