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1. Introduction

Let {pz; £=0,1,2, ---} and {qx; £=0, 1, 2, ---} be probability functions; p,=0,>p.=1,
gr=0,2gr=1. Let {Xu;2=0,1,2,-.-} be a Galton Watson process based on {p;}; i.e, a
Markov chain with stationary transition probabilities given by

pij = P(Xny1=7|Xn=1)

{Pi*" it i=1, j=0,
50]’ if 120, ]20,

where {pr*i} is the i-fold convolution of {pz} and 6y, is the Kronecker delta.

Similarly we define Galton Watson process {Y»; #=0, 1,2, ---} based on {gz}.

This setting may be comprehended that after one unit of time each particle splits in-
dependently of others into a random number of offspring according to the probability law
{pr} in A-district and according to the probabiltiy law {gz} in B-district.

In some report we see that the birth-rate in the city is smaller than the birth-rate in
the country, and that many persons immigrate from the country into the city.

In this paper we consider a simplified type of immigration from B into A, and study
the extinction probability and the limit behavior of the number of particles.

2. Immigration from B into A

Now we assume that each particle in A-district and B-district splits as stated in 1, and
assume that when every particle in the »#-th generation in A-district has no offspring then
instantly a particle in the (#+1)-th generation in B-district (if exist) immigrate into A-
district. That is, let the number of particles in the #-th generation in A-district be X, the
number of their offsprings be X».;, the number of particles in B-district be Y» and the
number of their offsprings be Y»4;. Then

Xn11=1, Yns1=Yn1—1 if Xn41=0, Yn41>>0,

Xn1=Xns1, Yns1=Yni otherwise.
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If Xn+1=?n+1=0 for the first time, the process is said to terminate in the (z+1)-th step.
This process is denoted formally as follows.

Let {Zn= Xn, Y»); n=0,1,2, ---} be a Markov chain on the pairs of nonnegative integers.

Its transition function

w(i, j—>k, 1) =P{Zns1=Ck, D)| Zn=(i, )
is defined in terms of given probability functions {p#} and {gz} as follows.
2(G, 0—>k, 0) = pik = p**
G, 00—k, D=0 (=12,
z(i, j—>0,0) = pioqjo=P5 q{;
(i, j—0,H)=0 (=12,
(i, j—>1, 1) = pioqji1+pirgji
(i, j—k, D =pirgii (G=12,--;k=2,3,..).

The study of Galton-Watson processes has been carried out using generating functions
skilfully ({17, [4D.
We assume X, =1, po+p1<1, and define the generating function of X; by

FO=Spesh, sl
and that of X, by
Sy (8) =§0P{Xn=k}sk, Is|<£1,

and denote the extinction probability of {X.} by ¢. Then following properties are well-
known.

D SO =p [D=1, Q) =m (The mean of X;),

@ f(s) is strictly convex and increasing in [0, 1],

€)) if m<1, then f(©)>tfor t[0,1), and ¢g=1,

@ if m>1, then f(¥) =t has a unique root ¢ in [0, 1),

®) Fo(®) =flfn-O]1=fn-p[f(H] (=12,
where f(p(s) =3,

©® S st =[fF

) Li_rgP{Xn=k}=0 (k=1,2, ),

i.e. all states £ =1 are transient.
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Using these properties, we study several properties of the generating functions of Z»
and X, and deduce some limit property of {Xu}.
Now we assume that Z, = (1, 1), and denote the »-step transition function by

xmy(d, j—ky 1) = P{Zmyn= (&, 1) | Zm = (3, )} n=12,--).
We define the generating function of Z» by

pm (s, £) =§0 I‘éncn)(l, 1—k, Dsktt (n=12,---),
and

o (s, 1) = st,

and denote ¢(1)(s, £) by o(s, £).
To use in the next theorem we denote the generating function of Y», assuming Y,=1, by
gn) (t)) i'e"

g<n>(t)=gop{yn=1} #, |t<1, (=12, ")
and
g () =t g0 = gay(®) =;§o qitl.

THEOREM 1. ean(s; D) = o(fv-(), gn-D)+Ean(s D, N=23,-), @

where  Eqn(s )= (=02 3 mev-n(l Ll—>m, MpF X2 grsatl,  (N=2,3,-),
and Eny(s, ) =En(fiv-2(8), &n-2()

+ Ea(fiv-(8), gv-a(®)

+ ves

+ Eny(s, ), <N=2, 3, -
Proor. ¢@)(s, t) = % ;n(z)(l, 1—k, [)sktl

= Ek] ZI] 212z, 1—>m, n)a(m, n—>k, 1) skt
m n

=2121x(1, 1—m, n){l ;n(m, n—k, )sktl.

and g;n(m, n—k, 1)skt!
=212320 Dhy Dr, 20 qiy---qutt
E 1 kytethy=k !

]

+ li}l {Dmogn, 1+1 St — Ppmognit!} + pmogn1 s
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=fm(s)gr()+ .32 Dmogn, 1418 — lz‘f;)} Dmogn, 1418

=fm(s)g*(D+ (s—t)go Do qn, 1418t
Hence o¢@)(s, £ =}";7‘;,7r(1, 1—>m, n) fm(s)gn(t)
+(G—HER(L, 1—m, ">?:% D2 gy 14at?

=(P(f(s)’ g(t))+E(2)(s, t)'

Thus (1) holds for n=2.
Now we assume inductively that (1) holds for z=7.

o+, t)=§IZ‘.ﬂ(r+1)(1, 1—k, Dsktt

=>>rnA, 1—m, n)%}‘? x(m, n—k, l)skt!
m n .
=SI5mr (L 1>, 1) (£ 8y + (5= D) 05" am it

= (F(S), &)+ Er+1(s, )
=p{ fr-D(f(); -1 &)} +Er(f (8D, &) +Ecr41(s, D
=0{ fr’(8)s 8 (D} +Er+1(s, D).
Thus (1) holds for n=7r-1.
By induction (1) holds for =2, 3, ---.

3. Limit behavior of {X.}

We now consider the limit behavior of {Xn}. B
If {V») is never extinct, our process reduces to a kind of branching process with state

dependent immigration studied in [3].
We denote the generating function of X» by fin)(s).

Then, OIOROICEY)
=0(fin-0(8)s D+E(fin2(8), D+-+-+Em(s, D).
Denoting —ai’i%’t—) =ges(s, £) and Qé‘g%(s,i)_ = Ewms(s, ), and differentiating fin)(s) by s,
we have ; 7
F (D =0s(fin-15(8), D f n-13() + E>s(Fen-25(8), L f cn—2(8)
4ot Ees(s, 1), ’
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Ens(s, B =§§lﬂw—1>(l, 1—>m, n)py goqn, 11t
hence
Ens(s, D =§§EF<N—1)(1, 1—sm, n)pg (1—gn, o)
=§Zn]7f(N—1\(1, 1—m,n)py
—E‘-}Eﬂw—n(l, 1—m, n)py a5
=§P(7N—1=m | Zo=(1, 1))p5" —ov-1(bos 20)

=fn-00) —on-1(bos 40)-
Thus we have

F () = os(Fin-1>(8), 1 f in-1>(s)
+ {Fy(Po) — (Do 4D} (n-2>(S)

+ {Fen-0(B0) — pcn-3>(Dos 40} (8D
+ {Fen-1(b0) —cn-1bo, 40} - €Y
Denoting E(X;)=m, we have
Fan(D)=EXN)=mN.
Hence, if we take s=1 in (1), then
EXn)=ps(1, Hm™1
+ {F (o) — (b0, go)} mn—2
1. ,
+ {fin-2(B0) —¢cn—2>(Dos 40D} M
+ {Fen0B0) —pin-1>(bo, 40} -
Thus by [2, p. 22, lemma A7 we have,

THEOREM 2. If m<<1 and {fin)(bo)—owm) (o, qo)} converges to a as n—>oco, then

lim ECG) = 1_‘_’m .

Now we are in a position to study the limit behavior of fiu)(s) for the case m>1.
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where

Thus
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7(»:)(3)=%‘.12ﬂ(n>(1, 1—>k, Dsk
=§1222_“(n—1)(1, 1—i, )=, j—k, I)sk
t 7

=22“(”—1)(1’ 1—i, ])g;”(l’ i—k, [)sk’
tJ

%;n(i, j—k, sk
=>°Z°l i‘. Dirgjisk+ pioqio+ bio :‘j qjis
k=1 =0 =1

<3 pirsk=[ f() T
k=0

fon(H= ; ? xn-(1, 1—>, LAY

=ﬁ"—1)[f(s) ]:

and we can see inductively

Fon () ZF i F(DI=Fn-al fr(s)]

Leeenns g:f_‘(k)[f(n_k)(S)] = =fn(s).

@

@

Since m > 1, the extinction probability g is smaller than 1. When s=¢q, we have f(s) <s
by the convexity of f(s), and then by (2)

T () = fon—1(s) for n=1,2, ---.

Hence {fn)(s)} converges for s=gq.

Putting 7 = lim finy(¢), we have r < ¢ by (3).
n—roo

When s> g, we have by (3)

while

thus

TS =fwlfin-(D],
Jo-i(H—>q  (n—> ), for s<1,

Im fn(D=fuw(g  for g=s<1

and accordingly

ﬁ@ fm()Zr forg=<s<1.
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On the other hand for g<s

Fm () zfm(D=r.
Hence, for ¢<s<1

L@o-ﬁn)(s) =7 @
Since f(ny(s) is monotone increasing convex function on [’0, 1], (4) holds for 0<=s<1.

This property of generating function implies,
THEOREM 3. When m™>1,

1) PXn=k)—0 (n—>) fork=1,2,...
equivalently
(1, 1—>k, HD—>0 (n—>0)  for k=1,2,...;1=0,1,2,...
2% r(my(1, 1—0, 0)—>7r (m—> )
3° PXn—>c0 (n—>c0)) =1—7.

When m <1 (accordingly ¢ =1), the limit behavior of {X.} seems to be not so simple.
For example, when m <1 and ¢gy=¢; =0,
PXn—0 (n—>0))=P(Xn—>0 (n—>)) =0 and it will be an interesting problem
to seek the limit probability of each state.
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