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Introduction

For a compact connected differentiable manifold $M$, we define the degree of symmetry,
denoted by $N(M)$ , the maximum of dimensions of compact connected Lie groups which
can act on $M$ almost effectively.

In this note we shall determine simply connected 6-manifolds up to diffeomorphism
whose degree of symmetry is greater than 5. Let $M$ be a simply connected closed 6 $\cdot$

manlfold and $G$ a compact connected Lie group acting almost effectively on $M$ with $\dim$

$G=N(M)$ . We may assume without loss of generality that $G$ is a product $T^{r}\times G_{1}\times\cdots\times G_{S}$,
where $T^{r}$ is r-dimensional torus and $G_{i^{\prime}}s$ are simply connected simple Lie groups. In [6],

it is shown that if $\dim G\geqq 12$, then $G$ is transitive on $M$. In section 2, we shall determine
simply connected 6-dimensional homogeneous spaces. Assume $N(M)\leqq 11$ . Then we
may consider only Spin(5) SU(3) and SU(2) among the Gi’s. $Itisshownthatr\leqq 5$ . In
section 3, we shall consider Spin(5)-actions, $SU$ (3)-actions in section 4, $SU(2)\times SU(2)-$

actions and SU(2) $\times$ SU(2) $\times$ SU(2)-actions in section 5 and $G\times T^{\gamma}$-actions in section 6. We
shall list the classification of simply conneted 6-manifolds by degree of symmetry in the
last section.

Our initial aim was to find an exotic homotopy complex projective 3-space of large
degree of symmetry. Our results show the following

Let $M$ be a homotopy complex projective 3-space. If $N(M)$ is greater than 5, then $M$ is
diffeomorphic to the standard complex projective 3-space.

We can not determine degrees of symmetry of exotic homotopy complex projective
$3\cdot spaces$.

1. Preliminaries

In this section we state some lemmas which are used in the sequel. Let $(G, M)$ be a
topological action. We denote by $G_{x}$ the isotropy subgroup of $G$ at $x\epsilon M$, by $G(x)$ the orbit
of $x,$ $M^{*}=M/G$ the orbit space, by $F(G, M)$ the fixed point set and by $M_{(H)}$ the set of
points $x$ of $M$ whose isotropy subgroup is conjugate to $H$.
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LEMMA 1 ([1], Chap. XIV 2.4).

Let $(G, M)$ be a topological action. Assume that on $M$ there is a smallest class $(U)$ and
a biggest class (V) of isotropy subgroups and that an element of $(U)$ is contained in exactly

one element of (V). Then there is a continuous map $f:M\rightarrow G/N(V, G)$ whose restriction to
$M_{(V)}$ is the projection of the fibration $(M_{(V)}, G/N(V, G), F(V, M_{(V)}))$ .

REMARK. In paticular, when $V$ contains $N(T)$ ( $T$ is a maximal torus of $G$), we have
$V=N(V)andhencewehaveM_{(V)}=G/N(V)\times F(V, M_{(V)}).$ Thus the abovef hasacross
section and hence $f^{*}:$ $H^{*}(G/N(V);A)\rightarrow H^{*}(M;A)$ is injective for any abelian group $A$ .

$CoROLLARY$ . Let $M$ be a simply connected manifold on which $SU(2)$ acts almost effectively
with a maximal torus $T$ (we may assume $T$ is the standard maximal torus) as a connected
principal isotropy subgroup. Then there is no point $x$ of $M$ whose isotropy subgroup is con-
jugate to $N(T, SU(2))$ .

PROOF. Consider the case in which there is no fixed point. Assume $SU(2)_{x}$ is con-
jugate to $N=N(T, SU(2))$ . It is easy to see that $N(N, SU(2))=N$. Hence it follows
from lemma 1 that there is a map $f:M\rightarrow RP_{2}$ such that $f^{*}:$ $H^{1}(RP_{2};Z_{2})\rightarrow H^{1}(M;Z_{2})$

is injective, which is contradiction. Next consider the case in which there is at least one
fixed point. Let $F$ be the fixed point set. From a result in [7], it follows that principal
isotropy subgroup is $T$.

Hence there are just two types of isotropy subgroups $(T)$ and $SU(2)$ . It is known
that $\dim F\leqq\dim X-3$ and hence $H^{1}(X-F;Z_{2})=0$ . By applying the same arguments
as above to the restricted action to $X-F$, we can show that there is no point whose isotropy
subgroup is conjugate to N. q.e.$d$ .

LEMMA 2. ([3] Corollary)

Let $(G, M)$ be a topological action with orbits of uniform dimension. If $\pi_{1}(M)=0$ and
$G_{x}$ is of maximal rank for every $x\epsilon M$, then $M=G/H\times M$, where $H$ is a connected principal
isotropy subgroup.

LEMMA3 ([2] Chap. II6. 1) IfM isa G-space, Gacompact Lie group, such that M/G

is homeomorphic to $I=[0,1]$ , then there is a global cross section for the orbit map $\pi;M\rightarrow$

$M/G$.
LEMMA 4 ([2] Chap. I, 3. 4). Let $G$ be a compact group acting on spaces $X$ and $Y$ and

$\sigma$ : $X/G\rightarrow X$ be a cross section for $\pi$ : $X\rightarrow X/G$. Let $\varphi$ : $X/G\rightarrow Y$ be a map such that
$G\sigma(x^{*})\leq G\varphi(x^{*})$ for all $x^{*}ofX/G$. Then there is a unique equivariant $map_{\overline{\varphi}}$ : $X\rightarrow Y$ such
that $\overline{\varphi}=\varphi_{0}\pi$.

REMARK. Let $(G, X)$ and $(G, Y)$ be two G-spaces such that their orbit spaces are
homemorphic to $[0,1]$ . If there is a homeomorphism $h;X/G\rightarrow Y/G$ preserving the
orbit structures, then $(G, X)$ and $(G, Y)$ are equivariant homemorphic. For instance, if
$(G, X)$ and $(G, Y)$ have principal orbits of codimension one, then their isotropy subgroups
are $(H_{X}),$ $(K_{X}),$ $(L_{X})$ and $(H_{Y}),$ $(K_{Y}),$ $(L_{Y})$ respectively and their orbit spaces are homeo-
morphic to $[0,1]$ , where the orbit $G/H_{X},$ $G/K_{X}$ and $G/L_{X}$ coorespond to $(0,1),$ $\{0\}$ and {1}
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respectively, and analogous to $(G, Y)$ (see the following lemma).

LEMMA 5 ([2] Chap. IV, 8. 2). Let $(G, M)$ be a locally smooth action with principal
orbit $G/H$ of codimension one. Then

$a$ . If every orbit is pricipal, then $M$ is a $G/H$-bundle over $M^{*}=S^{l}$ with structure group
$N(H)/H$.

$b$ . Otherwise, there are two non-principal orbits of type $G/K$ and $G/L$ with $K\geqq H$ and
$L\geqq H$. Moreover, $K$ and $L$ may be chosen so that $M$ is the union of the mapping cylinders
$M_{K}$ and $M_{L}$ of the mappings $G/H\rightarrow G/K$ and $G/K$ and $G/H\rightarrow G/L$ respectively.

REMARK. From a result in [2], it follows that $K/H$ and $L/H$ are spheres or finite sets.
If $M$ is simply connected, then $K/H$ and $L/H$ are of positive dimension. In fact, from van
Kampen’s theorem we have $\pi_{1}(M)=\pi_{1}(M_{K})^{*}\pi_{1}(M_{L})/\pi_{1}(G/H)$ . Since $\pi_{1}(M)=0$, it fol-
lows easily that $\pi_{1}(G/H)\rightarrow\pi_{1}(G/L)$ are surjective and hence $K/H$ and $L/H$ are connected
and positive dimensional.

LEMMA 6. Let $(T^{k}, M^{n})$ be an effective action which is assumed to be differentiable. If
the Euler characteristic of $M$ is positive, then $k$ is not greater than $n/2$ .

In fact, $F(T^{k}, M)$ is not empty because of $\chi(M)>0$ . Let $\varphi x$ be a local representation
at $x\epsilon F(T, M)$ , then $\varphi_{x}$ is faithful, so that we have $k\leqq n/2$ .

LEMMA 7 ([4] Observ.). Let $(G, M)$ be a differentiable action. and $Kan$ equivariant
differentiable transformation group. Suppose the $G\times K-$ action on $M$ is almost effective. Let
$K_{0}$ be the ineffective kernel of the induced K-action on $M/G=X$. Then $G\times K_{0}$ acts naturally on
the principal orbit $G/H$ and the action is almost effective. Moreover $K_{0}$ is locally isormorphic
to $N(H, G)/H$.

LEMMA 8([5] Lemma 1). Let $G=G_{1}\times G_{2}$ act almost effectively on M. If $G_{1}$ acts transi $\cdot$

tively on $M$, then $G_{2}$ acts almost freely on $M$.

2. Simply connected $6\cdot dimensInal$ homogeneous spaces

Let $M$ be a simply connected 6-dimensional manifold. In this section we intend to
determine all pair $(G, M)$ , where $G$ is a compact connected Lie group acting almost effec-
tively and transitively. Without loss of generality we may assume that $G$ is a product
$ T^{r}\times GJ\times$ $\times G_{s}$ , where $T^{\gamma}$ is r-dimensional torus and $Gi^{\prime}S$ are simply connected simple Lie
groups. It is well known that $\dim G\leqq 21$ and the eqality holds only in the case in which
$G=SO(7)$ and $M=S^{6}$ . Moreover it is known that $\dim G\leqq 16$ when $M\neq S^{6}$. In the sequel,
we denote by $H$ a principal isotropy subgroup of $G\cdot action$ on $M$.

Case 1. $d{\rm Im} G=16$

Subcase 1. $G=T\times Spin(6)$

Lot $p;G\rightarrow T$ be the projection. Since $p(H)=H/H\cap Spin(6)$ and $\dim p(H)\leqq 1$ , we
have $\dim H\cap Spin$ (6) $=10$ or 9. Consider the restricted Spin(6)-action on $M$, and put $H_{1}$
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$=H\cap Spin(6)$ . First consider the case in which $\dim H_{1}=9$ . From the table in [9] it follows
that 9-dimensional subgroups of Spin(6) are only of type $T\times A_{2}$ and hence we have $M$

$=SO(6)/U(3)$ . Since the Euler characteristic of $M$ is positive, $G$ can not act on $M$ almost
effectively.

Next, if $\dim H_{1}=10$, it follows from lemma 5 that there are two non-principal isotropy
subgroups $K$ and $L$ and $M=M_{K^{U}}M_{L}$ , where $M_{K}$ and $M_{L}$ are the mapping cylinders of the
maps Spin(6) $/H\rightarrow Spin(6)/K$ and Spin(6)$H\rightarrow Spin(6)/L$ respectively. Since there is no
other subgroup of dimension 10 of Spin(6) than Spin(5), we have $K=L=Spin(6)$ and
hence $M=S^{6}$.

Subcase 2. $G=SU(3)\times SU(3)$

Let $pt:G\rightarrow SU(3)$ be the projection to the i-th factor for $i=1,2$ . Since $p_{2}(H)=H$

$/SU(3)\cap H$, we have $\dim(H\cap SU(3))\geqq 2$ . From the consideration of subgroups of $SU(3)$ ,
it follows that $\dim(H\cap SU(3))=2$ . Thus we have $SU(3)/H_{\cap}SU(3)=M$, and hence
it follows from lemma 8 that $SU(3)$ acts almost freely on $M$ which is a contradiction.

Subcase 3. $G=SU(4)\times T$ .
Subcase 4. $G=Spin(5)\times SU(2)\times SU(2)$

By similar arguments it is shown that these cases are all impossible. Note that it is
sufficient to consider only the above 4 cases because $\mathcal{I}^{5}$ can not act almost effectively on $M$.

Case 2. $\dim G=15$

There are two well known 6-dimensional homogeneous spaces $SO(6)/U(3)=F_{3}$ and
$SU(4)/U(3)=CP_{3}$ . It is shown by the similar arguments that there is no other pair $(G$,
$M)$ with the required properties.

Case 3. $\dim G=14$ /

It is shown in [6] that there is no 14-dimensional group acting on 6-dimensional mani-
fold transitively.

Case 4. $\dim G=13$

Subcase 1. $G=Spin(5)\times SU(2)$

Let $p_{2}$ ; $G\rightarrow SU(2)$ be the projection. Clearly $\dim H_{1}\geqq 4$, where $H_{1}=H\cap Spin(5)$ .
First we assume that $\dim H_{1}=4$ . Since $H_{1}$ is of rank 2, $H_{1}$ is locally isomophic to Spin$(3)$

$\times T$, so that $M=Spin(5)/Spin(3)\times T=Q_{3}$($=complex$ quadric). Hence it follows from
lemma 8 that $SU(2)$ acts almost freely on $M$, so that there is a fibration $SU(2)/N\rightarrow M$

$\rightarrow M/(SU(2)/N)$ , where $N$ denotes the ineffective kernel. Thus it is easily shown that
$M/(SU(2)/N)$ is a simply connected 3-dimensional manifold and hence it is homotopically



Simply connected 6-manifolds of large degree of symmetry 19

equivalent to $S^{3}$ . So, moreover, the homotopy exact sequence of the fibration implies that
$N=\{e\}$ , which contradicts to the fact $\pi_{2}(M)\neq 0$ . Therefore we have $\dim H_{1}=6$ and hence
$H_{1}\sim SO(4)andp_{2}(H)=T$. $Infactif\dim H_{1}=0,$ $then\dim p_{2}(H)=7$ . But this is impos-
sible because there is no 7-dimensional subgroup of $spm(5)$ . Consequently $H\sim SO(4)\times T$

and $M=S^{4}\times S^{2}$ . We can see in a similar way that there is no other $(G, M)$ with $\dim$

$G=13$ .

Case 5. $\dim G=12$

Subcase 1. $G=SU(2)\times SU(2)\times SU(2)\times SU(2)$

Denote $G=G_{1}\times G_{2}$, where $G_{1}\times G_{2}$, where $G_{1}$ and $G_{2}$ are the product $SU(2)\times SU(2)$ of
former, and latter two factors, respectively, and let $ p\iota$ : $ G\rightarrow G\iota$ be the projection for $i=1$ ,
2. First when $\dim H\cap G_{1}=0$ , it is easy to show that $M=S^{3}\times S^{3}$ . Secondly, if $\dim H_{1}$

$=1(H_{1}=H\cap G_{1})$ , we have $\dim M/G_{1}$ , which implies the restricted $G_{1}$-action on $M$ has a
principal orbit with codimension one, and $\dim N(H_{1}, G_{1})/H_{1}=3$ . So, by lemma 7, a 3-
dimmesional group acts on $M/G_{1}$ almost freely, but this contradicts to the fact $\dim M/G_{1}$

$=1$ . Thirdly, when $\dim H_{1}=2$ , it is clear that $N(H_{1}, G_{1})/H_{1}$ is a finite set, and hence $G_{2}$

acts on $M/G_{1}$ almost effectively. But this is a contradiction. Lastly, when $\dim H_{1}=3$ . we
have $\dim P_{2}(H)=3$ and hence the above arguments show that it is impossible that $\dim$

$H\cap G_{2}$ is smaller that 3. Hence $\dim H\cap G_{2}=3$ , so we have $H=(H\cap G_{1})\times(H\cap G_{2})$ . Con-
sequently we have $M=S^{3}\times S^{3}$ .

Subcase 2. $G=SU(3)\times SU(2)\times T$

Consider the restricted $SU(3)\times SU(3)/T\times T$. Lemma 6 leads a comtradiction.
Secondly assume $\dim H\cap SU(3)=3$ . Since $H\cap SU(3)$ is isomorphic to $SU(2)$ , it is not
difficult to see that the Euler characteristic of $M$ is non-zero and hence $G$ cannot act on $M$

almost effectively.

Case 6. $d\ddagger mG=11$ .
Subcase 1. $G=Spin(5)\times T$

$LetH_{1}=H\cap Spin(5)$ . $Itisclearthat\dim H_{1}=4,$ $andhencewehaveH_{1}=SO(3)\times T$,
which means that $M=Q_{3}$ . Since $T$ acts almost freely on $M$ there is a Pbration $T\rightarrow Q_{3}$

$Q_{3}/T$. It follows that $Q_{3}/T$ is a simply connected 5-manifold. From the Gysin’s exact
sequence of the fibration it follows immeadiately a contradiction.

Subcase 2. $G=SU(3)\times SU(2)$

It is clear that $\dim H_{1}(H_{1}=H\cap SU(3))=2$ . When $\dim H_{1}=2$ we have $H_{1}=T\times T$ and
hence $M=SU(3)/T\times T$. So $SU(2)$ acts on $M$ almost freely, but this is impossible. If $\dim$

$H_{1}=3$ , then $H_{1}=SU(2)$ and hence $M/SU(3)$ is one dimensional. On the other hand $SU(2)$



20 T. Kaga and T. Watabe

$/N(\dim N\leqq 1)$ acts almost effectively on $M/SU(3)$ , which is a conradiction. Lastly,
when $\dim H_{1}=4$, we have $H_{1}=N(SU(2), SU(3))$ and hence it follows from lemma 2 that
$M=CP_{2}\times M^{*}$ , where $M^{*}$ is a simply connected $2\cdot manifold$ . Consequently we have
$ M=CP_{2}\times\wp$ . By the same arguments we can show that all other cases are impossible.

Case 7. $\dim G=10$ . $M=Q_{3}$ .
$Ca8e8$ . $\dim G=9$ . $M=S^{2}\times S^{2}\times S^{2}$

Case 9. $\dim G=8$ $M=SU(3)/T\times T$

Case 10. $d{\rm Im} G=7$ There is no group acting transitively on 6-dimensional manifold.
We omit the proof of above results because they are not difficult.

3. The $6\cdot dimensional$ manifolds on which Spin(5) acts almost effectively

From now on, let $M$ be a simply connected 6-dimensional manifold. Suppose Spin $(5)$

act on $M$ almost effectively with $H$ as a principal isotropy subgroup. Since we may assume
that $\dim Spin(5)/H=5$ , we have $\dim H\geqq 5$ . By checking subgroups of Spin(5), we know
that $H$ is locally isomorphic to Spin(4) and hence the Spin(5)-action indunes an $SO(5)-$

action with $SO(4)$ as its connected principal isotropy subgroup. Suppose $H=N(SO(4)$ ,
$SO(5))$ . Since there is no linear action of $SO(5)$ with $N(SO(4), SO(5))$ as a principal
isotropy subgroup, we have the fixed point set $ F=F(SO(5), M)=\phi$ , and hence there is
a unique orbit type. Then we have $M=RP_{4}\times M^{*}$ , which contradicts to the fact $H_{1}(M;Z_{2})$

$=0$ . Thus we have prove that any principal isotropy subgroup is conjugate to $SO(4)$ .

$Ca8e1$ . $F=F(SO(5), M)=\phi$

We have a fibration $S^{4}\rightarrow M\rightarrow M/SO(5)=S^{2}$, so it follows from the fact $N(SO(4)$ ,
$SO(5))/SO(4)=Z_{2}$ that $M=S^{4}\times S^{2}$ .

Case 2. $F\neq\phi$

In this case $M^{*}=M/SO(5)$ is a simply connected 2-manifold with boundary. Since
$H^{i}$ $(G(x) : Q)=0$ for $0<i<4$, the Vietoris- Begle $s$ theorem implies that $H^{i}(M^{*}; Q)$ is
siomorphic to $H^{i}(M;Q)$ for $i\leqq 3$ , and hence $H^{i}(M;Q)=0$ for $0<i\leqq 3$ . Therefore we have
$M=S^{6}$.

4. The 6-dimensional manifold8 on which SU(3) acts almost effectively

Suppose $SU(3)$ act on $M$ with $H$ as a principal isotropy subgroup. We may assume
$\dim SU(3)/H\leqq 5$ .

$Ca8e1$ . $\dim H=4$

We may assume $H=N(SU(2), SU(3))$ . Sinace $H$ is maximal subgroup of $SU(3)$
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possible isotropy subgroups are only $H$ and $SU(3)$ . If $ F(SU(3), M)=\phi$ , it follows from
lemma 2 that $M=SU(3)/H\times M/SU(3)=CP_{2}\times S^{2}$ . If $ F(SU(3), M)\neq\phi$, since there are
presicely two orbits types $(H)$ and $SU(3),$ $SU(3)/H$ must be a sphere, which is impossible.

Case 2. $\dim H=3$

It follows from lemma 5 and the remark following it, that $M^{*}=M/SU(3)$ is homeomor
phic to $[0,1]$ , there are non-principal isotropy subgroups $K$ and $L$ such that $M$ is the union
of the mapping cylinders $M_{K}$ and $M_{L}$ of mappings $SU(3)/H\rightarrow SU(3)/K$ and $SU(3)/H$

$\rightarrow SU(3)/L$ respectively. It also follows that $K$ and $L$ are singular isotropy subgroups.

Subcase l. $\dim K=4and\dim L=8$ . $ItiseasytoshowthatMisCP_{3}$.
$Subca8e2$ . $\dim K=d{\rm Im} L=8$ . It is clear that $M$ is $S^{6}$ .
Subcase3. $d{\rm Im} K=\dim L=4$ . It is not difficult to see thatM is $(CP_{3})\#(\pm CP_{3})$ .
For the degree of symmetry of $(CP_{3})\#(\pm CP_{3})$ , we have the following
PROPOSITION. $N(CP_{i\backslash })\#(\pm CP_{3}))=9$ .
PROOF. We shall prove the proposition only for $M=CP_{3}\# CP_{3}$ . Since the Euler

characteristic of $M$ is 6, lemma 6 implies that there is no compact connected Lie group
with $rank\geqq 4$ acting almost effectively on $M$. Assume $N(M)\geqq 9$ , in other words, there is
a group $G$ acting almost effectively on $M$ with $\dim G\geqq 9$ and rank $G\leqq 3$ . Since SO(5)

and $SU(2)\times SU(2)\times SU(2)$ cannot act on $M$ almost effectively (see section 5), $SU(3)\times T$

is only one possible one. It is easy to see that $N(SU(3), SU(4))$ acts on $M$ almost effec-
tively. This shows that $N(M)=9$ . Q.E.D.

5. The 6-dimensional manifolds on which $SU(2)\times SU(2)$ or $SU(2)\times SU(2)\times SU(2)$

acts almost effectively

Suppose $G=SU(2)\times SU(2)$ acts on $M$ with $H$ as a principal isotropy subgroup. Then
it is shown that $\dim H\leqq 3$ . Assume $\dim H\geqq 4$ . Put $H^{0}=H_{1}\times H_{2}$, it follows from $\dim$

$H\geqq 4$ and rank $H=2$ that at least one of the $H_{1}’ s$ must be $Gi=SU(2)$ , which contradicts to
almost effectivity. Hence $\dim H\leqq 3$ .

Case A. $\dim H=3$ .
It is easy to show that $G$ acts on $G/H^{0}$ almost effectively. Clearly $G/H^{0}$ is a simply

connected 3-dimensional manifold and hence it is a 3-dimensional homotopy sphere. So it
is well known that $G/N$ is just $SO(4)$ where $N$ is the ineffective kernel of the G-action on
$G/H^{0}$ .

Thus we need only consider the SO (4)-action on $M$ with $H$ as a principal isotropy
subgroup, $\dim H=3$ . The inclusion $H^{0}=SO(3)\rightarrow SO(4)$ is a faithful 4-dimensional real
respresentation of $SO(3)$ . But such a respresentation is only $\rho\oplus\theta$ so, that $N(SO(3)$ ,
$SO(4))/SO(3)=Z_{2}$ . So our action has no exceptional orbit.
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If there is no singular orbit, the $SO(4)$ -action has only one orbit $(H)$ and hence there
is a fibration $SO(4)/H\rightarrow M\rightarrow M^{*}$ . Hence we have $M=S^{3}\times S^{3}$ .

If there are singular orbits, the SO (4)-action has $(SO(3))$ and $SO(4)$ as orbit types
and the orbit space $M^{*}$ is a simply connected 3-dimensional manifold with boundary $bM^{*}$

$=M^{G}$ . From consideration of a local representation at a fixed point it follows that $\dim$

$M^{G}=2$ . Moreover, since there is a cross section for the map $M-M^{G}\rightarrow M^{*}-M^{G}$ (lemma

2), $wehaveacrosssectionfortheorbitmapM\rightarrow M^{G}([2], 1.3.2))$ . On the other hand
the standard $SO(4)$ -action on $S^{6}$ has (SO (3)) and $SO(4)$ as orbit types and the orbit space
$S^{6}/SO(4)=D^{3}$ . Consequently it follows from lemma 4 that $M$ is homeomorphic to $S^{6}$, and
hence $M$ is diffeomorphic to $S^{6}$ .

Case B. $d{\rm Im} H=2$ .
We may put $H^{0}=\tau\times T$. Since the principal orbit is of codimension two, it is known

([2], IV 8. 6) that if there are singular orbits, there is no exceptional orbit and $M^{*}$ is a
2-disk with boundary $bM^{*}=B^{*}=B/G$ where $B$ is the union of all singular orbits.

First we consider the case that our action has no singular orbit. Since the action has
uniform dimensional orbit, it follow from lemma 2 that $M$ is homeomorphic to $S^{2}\times S^{2}\times S^{2}$,
Thus $M$ is diffeomorphic to $S^{2}\times S^{2}\times S^{2}$.

From now on, we assume that the action has singular orbits. Let $G_{x}$ be a singular
isotropy subgroup. Because of rank $G_{x}=2$, we can show that $\dim G_{x}$ is larger than 3, that
is, $G_{x}$ is either of the form $G_{1}\times N$ or $N\times G_{2}$ where $N$ is possitive dimensional. Let $K$ be
any singular isotropy subgroup. Then there is a fibration $G/K\rightarrow B_{(K)^{*}}$ where $B_{(K)}$

$=\{x\epsilon B|(G_{x})=(K)\}$ and $B_{(K)^{*}}=B_{(K)}/G$, so that we have $\dim B_{(K)}\leqq 3$ since $\dim G/K\leqq 2$

and $\dim B_{(K)}^{*}\leqq 1$ . There we have $\dim B\leqq 3$ and hence $\pi_{1}(M-B)=0$ . From considera-
tion of the fibration $G/H\rightarrow M-B\rightarrow M^{*}-B^{*}$ , it follows that $\pi_{1}(G/H)=0$ and hence $H$

is connected i.e. $H=\tau\times T$. On the other hand, the singular isotropy subgroups are either
of the form $G_{1}\times N$ or $N\times G_{2}$ where $\dim N=1$ and $N/T$ is contained in $Z_{2}$ . Since the
restricted Gi-action $(i=1,2)$ has no special exceptional orbit ([2], IV. 12), $N/T=\{e\}$, i.e.
$N=T$. Thus it has shown that the possible orbit types are $(T\times T)=(H),$ $(G_{1}\times T)=(K)$ ,
$(T\times G_{2})=(L)$ and $c_{1}\times G_{2}=G$.

Consequently there are possible five cases as follows;
i) $(H)$ and $(K)$ , or $(H)$ and $(L)$ , ii) $(H),$ $(K)$ and $G$, or $(H),$ $(L)$ and $G$,
iii) $(H),$ $(K)$ and $(L)$ , iv) $(H)$ and $G$

v) $(H),$ $(K),$ $(L)$ and $G$.
Subcase. i) The action has (H) and (K) $a8$ orbit types

Since the restricted $G_{2}$-action on $M$ has unique orbit type $(T)$ , it follows from lemma
2 that $M$ is homeomorphic to $S^{2}\times M/G^{2}$ . Moreover the $G_{1}$-action on $M/G_{2}$ has $(T)$ and $G_{1}$

as orbit types, and hence it follows from the following lemma that $M/G_{2}$ is homeomerphic
to $S^{4}$ . Thus $M$ is diffeomorphic to $S^{2}\times S^{4}$ .



Simply connected 6-manifolds of large degree of symmetry 23

LEMM. Let $N$ be a simply connected, closed 4-dimensional manifold. If $SU(2)$ acts
almost effectively on $N$ with a principal isotropy subgmup $T$ and the non-empty fixed point set,
then $N$ is homeomorphic to $S^{4}$ .

PROOF. There is a cross section for the orbit map $N\rightarrow N^{*}=N/SU(2)$ and $N^{*}$ is
2-disk with boundary $F(SU(2), N)$ . On the other hand, let $SU(2)$ act on $S^{4}$ regarding
$SU(2)$ as the subgroup $SO(3)$ of $SO(5)$ . Then the orbit space is 2-disk whose boundary is
the fixed point set. Thus it follows from the remark following lemma 4 that $N$ is homeo-
morphic to $S^{4}$ .

Subcase ii). The action has (H), (K) and $G$ as orbit types.

Put $ F=F(G, M)\neq\phi$ . It is known ([2], IV. 3. 8) that $\dim F\leqq 1$ . If $\dim F=1$ , then
$F=bM^{*}$ and honce $ B_{(K)}=\phi$ which contradicts to the assumption. Thus $F$ is a finite set.
Let $V$ be a slice at $x\epsilon F$ in $M$ and $S$ unit sphere in $V$. Since the restricted $G\cdot action$ on $S$ has
a principal isotropy subgroup $H$ , it follows from lemma 5 that $S^{5}/G$ is homeomorphic to $[0$,
1], $G/K$ is coresponding to $\{0\}$ and {1}, and $S^{5}$ is homeomorphic to the union of two copies
of the mapping cylinder of $G/H=S^{2}\times S^{2}\rightarrow G/K=S^{2}$ . But we can easily deduce a con-
tradiction.

Subcase iii). The action has (H), (K) and $G$ as orbit tyces.

In this case $bM^{*}=M_{(K)^{*U}}M_{(L)^{*}}$ . But $M^{*}$ is connected and hance $M_{(K)^{*}}\cap M_{(L)^{*}}$ is not
empty which is impossible.

Subcase iv). The action has (H) and $G$ as orbit types.

Since there are only two orbits around $x\in F$, it is shown in the remark following
lemma 5 that $G/H$ must be sphere, this is impossible.

Subcase v). The action has (H), (K), (L) and $G$ as orbit types.

First of all we show that there is a cross section for the orbit map $M\rightarrow M^{*}=M/G$.
In fact, consider the resricted $G_{1}$-action on $M$, it is easily shown from $\dim M^{G_{1}}\leqq 3$ that
$M-M^{G_{1}}$ and hence $M_{L}^{*}-M^{G_{1}}$ is simply connected where $M_{1^{*}}=M_{1}/G_{1}$ . Since $M-M^{G_{1}}$

$\rightarrow M_{1}^{*}-M^{G_{1}}$ is a fiber bundle with fibre $G_{1}/H_{1}=S^{2}$ and the structure group $\Gamma_{H_{1}}=N(T$,
$SU(2))/T=Z_{2}$ where $H_{1}=H\cap G_{1}=T$, it follows that the associated principal $N(T, SU(2))$

$/T=Z_{2}$ where $H_{1}=H\cap G_{1}=T$, the associated principal bundle $\Gamma_{H_{1}}\rightarrow M^{H_{1}}-M^{G_{1}}\rightarrow M_{1^{*}}$

$-M^{G_{1}}$ is trivial, and hence there is a cross section $C^{\prime}\subset M^{H_{1}}-M^{G_{1}}$ . Hence it follows
from [2] (1. 3. 2) that there is a cross section for the orbit map $M\rightarrow M^{*}$ . Next consider
the $G_{2}$-action on $M_{1^{*}}$ , then similar arguments show that the orbit map $ M_{1^{*}}\rightarrow M_{1^{*}}\rightarrow$

$M_{1^{*}}/G_{2}=M^{*}$ has also a cross section. Composing these sections, we have the required
one.
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The same arguments as in subcase ii) show that $M^{G}$ is a finite set. Put $M^{G}=\{x_{1^{*}},$ $x_{2^{*}}$ ,
$x_{r^{*}}\}$ . Decompose $M_{(K)^{*}}$ and $M_{(L)^{*}}$ into connected components; $M_{(K)^{*}}=\bigcup_{i-1}^{s}A$ ; and $M_{(L)^{*}}$

$=\bigcup_{i-1}^{t}Bi$ . We first claim that $r$ is even. It is clear that $\overline{A}i\cap\overline{A_{j}}(i\neq j)\overline{A};\cap\overline{B_{j}}$ and $\overline{B_{i}}\cap\overline{B_{j}}(\neq j)$

are in $M^{G}$ . To prove our assertion it is sufficient to show that for any two components
$ A\iota$ and $Aj$ (or $B$; and $Bj$) of $M_{(K)^{*}}$ (or $M_{(L)^{*}}$) $\overline{A}\overline{A}$ (or $\overline{B}i^{\cap\overline{B}}j$) is empty. Suppose the
contrary, i.e. $\overline{A}i\cap\overline{A}_{j}(i\neq j)=\{Xk^{*}\}$ . Let $V$ be a slice at $Xk$ in $M$ and $S$ a unit sphere in $V$.
Then $G$ acts on $V$, and henoe on $S$ with a principal isotropy subgroup $H$ and only one
singular orbit $(K)$ . The arguments similar to subcase ii) show that this is impossible.
Put $r=2k$ .

Fig. 1. Fig. 2.

$x_{1}^{*}$

Fig. 3. Fig. 4.

(a) The case $\chi(M^{G})=2$ .
In this case, $M^{*}$ is illustrated as Fig. 1. Let $W_{i}^{*}$ denote the subset as in Fig. 1, and $Wi$

the inverse image of $W_{i}^{*}$ by the orbit map. $We$ define a G-action on $D^{6}$ by $(g_{1}, g_{2})(x, y)$

$=(g_{1}x, g_{2}y)$ for $(g_{1}, g_{2})G$ and $(x, y)\in D^{3}\times D^{3}\approx D^{6}$ where $gi$ acts on $D^{3}$ as an element of
$SO(3)$ . Then the orbit space $D^{6}/G$ is homeomorphic to $W_{i}^{*}$ by a homeomorphism preserv-
ing orbit structures. Then it follows from lemma 4 that $Wi$ is homeomorphic to $D^{6}$ and
hence $M$ is homeomorphic to $S^{6}$. Thus $M$ si diffeomorphic to $S^{6}$ .
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(b) The case $\chi(M^{G})=4$ .
In this case, $M^{*}$ is illustrated as Fig. 2. Let $W_{i}^{*}$ and $Wi$ be as above. We define a G-

action on $S^{3}\times D^{3}$ by $(g_{1}, g_{2}y)(x, y)=(g_{1}x, g_{2}y)$ for $(g_{1}, g_{2})\in G$ and $(x, y)\in S^{3}\times D^{3}$ where
$g_{1}$ acts on $S^{3}$ as an element of $SO(4)$ and $g_{2}$ acts on $D^{3}as$ an element of $SO(3)$ . Then the
orbit space $S^{3}\times D^{3}/G$ is homeomorphic to $W_{i}^{*}$ by a homeomorphism preserving the orbit
structures. The same arguments as above show that $M$ is diffeomorphic to $S^{3}\times S^{3}$ .

(c) The case $(\chi)M^{G}=6$ .
In this case, $M^{*}$ is illustrated as Fig. 3. From (a) (b) it is easily shown that $Wi$ is

homeomorphic to $S^{3}\times S^{3}$ -Int $D^{6}$ and hence $M$ is homeomorphic to $S^{3}\times S^{3}\# S^{3}\times S^{3}$ . Thus
$M$ is diffeomorphic to $S^{3}\times S^{3}\# S^{3}\times S^{3}$ . We remark that in this case $SU(2)\times SU(2)$ acts on
$M$ in a standard way.

(d) The case $\chi(M^{G})=2k(k\geqq 4)$ .
In this case, $M^{*}$ is illustrated as Fig. 4. It is easily shown as above that $W_{1}$ and $Wk-1$

are homeomorphic to $S^{3}\times S^{3}$-Int $D^{6}$, and $W_{1}$ is $home$omorphic to $S^{3}\times S^{3}$ -Int $D^{6}$-Int $D^{6}$

for $i=2,$ $\cdots k-2$ . . Hence $M$ is diffeomorfic to the connected sum of $(k-1)$ copies of $S^{3}\times S^{3}$ .

Case C. $\dim H=1$ .

First of all we prove the following;
PROPOSITION. $H_{*}(G/H;Q)=H_{*}(S^{2}\times S^{3};Q)$ .
PROOF. Let $H^{0}$ be the identity component of $H$ and $S$ a maximal torus of $G$ containing

$H^{0}=T^{1}$ . Consider the $fibrationS/H^{0}=T^{1}\rightarrow G/H^{0}\rightarrow G/S$ . It follows from the fact the
second Stiefel-Whitney class $w_{2}(G/S)$ of $G/S$ is zero, that $w_{2}(G/H^{0})=0$ . Since $G/H^{0}$ is a
simply connected 5-manifold with the second Betti number $b_{2}(G/H^{0})=1,$ $G/H^{0}$ is diffeo-
morphic to $S^{2}\times S^{3}$ (see [8]). Since $G/H^{0}$ is a finite covering space of $G/H$, we have
$H_{*}(G/H;Q)=H_{*}(S^{2}\times S^{3};Q)$ . Q.ED.

For the case in which $\dim H=1$ , it follows from lemma 5 and the remark following it
that there are two types $(K)$ and $(L)$ of singular isotropy subgroups and $M$ is the union of
mapping cylinders $M_{K}$ and $M_{L}$ .

We claim that $\dim K$ and $\dim L$ are $smal1_{\backslash }er$ than 5. In fact, suppose $\dim K\geqq 5$ .
Then it is easy to see that $K=G$ . Choose a fixed point $x$ . Sinc$eM$ is the union of map-
ping cylinders $M_{K}$ and $M_{L}$ , any small neighborhood of $x$ is $home$omorphic to a cone over
$G/H$, which contradicts to the fact $M$ is a manifold at $x$ .

Consequently there are possible six cases as follows;
1) $\dim K=\dim L=2$ , 2) $\dim K=3,$ $\dim L=2$ , 3) $\dim K=\dim L=3$ ,
4) $\dim K=4,$ $\dim L=2$ , 5) $\dim K=4,$ $\dim L=3$ , 6) $\dim K=\dim L=4$ .

Subcase 1. $d{\rm Im} K=d\ddagger mL=2$ .

Since $K^{0}=T\times T\subseteqq K\subseteqq N(T, G_{1})\times N(T, G_{2})$ , we have $K/K^{0}\subseteqq Z_{2}\oplus Z_{2}$ . Similarly we
have $L/L^{0}\subseteqq Z_{2}\oplus Z_{2}$ . Without loss of generality we may assume $\dim G_{1}\cap H=0$ . It is not
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difficult to see that the induced action of $G_{2}$ on $M/G_{1}$ has uniform $\dim e$nsional orbits and
every isotropy subgroup has maximal rank. Hence it follows from lemma 2 that $G_{2}$ acts
on $M/G_{1}$ with unique orbit $G_{2}/T$. This means that $K/K^{0}$ is either $Z_{2}\oplus 0$ or $0$ . Similarly
$L/L^{0}$ is also either $Z_{2}\oplus 0$ or $0$ . Consequently only the following three case$s$ are possible;
i) $K=L=N(T, G_{1})\times T$, ii) $K=N(T, G_{1})\times T,$ $L=T\times T$, iii) $K=L=T\times T$.

In subcases i) and ii), the restricted $G_{1}$-action on $M$ has only two types of isotropy
subgroup$s,$ $(G_{1}\cap H)$ and $(N(T))$ . This contradicts to Corollary to lemma 1.

Subcase iii). From the Gysin’s sequence of the fibre bundle $S^{1}\rightarrow G/H\rightarrow G/L$ it
follows easily that $H$ is connected. Henoe we have $G/H=S^{2}\times S^{3}$ . By considering th$e$ fibre
bundle $G_{1}/H\cap G_{1}\rightarrow G/H\rightarrow G_{2}/P_{2}(H)$ , we have $\pi_{1}(G_{1}/H\cap G_{1})=0$ and Henoe $H\cap G_{1}=\{e\}$ .
Thus it is easily shown that the above fibre bundle is $(S^{3}\times S^{2}, S^{2}, S^{3}, pr_{1})$ . From the
following commutative diagram of fiberings;

$K_{1}/H\cap K_{1}=S^{1}\rightarrow K/H=S^{1}$ $\rightarrow K_{2}/P_{2}(H)\cap K_{2}=a$ point

$ G_{1}/H\cap G_{1}=S^{3}\downarrow\rightarrow G/H=S^{3}\times S^{2}\downarrow\rightarrow G_{2}/P_{2}(H)\downarrow$

$=S^{2}$

$\downarrow Hopfmap$ $\downarrow$ $\downarrow$

$G_{1}/K\cap G_{1}=S^{2}\rightarrow G/K=S^{2}\times S^{2}\rightarrow G_{2}/P_{2}(K)$ $=S^{2}$

it follows that the projection of the fibre bundle $K/H\rightarrow G/H\rightarrow G/K$ is $h\times id$ where
$h:S^{3}\rightarrow S^{2}$ is the Hopf map, so that the mapping cylinder $M_{K}$ is ( $CP_{2}$-Int $D^{4}$) $\times S^{2}$ .
Similarly $M_{L}$ is also ( $CP_{2}$–Int $D_{4}$) $\times S_{2}$ . Consequently it follows from lemma 5 that $M$ is
homeomorphic to $(CP_{2}\# CP_{2})\times S^{2}$ . Thus $M$ is diffeomorphic to $(CP_{2}\# CP_{2})\times S^{2}$ .

Subcase 2. $d{\rm Im} K=3$ and $\dim L=2$ .
We may assume $\dim p_{2}(H)=1$ . Clearly $p_{2}(K)=SU(2)=G_{2}$ . It is easy to show that

$M/G_{1}$ is a simply connected 3-dimensional manifold and the induced action of $G_{2}$ on $M/G_{1}$

has $(p_{2}(H)),$ ($(p_{2}(L))$ and $G_{2}$ as orbit types. From $\dim(N/G)^{G_{2}}=0$ ([2], IV 3. 8) it
follows that $M/G_{1}-(M/G_{1})^{G_{2}}$ is simply connected. Since $G_{2}$ acts on $M/G_{1}-(M/G_{1})^{G_{2}}$

with uniform dimensional orbits, it follow from lemma 2 that $p_{2}(H)=p_{2}(L)=T$ and hence
$L$ is either $N(T, SU(2))\times T$ or $T\times T$.

Th$ere$stricted $G_{1}$-action on $M$ has $(H\cap G_{1}),$ $(K^{1\urcorner}G_{1})$ and $(L\cap G_{1})$ as orbit types. But
from the relations $H/H\cap G_{1}=p_{2}(H)=T,$ $K/K\cap G_{1}=p_{2}(H)=T,$ $K/K\cap G_{1}=p_{2}(K)=S^{3}$ and
$K/H=S^{2}([2])$ , we have $\#\pi_{0}(K\cap G_{1})\leqq\#\pi_{0}(H\cap G_{1})$ and hence $H\cap G_{1}=K\cap G_{1}$ .

So the arguments similar to in subcase 1 show that the case $L-N(T, SU(2))\times T$ is
impossible. Hence $L=T\times T$.

Also the same arguments as subcase 1 show that $H$ is connected, $H\cap G_{1}=K\cap G_{1}=\{e\}$

and the mapping cylinder $M_{L}$ is ( $CP_{2}$–Int $D^{4}$) $\times S^{2}$ . As to $K$, from the following commuta-
tive diagram;
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$K/L=S^{2}$ $\simeq K\cap G_{1}/H\cap G_{1}\times P_{2}(K)/P_{2}(H)\simeq\{*\}\times S^{2}$

$ G/H=S^{3}\times S^{2}\simeq\downarrow$

$G_{1}/H\cap G_{1}\times G_{2}/P_{2}(H)$

$\simeq S^{3}\times S^{2}\downarrow\{*\}\times id$

$ G/K=S^{3}\downarrow$

$\simeq$ $G_{1}/K\cap G_{1}\times G_{2}/P_{2}(K)$

$\simeq 1_{S^{3}\times\{*\}}^{id\times c}$

it follows that the projection of the fibration $K/H\rightarrow G/H\rightarrow G/K$ is $id\times c$ where $c$ is a
constant map, and henoe the mapping cylinder $M_{K}$ is $S^{3}\times D^{3}$ . Consequently $M=((CP_{2}$

-Int $D^{4}$) $\times S^{2}$) $US^{3}\times S^{2}S^{3}\times D^{3}$ . This manifold is clearly obtained from $CP_{2}\times S^{2}$ by surgery
based on the homotopy class of the embedding $S^{2}\rightarrow\{*\}\times S_{2}\subset CP_{2}\times S_{2}$ .

Subcase 3. $d{\rm Im} K=d{\rm Im} L=3$ .

Consider the spectral sequenoe of the fibration $K/K^{0}\rightarrow G/K^{0}\rightarrow G/K$. Then we
$H_{2}(G/K;Q)$ because of $G/K_{0}=S_{3}$ . Similarly $H_{2}(G/L;Q)=0$ . Therefore the Mayer $\cdot$

Vietoris’s exact sequenoe implies that $H_{2}(M;Q)=H_{4}(M;Q)=0$ and $H_{3}(M;Q)=2Q$, and
henoe $M$ is $home$omorphic to $S^{3}\times S^{3}$ . Thus $M$ is diffeomorphic to $S^{3}\times S^{3}([8]$ .

Subcase 4. $d{\rm Im} K=4$ and $\dim L=2$ .

We may assume that $K=G_{1}\times K_{2}$ where $\dim K_{2}=1$ and $L^{0}=T\times T$.
(a) The case $\dim p_{2}(H)=1$ .

Sinc$eM/G_{1}$ is a simply connented $3-\dim e$nsional manifold and $G_{2}$ acts on $M/G_{1}$ with
uniform $\dim e$nsional orbits, it follows from a $re$sult in [3] that the isotropy subgroups are
connected, i.e. $K_{2}=T$. Also we can show that $H$ is connected because there is a fibration
$K/H\rightarrow G/H\rightarrow G/K$ where $K/H=S^{3}$ and $G/K=S^{2}$ . Similarly $L$ is also connected, i.e.
$L=T\times T$.

Next we show $\dim H\cap G_{2}=0$ . Then the restricted $G_{2}$-action on $M/G$ has two orbit
types $(Z_{m}),$ $(T)$ , and the $G_{1}$-action on $M/G_{2}$ has $(T)$ and $G$ as orbit types. From $(M/G_{2})$

$/G_{1}=MG=[0,1]$ and lemma 3 it follows that there is a cross section for $ M/G_{2}\rightarrow$

$(M/G_{2})/G_{1}$ . Sinoe $SU(2)$ acts naturally on $D^{3}$ wlth the principal orbit type $(T)$ and fixed
points, the orbit spaoe $D^{3}/SU(2)$ is $[0,1]$ , the remark following lemma 4 shows that $M/G_{2}$

is equiviarantly homeomorphic to $D^{3}$ where $bD^{3}=M_{(T)}*=M_{(T)}/G_{2}$ . Consequently we
have $M_{(T)}\approx S^{2}\times S^{2}$ sinoe there is a fibre bundle $SU(2)/T=S^{2}\rightarrow M_{(T)}\rightarrow M_{(T)}*=S^{2}$ with
the structure group $N(T, SU(2))/T=Z_{2}$ . On the other hand the Mayer-Vietoris’s
sequence shows that $H^{2}(M;Q)=H^{4}(M;Q)=2Q$ and $H^{3}(M;Q)=0$ . Moreover from the
fibration $G_{2}/Z_{m}\rightarrow M-M_{(T)}\rightarrow D^{3}-bD^{3}$ it follows that $H_{*}(M-M_{(T)}; Q)=H_{*}(G_{2}/Z_{n}; Q)$ .
Thus from consideration of the cohomology exact sequenoe of pair $(M, M_{(T)})$ we can easily
deduoe a contradiction.

Therefore we have $\dim H\cap G_{2}=1$ and henoe $H=\{e\}\times(H\cap G_{2})$ , so that $G/H=G_{1}\times G_{2}$

$/H\cap G_{2}=S^{3}\times S^{2}$ . Since it is easily shown that $M_{K}=D^{4}\times S^{2}$ and $M_{L}$ $=$ ( $CP_{2}$–Int $D^{4}$) $\times S^{2}$,

and hanoe $M$ is diffeomorphic to $CP_{2}\times S^{2}$ .
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(b) The case $\dim p_{2}(H)=0$ .
In this case $H\cap G_{1}$ is one dimensional and $H^{0}=(H\cap GJ)^{0}\times\{e\}$ . Sinoe $K=G_{1}\times T,$ $K/H$

is not $S^{3}$. which contradicts to the remark following lemma 6.

Suboase 5. $\dim K=4$ and $\dim L=3$ .

We may assume $K=G_{1}\times K_{2}$ where $\dim K_{2}=1$ . It is easily shown that $G/K$ is either
$RP_{2}$ or $S^{2}$ and $G/L$ is a rational homology 3-dimensional sphere. If $G/K=RP_{2}$, the Mayer-

Vietoris’s sequenoe implies that $M$ is a 6-dimensional 2-connected manifold and $\chi(M)=1$ .
which contradicts to the fact that $\chi(M)$ must be even because of $M=bW^{7}$ for some $W$

Thus $G/K=S^{2}$ . From the fibration $K/H=S^{3}\rightarrow G/H\rightarrow G/K$ it follows immediatel
that $H$ is connected and $G/H$ is homeomorphic to $S^{2}\times S^{3}$ .
(a) The case $\dim p_{2}(H)=1$ .

In this case we have $p_{2}(H)=T$ and henoe $H_{\cap}G_{1}=\{e\}$ . More it is easy to show that
$p_{2}(L)-G_{2}$ and $L\cap G_{1}=\{e\}$ . Thus the induced action of $G_{2}$ on $M/G_{1}$ has $(T)$ and $G_{2}$ as orbit
types. By similar arguments to in subcase 4 we can $re$gard $M/G_{1}$ as $D^{3}$, the $G_{2}$-action on.
$M/G_{1}=D_{3}$ as the sandard one and $M^{G_{1}}=S^{2}$ . Moreover there is a cross $se$ction for $ M\rightarrow$

$M/G_{1}$ because there is one for $M\rightarrow M/G$ by lemma 3. Consequently $M$ is diffeomorphic
to $S^{6}$ on which $SU(2)$ acts in the standard way.
(b) The case $\dim p_{2}(H)=0$ .

This is impossibe as (b) in subcase 4.

Subcase 6. $d{\rm Im} K=\dim L=4$ .
(a) The case $K=G_{1}\times K_{2}$ and $L=G_{1}\times L_{2}$ where $\dim K_{2}$ and $\dim L_{2}=1$ .

As above the case $\dim p_{2}(H)=0$ is shown to be impossible. So we have $\dim p_{2}(H)$

$=1$ . Moreover we may assume as subcase 5 that $K_{2}=L_{2}=T,$ $H$ is connected and $H\cap G_{1}$

$=\{e\}$ . Thus $G_{1}$ acts on $M$ with orbit types $(\{e\})$ and $G_{1}$ , and $G_{2}$ act$s$ on $M/G_{1}$ with unique
orbit type ( $ D\cdot$ Henoe it follows from lemma 5 that $M/G_{1}\rightarrow(M/G_{1})/G_{2}=[0,1]$ is a $S^{2_{-}}$

bundle with the structure group $Z_{2}$ , and consequently $M/G_{1}=S^{2}\times[0,1]$ and $M^{G_{1}}=S^{2}\times S^{2}$ .
Note that there is a cross section for the orbit map $M\rightarrow M/G_{1}$ .

We define a $SU$ (2)-action on $S^{2}\times S^{4}$ by $g(x, y)=(x, gy)$ for $g\in SU(2)$ and $(x, y)\in S^{2}$

$\times S^{4}$ where $gy$ is induced from the $SU$ (2)-action on $R^{5}$ defined by $\rho\oplus\theta$ . Then this action
has the same orbit spaoe and the same set of fixed points as our $G_{1}$-action on $M$. Conse-
quently $M$ is diffeomorphic to $S^{2}\times S^{4}$ .
(b) The case $K=G_{1}\times K_{2}andL=L_{1}\times G_{2}where\dim K_{2}=\dim L_{1}=1$ .

First assume $\dim p_{2}(H)=1$ . As above $K_{2}=T$. It is shown that $M/G_{1}$ is simply $con$.
nected and the induced $G_{2}$-action on $M/G_{1}$ has O-dimensional set of fixed points. Thus,
sinoe $G_{2}$ acts on the simply connected manifold $M/G_{1}-(M/G_{2})^{G_{2}}$ with uniform dimensional
orbitist follows from lemma 2 that $p_{2}(H)$ is connected and henoe $H$ is connected, i.e. $H$

$=\{e\}\times T$. Henoe $L/H$ is not $S^{3}$, which is a contradiction.
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The case $\dim p_{2}(2)=0$ is also impossible, because in this case $\dim p_{1}(H)=1$ .
(c) The case K$=K_{1}\times G_{2}andL=L_{1}\times G_{2}where\dim K_{1}=\dim L_{1}=i$ .

The same arguments as in (a) show that $M$ is diffeomorphic to $S^{4}\times S^{2}$ .
The remainder of this section will be devoted to studying $SU(2)\times SU(2)\times SU(2)-$

actions.
Suppose $G=SU(2)\times SU(2)$ acts on $M$ with $H$ as a principal isotropy subgroup. We

may assume $\dim H\geqq 4$ . Consider the $re$stricted $G_{1}\times G_{2}$-action on $M$ (denote by $G$; the i-th
facter of $G$). Sinoe we have already determined completely all $Ms$ when $\dim H\cap(G_{1}$

$\times G_{2})\geqq 2$ , we may assume $\dim H\cap(G_{1}\times G_{2})=1$ . So we need only consider the case $\dim$

$H=4$ , because of $p_{3}(H)=H/H\cap(G_{1}\times G_{2})$ .
Sinoe the G-action has a principal orbit of $co\dim e$nsion one, lemma 5 shows that it has

two non-principal orbi types $(K)$ and $(L)$ , and henoe the restricted $G_{1}\times G_{2}$-action on $M$ has
$(H\cap(G_{1}\times G_{2})),$ ($K\cap(G_{1}\times G_{2})$ and $(L\cap(G_{1}\times G_{2}))$ as orbit types. Moreover we need only
consider the case $\dim K\cap(G_{1}\times G_{2})$ is $e$ither 2 or 3 and so is $\dim L\cap(G_{1}\times G_{2})$ . Thus we
consider only the three cases as follows;

i) $\dim K=\dim L=5$ . ii) $\dim K=6and\dim L=5$ . iii) $\dim K=\dim L=6$ .
But among the isotropy subgroups of our action there is no 5-dimensional subgroup,

and henoe the cases i) and ii) are impossible. Assume $\dim K=5$ . Because of $K/H=S^{1}$ ,
we have rank $K>rankH=2$ . Put $K^{0}=K_{1}\times K_{2}\times K_{3}$ it follows from $K^{0}\cap(G_{1}\times G_{2})=\tau\times T$

that $K_{3}=SU(2)$ . From the fibration $K_{3}/H^{0}\cap K^{3}\rightarrow K^{0}/H^{0}=S^{1}\rightarrow p(K^{0})/p(H^{0})=S^{1}$,
where $p;G\rightarrow G_{1}\times G_{2}$ is th$e$ projection, we have $\dim K_{3}/H^{0}\cap K_{3}=0$ and henoe $H^{0}\cap K_{3}$

$=SU(2)$ . Thus $H\cap G_{3}=SU(2)$ which contradicts to almo$ste$ffectivity.

Consider the case iii). Then $\dim K\cap(G_{1}\times G_{2})=\dim L\cap(G_{1}\times G_{2})=3$ . So $M$ has
already determined to be $S^{3}\times S^{3}$ .

6. The 6-dimensional manifolds on which $G^{\prime}\times T^{r}$ acts almost effectively

Put $G=G^{\prime}\times T^{r}$ . Then we may assume $6\leqq\dim G\leqq 11$ .
The case $G$ is either of the form $SU(2)\times SU(2)\times SU(2)\times T^{f}(r\geqq 1)$ or $SU(2)\times SU(2)$

$\times P(r\geqq 2)$ , is impossible. In fact, consider the restricted $SU(2)\times SU(2)$ -action on $M$,
$\chi(M)$ is $e$asily shown to be positive. Because of rank $G\geqq 4$ , lemma 6 shows that the re-
stricted action of a maximal torus of $G$ on $M$ is not almost effective, this is a contradiction.
Similary the case $G=SU(3)\times T^{\gamma}(r\geqq 2)$ is impossible.

Case 1. $G=SU(2)\times SU(2)\times T$ .

We need only conside the subcases i) and ii) of the case $C$ in the $re$stricted $SU(2)$

$\times SU(2)$ -action on $M$. From the relations $\dim H\cap(G_{1}\times G_{2})=1,$ $\dim H\geqq 2$ and $H/H\cap(G_{1}$

$\times G_{2})p_{3}(H)(denote$ by $H$ a principal isotropy subgroup of G-action on $M$ has two non-
principal orbit types $(K)$ and $(L)wIth\dim K\geqq 3$ and $\dim L\geqq 3$ . Sinoe $\dim K\cap(G_{1}\times G_{2})$

is 2 or 3 in our situation we have $\dim K<5$ . Similarly $\dim L>5$ .
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If $\dim K=3$ , from consideration of the fibration $K/H^{0}\cap K\rightarrow K^{0}/H^{0}\rightarrow p(K^{0})/p(H^{0})$

where $p$ : $G_{1}\rightarrow G_{1}\times G_{2}$ is the projection, and $K^{0}/H^{0}=S^{1}$, we have $K_{3}=H^{0}\cap K_{3}$ which
contradicts to almost effectivity. Similarly $\dim L\neq 3$ .

In the case $\dim K=\dim L=4$ , we have $K/H=S^{2}$ and rank $L=2$, so that $\dim K\cap(G_{1}$

$\times G_{2})=\dim L\cap(G_{1}\times G_{2})=3$ . Henoe $M$ is diffeomorphic to $S^{3}\times S^{3}$ .

Case 2. $G=SU(2)\times T^{3}$ .
Suppose $G$ acts on $M$ with $H$ as a principal isotropy subgroup. Then $\dim H=1$ . In

fact, sinoe the restricted $T^{3}$-action is almost effective, we have $\dim H\cap T^{3}=0$ so that we
have $\dim H=\dim p_{1}(H)=1$ or 3 from $H/H\cap T^{3}=p_{1}(H)$ . If $\dim H=3,$ $p_{1}(H)=SU(2)$ .
This is impossible.

Subcase 1. The case $d\ddagger mH\cap SU(2)=0$ .

In this case it is known ([2] IV. 4. 7) that $M^{*}=M/SU(2)$ is a simply connected 3-
dimensional manifold with or without boundary. Moreover the ineffective kernel $N$ of
the induced action of $T^{3}$ on $M^{*}$ is of $\dim ension\leqq 1$ , sinoe $N$ is a subgroup of $N(H\cap SU(2)$ ;
$SU(2))/H\cap SU(2)$ . If $\dim N=0$, that is, $T^{3}$ acts on $M^{*}$ almost effectively, then $T^{3}$ is a
principal orbit and henoe $M^{*}$ must be $T^{3}$ which is impossible.

Thus $T^{2}=T^{3}/N$ acts effectively on $M^{*}$ and it follows lemma 5 that $M^{*}/T^{2}=[0,1]$ .
If $ bM^{*}\neq\phi$, then we have $bM^{*}=S^{1}\times S^{1}$ from $M^{*}/T^{2}=[0,1]$ , and henoe $M$ is homeo-

morphic to $S^{1}\times D^{2}$ which contradicts to simply connctedness of $M^{*}$ .
If $bM^{*}=\phi,$ $M^{*}$ must be homeomorphic to $S^{3}$ and the $re$stricted $SU(2)$ -action on $M$ has

neither singular nor exceptional orbit. So from applying the Vietoris-Begle’s theorem to
$M\rightarrow M^{*}$ , it follows that $H^{2}(M;Q)=0$ . Therefore, sinoe $\chi(M)=0$, it follows from a
result in [8] that $M$ is diffeomorphic to $S^{3}\times S^{3}$ .

Subcase 2. The case $\dim H\cap SU(2)=1$ .
In this case $H\cap SU(2)$ is either $T$ or $N(T;SU(2))$ . But it follows from corollary of

lemma 1 that the latter case is impossible.
So $H\cap SU(2)=T$. Henoe it follows from lemma 2 that $M$ is homeomorphic to $S^{2}\times M^{*}$

where $M^{*}$ is a simply connected 4-dimensional manifold with or without boundary. Then
the induced action of $T^{3}$ on $M^{*}$ is also almost effective, and the orbit spaoe $M^{*}/T^{3}$ is $[0,1]$ .
From this, we can show that, if $bM^{*}=\phi,$ $M^{*}$ is homeomorphic to either $S^{1}\times S^{1}\times S^{2}$ or $S^{1}$

$\times S^{3}$, and if $ bM^{*}\neq\phi$, then $bM^{*}$ is homeomorphic to $S^{1}\times S^{1}\times S^{1}$ and henoe $M^{*}$ is homeo-
morphic to $S^{1}\times S^{1}\times D^{2}$ . But they are not simply connected. So this case is also impossible.

REMARK. From this, it follows that all the cases $G=SU(2)\times T^{\gamma}(r\geqq 4)$ are impossible.
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7. Classification

Summing up the $re$sults in the $pre$oeding $se$ctions, we have the following table.
In this table $N(M)$ denote the degree of symmetry of $M,$ $G$ compact connected. Lie

group which can act almost effectively on $M$ and $\varphi$ the action of $G$ on $M$.
$N(M)$ . $M$ $G$

$\varphi$

21 $S^{6}$ $SO(7)$ transitive

15 $F_{3}$ $SO(6)$ /’

$CP_{3}$ $SU(4)$ /’

13 $S^{4}\times S^{2}$ $SO(5)\times SU(2)$ //

12 $S^{3}\times S^{3}$ $SO(4)\times SO(4)$ //

11 $CP_{2}\times S^{2}$ $SU(3)\times SO(3)$ //

10 $Q_{3}$ $S0(5)$ /’

9 $S^{2}\times S^{2}\times S^{2}$ $SO(3)^{3}$ /’

$CP_{3}\# CP_{3}$ $SU(3)\times T$ union of $N(SU(3);SU(4))$ -action
on $CP_{3}$–Int $D^{6}$

$CP_{3}\#(-CP_{3})$

8 $SU(3)/T\times T$ $SU(3)$ transitive

6 $k(S^{3}\times S^{3})(k\geqq 2)$ $SU(2)\times SU(2)$ union of $SU(2)\times SU(2)$ -action on
$S^{3}\times S^{3}$ -Int $D^{6}$

$(CP_{2}\# CP_{2})\times S^{2}$ // union of $SU(2)\times SU(2)\cdot action$ on
( $CP_{2}$ -Int $D^{4}$) $\times S^{2}$

$S^{3}\times D^{3}S$( $CP_{2}$ -Int $D^{4}$) $\times S^{2}$ /’

Note that no manifold other than the above has the degree of $symmetry\leqq 5$ .
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