A note on invariant measures for the Galton-Watson process with state-dependent immigration

By
Masamichi SAto

(Received October 31, 1974)

1. Introduction

Consider the Galton-Watson branching process with state-dependent immigration, where immigration is allowed in a generation iff the previous generation was empty (Pakes (1971) [3]).

Let $A(x)=\sum_{j=0}^{\infty} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \quad(|x| \leqq 1)$ be the probability generating functions of the offspring and immigration distributions respectively. We shall assume that

1) $0<a_{0}, \quad a_{0}+a_{1}, \quad b_{0}<1$, and
2) $\quad \alpha=A^{\prime}(1-)<\infty$.

Denote the size of the n-th generation by $X_{n}(n=0,1, \cdots)$.
Now we discuss the problem of the existence and uniqueness of invariant measure of the Markov chain $\left\{X_{n}\right\}$, that is, a non-negative sequence $\left\{\mu_{i}\right\}\left(i=0,1, \cdots ; \mu_{i}>0\right.$ for some i) such that

$$
\mu_{j}=\Sigma \mu_{i} p_{i j} \quad(j=0,1, \cdots)
$$

where $p_{i j}$ is the one-step transition probability from state i to j.
The following results are given by Pakes (1971) [3].
Lemma A. Suppose an invariant measure, $\left\{\mu_{i}\right\}$, of the Markov chain $\left\{X_{n}\right\}$ exists. Then $U(x)=\sum_{i=0}^{\infty} \mu_{i} x^{i}$ converges for $x \in[0, q)$ and satisfies the functional equation

$$
\begin{equation*}
U[A(x)]=U(x)+\mu_{0}(1-B(x)), \quad \mu_{0}>0 \tag{1}
\end{equation*}
$$

for $x \in[0, q)$, where q is the least positive solution of $x=A(x)$, so that $q=1$ if $\alpha \leqq 1$ and $0<q<1$ if $\alpha>1$.

Theorem B. When $\alpha \leqq 1$, the Markov chain, $\left\{X_{n}\right\}$, possesses a unique (up to a constant multiplier) invariant measure. And we obtain

$$
\begin{equation*}
U(x)=1+\sum_{n=0}^{\infty}\left\{B\left(A_{n}(x)\right)-B\left(A_{n}(0)\right)\right\} \tag{2}
\end{equation*}
$$

as the unique solution of (1) on $(0,1)$ chosen so that $U(0)=1$, where $A_{n+1}(x)=A\left(A_{n}(x)\right)$ and $A_{0}(x)=x$.

In this paper we consider the existence and uniqueness of invariant measure of the Markov chain $\left\{X_{n}\right\}$ in the case that $\alpha>1$.

2. Preparation

Considering the ordinary Galton-Watson process $\left\{Z_{n}\right\}$ generated by $A(s)$, an invariant measure $\left\{\pi_{i}\right\}\left(i=1,2, \cdots ; \pi_{i}>0\right.$ for some $\left.i\right)$ is equivalent to a solution $\pi(s)=\sum_{i=0}^{\infty} \pi_{i} s^{i}$, convergent in $[0, q)$ and whose coefficients are of appropriate form, to the functional equation

$$
\begin{equation*}
\pi(A(s))=\pi(s)+1, \quad s \in[0, q) \tag{3}
\end{equation*}
$$

Such an invariant measure for the process always exists (see theorem 11. 1 in Harris (1963) [1]), and is known to be unique (up to a constant multiplier) when $\alpha=1$. However, if $\alpha \neq 1$, as shown by Kingman (1065) [2], uniqueness no longer holds in general.

From lemma A, it clearly suffices to demonstrate the existence and uniqueness of a regular function, which has non-negative coefficients, and which satisfies the equation

$$
\begin{equation*}
U[A(x)]=U(x)+(1-B(x)) \quad(0 \leqq x<q), \tag{4}
\end{equation*}
$$

in which case $\mu_{0}=1$.
It is easily seen that the problem of finding a solution of the right form to (4) (in general) is equivalent to finding a solution of the same nature to

$$
\begin{equation*}
\mathfrak{\beta}\left(\frac{A(q y)}{q}\right)=\mathfrak{\beta}(y)+(1-B(q y)), \quad 0 \leqq y<1, \tag{5}
\end{equation*}
$$

where we have put $\mathfrak{F}(y)=U(q y)$.
Since in (5) $B(q y)$ generates a defective distribution if $q<1$, and $A(q y) / q$ generates a non-supercritical distribution ($0<A^{\prime}(q) \leqq 1 ; A^{\prime}(q)<1$ iff $\alpha \neq 1$), the general problem of seeking solution to (5) is subsumed by that of investigating appropriate solutions to the system

$$
\begin{equation*}
\mathfrak{B}(A(y))=\mathfrak{\beta}(y)+(1-B(y)), y \in[0,1) \text {, } \tag{6}
\end{equation*}
$$

where $B(y)$ and $A(y)$ satisfy our basic assumption, but with the additional restriction on $A(y)$ that $A^{\prime}(1-)=\alpha \leqq 1$, and allowing for the possibility that $B(y)$ may generate a defective distribution, i.e. $B(1-) \leqq 1$.

Thus (6) as a whole corresponds to a non-supercritical process with state-dependent immigration which may be defective.

3. Theorem and the proof

Theorem. Under the noted assumptions on (6), a solution, of correct form, to (6) always exists. It is unique if $B(1-)=1$; and in general non-unique if $B(1-)<1$ and $\alpha<1$.

Note. Although we are unable to answer at the moment the question of uniqueness if $B(1-)<1$ and $\alpha=1$, this problem does not actually occur in the narrower context of (5) which is our primary concern.

Proof. The case that $B(1)=1$ follows from theorem B.
Let us note from this that even if $B(1)<1$,

$$
\mathfrak{\Re}_{1}(y)=1+\frac{1}{B(1)} \sum_{n=0}^{\infty}\left\{B\left(A_{n}(y)\right)-B\left(A_{n}(0)\right)\right\}, \quad 0 \leqq y<1,
$$

is convergent, since in fact it generates the (unique) invariant measure for the process with offspring p. g. f. $A(s)$ and (proper) immigration p. g. f. $B(s) / B(1)$.

Hence, we obtain the fact that $\sum_{n=0}^{\infty}\left\{B\left(A_{n}(y)\right)-B\left(A_{n}(0)\right)\right\}$ is convergent for $y \in[0,1)$ and has non-negative coefficients.

It is seen without difficulty that

$$
\begin{equation*}
\mathfrak{P}(y)=1+(1-B(1)) \pi(y)+\sum_{n=0}^{\infty}\left\{\left(B\left(A_{n}(y)\right)-B\left(A_{n}(0)\right)\right\}\right. \tag{7}
\end{equation*}
$$

solves (6). Futhermore, since ($1-B(1)$) >0, it follows that (7) generates a non-negative term series (terms not all zero) of the correct sort.

Now if $B(1)<1$ and if $\alpha<1$, it follows from Kingman's result that sometimes distinct $\pi(y)$'s may be substituted into (7) giving distinct $\mathfrak{B}(y)$'s, and hence leading to lack of uniqueness, in general.

The proof of the theorem is complete.
From this theorem, we concluse that when $\alpha>1$, invariant measure of $\left\{X_{n}\right\}$ always exists, but it is in general non-unique.

Acknowledgement

The author has much pleasure in thanking Professor Tetsuo Kaneko for his helpful advice.

Nigata University

References

[1] Harris, T. E. (1963): The Theory of Branching Processes. Springer, Berlin.
[2] Kingman, J. F. C. (1965): Stationary measures for branching processes. Proc. Amer. Math. Soc. 16, 245-247.
[3] Pakes, A. G. (1971): A branching process with a state-dependent immigration component. Adv. Prob. 3, 301-314.
[4] Seneta, E. (1971): On invariant measures for simple branching processes. J. Appl. 8, 43-51.

