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Introduction

For a compact connected differentiable manifold M, we define the degree of symmetry,
denoted by N(M), the maximum of dimensions of compact connected Lie groups which
can act on M almost effectively.

In this note we shall determine simply connected 6-manifolds up to diffeomorphism
whose degree of symmetry is greater than 5. Let M be a simply connected closed 6-
manifold and G a compact connected Lie group acting almost effectively on M with dim
G=N(M). We may assume without loss of generality that G is a product Trx G; X --- X Gs,
where 77 is r-dimensional torus and Gi’s are simply connected simple Lie groups. In[6],
it is shown that if dim G=12, then G is transitive on M. In section 2, we shall determine
simply connected 6-dimensional homogeneous spaces. Assume N(M)=11. Then we
may consider only Spin(5) SU(3) and SU(2) among the Gi’s. It is shown that r<5. In
section 3, we shall consider Spin(5)-actions, SU(3)-actions in section 4, SU(2)x SU(2)-
actions and SU(2) x SU(2) x SU(2)-actions in section 5 and Gx T-actions in section 6. We
shall list the classification of simply conneted 6-manifolds by degree of symmetry in the
last section. ‘

Our initial aim was to find an exotic homotopy complex projective 3-space of large
degree of symmetry. Our results show the following

Let M be a homotopy complex projective 3-space. If N(M) is greater than 5, then M is
diffeomorphic to the standard complex projective 3-space.

‘ We can not determine degrees of symmetry of exotic homotopy complex projectivé
3-spaces.

1. Preliminaries

In this section we state some lemmas which are used in the sequel. Let (G, M) be a
topological action. We denote by Gx the isotropy subgroup of G at xeM, by G(x) the orbit
of x, M* = M/G the orbit space, by F(G, M) the fixed point set and by Mz the set of
points x of M whose isotropy subgroup is conjugate to H.
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Lemma 1 ([1], Chap. XIV 2.4).

Let (G, M) be a topological action. Assume that on M there is a smallest class (U) and
a biggesi' class (V) of isotropy subgroups and that an element of (U) is comtained in exactly
one element of (V). Then thereis a continuous map f : M——G/N(V, G) whose restriction to
My is the projection of the fibration (Mcy>y, G/N(V, &), F(V, Mw»)).

RemARrk. In paticular, when V contains N(T") (T is a maximal torus of G), we have
V= N(V) and hence we have My =G/N(V)x F(V, Mcyy). Thusthe above f has a cross
section and hence /* : H*(G/N(V); A)—H*(M; A) is injective for any abelian group A.

CoroOLLARY. Let M be a simply connected manifold on which SU(2)) acts almost effectively
with a maximal torus T (we may assume T is the standard maximal torus) as a connected
principal isotropy subgroup. Then there is no point x of M whose isotropy subgroup is con-
jugate to N (T, SU(2)).

Proor. Consider the case in which there is no fixed point. Assume SU(2): is con-
jugate to N= N(T, SU(2)). It is easy to see that N(N, SU(2)) =N. Hence it follows
from lemma 1 that there is a map f: M——>RP, such that f* : HI(RP,; Z)—>HI(M; Z,)
is injective, which is contradiction. Next consider the case in which there is at least one
fixed point. Let F be the fixed point set. From a result in [7], it follows that principal
isotropy subgroup is T.

Hence there are just two types of isotropy subgroups (T") and SU(2). It is known
that dim F=<dim X—3 and hence H1((X—F ; Z,) =0. By applying the same arguments
as above to the restricted action to X—F, we can show that there is no point whose isotropy
subgroup is conjugate to N. q.ed.

LemMma 2. ([3] Corollary)

Let (G, M) be a topological action with orbits of uniform dimension. If =i:(M) =0 and
G=x is of maximal rank for every xe M, then M = G/Hx M, where H is a connected principal
isotropy subgroup.

LemMma 3 ([2] Chap. 11 6.1) If M is a G-space, G a compact Lie group, such that M|G
is homeomorphic to I=1[0, 1], then there is a global cross section for the orbit map = : M—>
M/G. '

Lemma 4 ([2]Chap. 1, 3. 4). Let G be a compact group acting on spaces X and Y and
o : X/G—>X be a cross section for n : X—>X/G. Let ¢ : X/|G—>Y be a map such that
Go(x*) < Gp(x*) for all x* of X/G. Then there is a unique equivariant map ¢ : X—> Y such
that p=gq.

Remark. Let (G, X) and (G, Y) be two G-spaces such that their orbit spaces are
homemorphic to [0, 1]. If there is a homeomorphism 4 : X/G——>Y/G preserving the
orbit structures, then (G, X) and (G, Y) are equivariant homemorphic. For instance, if
(G, X) and (G, Y) have principal orbits of codimension one, then their isotropy subgroups
are (Hy), (Kx), (Lx) and (Hy), (Ky), (Ly) respectively and their orbit spaces are homeo-
morphic to [0, 1], where the orbit G/Hx, G/Kx and G/Lx coorespond to (0, 1), {0} and {1}
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respectively, and analogous to (G, Y) (see the following lemma).

LemMma 5 ([2] Chap. 1V, 8.2). Let (G, M) be a locally smooth action with principal
orbit G/H of codimension one. Then

a. If every orbit is pricipal, then M is a G|/ H-bundle over M* = St with structure group
N(H)/H.

b. Otherwise, there are two non-principal orbits of type G/K and G/L with K= H and
L=H. Moreover, K and L may be chosen so that M is the union of the mapping cylinders
Mg and My of the mappings G/H—>G/K and G/K and G| H—>G/L respectively.

Remark. From a result in [2], it follows that K/H and L/H are spheres or finite sets.
If M is simply connected, then K/H and L/H are of positive dimension. In fact, from van
Kampen’s theorem we have n;(M)= mi(Mg)*m(Mr)/#x1(G/H). Since my(M) =0, it fol-
lows easily that 7;(G/H)—>n;(G/L) are surjective and hence K/H and L/H are connected
and positive dimensional.

LemMma 6. Let (T*, M») be an effective action which is assumed to be differentiable. If
the Euler characteristic of M is positive, then k is not greater than n/2.

In fact, F(T*%, M) is not empty because of y(M) >0. Let ¢x be a local representation
at x¢ F(T, M), then ¢ is faithful, so that we have 2 < #n/2.

LemMma 7 ([4] Observ.). Let (G, M) be a differentiable action. and K an equivariant
differentiable transformation group. Suppose the Gx K- action on M is almost effective. Let
K, be the ineffective kernel of the induced K-action on M/G=X. Then GX Ky acts naturally on
the principal orbit G/ H and the action is almost effective. Moreover Ky is locally isormorphic
to N(H, G)/H.

Lemma 8([5] Lemma 1). Let G= G1X G, act almost effectively on M. If Gy acts transi-
tively on M, then G, acts almost freely on M.

2. Simply connected 6-dimensinal homogeneous spaces

Let M be a simply connected 6-dimensional manifold. In this section we intend to
determine all pair (G, M), where G is a compact connected Lie group acting almost effec-
tively and transitively. Without loss of generality we may assume that G is a product
Trx Gyx --- X Gs, where T¥ is r-dimensional torus and Gi’s are simply connected simple Lie
groups. It is well known that dim G < 21 and the eqality holds only in the case in which
G=S0(7) and M = S5. Moreover it is known that dim G= 16 when M # S6. In the sequel,
we denote by H a principal isotropy subgroup of G-action on M.

Casel. dim G=16
Subcase 1. G = T x Spin(6)

Lot p: G—>T be the projection. Since p(H)= H/HNSpin(6) and dim p(H) <1, we
have dim HNSpin (6) =10 or 9. Consider the restricted Spin(6)-action on M, and put H;
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=HNSpin(6). First consider the case in which dim H;=9. From the table in [9] it follows
that 9-dimensional subgroups of Spin(6) are only of type T'x A, and hence we have M
=S0(6)/U(3). Since the Euler characteristic of M is positive, G can not act on M almost
effectively.

Next, if dim H; = 10, it follows from lemma 5 that there are two non-principal isotropy
subgroups K and L and M =MgUM;, where Mg and M; are the mapping cylinders of the
maps Spin(6) /| H—>Spin(6) /K and Spin(6) H—>Spin(6) /L respectively. Since there is no
other subgroup of dimension 10 of Spin(6) than Spin(5), we have K= L = Spin(6) and
hence M = Ss.

Subcase 2. G =SU(3)xSU(3)

Let pi : G—>SU(3) be the projection to the i-th factor for i=1, 2. Since p, (H)=H
/SU(3)NH, we have dim (HnSU(3)) =2. From the consideration of subgroups of SU(3),
it follows that dim (HNSU(3))=2. Thus we have SU(3)/HnSU(3) = M, and hence
it follows from lemma 8 that SU(3) acts almost freely on M which is a contradiction.

Subcase 3. G=SUM4)XT.

Subcase 4. G = Spin(5)x SU(2) x SU(2)

By similar arguments it is shown that these cases are all impossible. Note that it is
sufficient to consider only the above 4 cases because 7% can not act almost effectively on M.

Case 2. dim G=15

There are two well known 6-dimensional homogeneous spaces SO(6)/U(3) = F3 and
SU(4)/U(3) =CP;. It is shown by the similar arguments that there is no other pair (G,
M) with the required properties.

Case 3. dim G=14 | s

It is shown in [6] that there is no 14-dimensional group acting on 6-dimensional mani-
fold transitively.

Case 4. dim G=13
Subcase 1. G=Spin (5)xSU(2)

Let p, : G—>SU(2) be the projection. Clearly dim H; =4, where H; = HOSpin(5).
First we assume that dim Hy;=4. Since H; is of rank 2, H; is locally isomophic to Spin(3)
x T, so that M = Spin(5)/Spin(3) x T = Q3(= complex quadric). Hence it follows from
lemma 8 that SU(2) acts almost freely on M, so that there is a fibration SU(2)/N— M
—>M/(SU(2)/N), where N denotes the ineffective kernel. Thus it is easily shown that
M/(SU(2)/N) is a simply connected 3-dimensional manifold and hence it is homotopically
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equivalent to S3. So, moreover, the homotopy exact sequence of the fibration implies that
N={e}, which contradicts to the fact 7,(M)+#0. Therefore we have dim H;=6 and hence
Hy~SO(4) and p,(H) =T. In fact if dim H; =0, then dim p,(H)="7. But this is impos-
sible because there is no 7-dimensional subgroup of Spn(5). Consequently H~SO(4)x T
and M = S4x S2. We can see in a similar way that there is no other (G, M) with dim

G=13.

Case 5. dim G=12
Subcase 1. G=SU(2)xSU(2)xSU2)xSU(2)

Denote G=G1x G, where G1X G, where G; and G, are the product SU(2) X SU(2) of
former, and latter two factors, respectively, and let p; : G—>G; be the projection for i =1,
2. First when dim HNG; =0, it is easy to show that M = S38x S3. Secondly, if dim H;
= 1(H; = HNG,), we have dim M/G,;, which implies the restricted G;-action on M hasa
principal orbit with codimension one, and dim N (H;, G)/H;=3. So, by lemma 7, a 3-
dimmesional group acts on M/G; almost freely, but this contradicts to the fact dim M/G,;
=1. Thirdly, when dim H; =2, it is clear that N(H;, G;)/H is a finite set, and hence G,
acts on M/G; almost effectively. But this is a contradiction. Lastly, when dim H;=3, we
have dim P,(H) =3 and hence the above arguments show that it is impossible that dim
HNG, is smaller that 3. Hence dim HNG, =3, so we have H =(HNGy) X (HNG,). Con-
sequently we have M = $3x S8,

Subcase 2. G =SUR)xSU@)XT

Consider the restricted SU(3)xSU(3)/TxT. Lemma 6 leads a comtradiction.
Secondly assume dim HNSU(3)=3. Since HNSU(3) is isomorphic to SU(2), it is not
difficult to see that the Euler characteristic of M is non-zero and hence G cannot act on M
almost effectively.

Case 6. dim G=11.

Subcase 1. G =Spin(5)X T

Let H; = HNSpin(5). It is clear that dim H; = 4, and hence we have H; = S0O(3)x T,
which means that M = Q3. Since T acts almost freely on M there is a fibration T—> Q3
Qs/T. It follows that Q3/T is a simply connected 5-manifold. From the Gysin’s exact
sequence of the fibration it follows immeadiately a contradiction.

Subcase 2. G=SU(3)xSU(2)

It is clear that dim Hy(H; = HNSU(3)) =2. When dim H; =2 we have H;=Tx T and
hence M =SU(3)/TxT. So SU(2) acts on M almost freely, but this is impossible. If dim
H,=3, then H;=SU(2) and hence M/SU(3) is one dimensional. On the other hand SU(2)
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/N(dim N<1) acts almost effectively on M/SU(3), which is a conradiction. Lastly,
when dim H; = 4, we have H; = N(SU(2), SU(3)) and hence it follows from lemma 2 that
M= CP,x M*, where M* is a simply connected 2-manifold. Consequently we have
M= CP,x S2. By the same arguments we can show that all other cases are impossible.

Case 7. dim G=10. M=Qs.
Case 8. dim G=9. M=82x 82x $2
Case 9. dim G=8 M=SU@)/TxT
Case 10. dim G=T7 There is no group acting transitively on 6-dimensional manifold.
We omit the proof of above results because they are not difficult.
3. The 6-dimensional manifolds on which Spin(5) acts almost effectively

From now on, let M be a simply connected 6-dimensional manifold. Suppose Spin(5)
act on M almost effectively with H as a principal isotropy subgroup. Since we may assume
that dim Spin(5)/H =15, we have dim H=5. By checking subgroups of Spin(5), we know
that H is locally isomorphic to Spin(4) and hence the Spin(5)-action indunes an SO(5)-
action with SO(4) as its connected principal isotropy subgroup. Suppose H= N(S0(4),
S0(5)). Since there is no linear action of SO(5) with N(SO(4), SO(5)) as a principal
isotropy subgroup, we have the fixed point set F'= F(S0O(5), M) = ¢, and hence there is
a unique orbit type. Then we have M=RP,x M*, which contradicts to the fact H;(M; Z,)
=0. Thus we have prove that any principal isotropy subgroup is conjugate to SO(4).

Casel. F=F(S0GB),M)=¢

We have a fibration S4¢—— M——>M /SO (5) =S2, so it follows from the fact N(SO(4),
S0(5))/SO(4) = Z, that M = S4x S2.

Case 2. F+#¢

In this case M* = M/SO(5) is a simply connected 2-manifold with boundary. Since
Hi(G(x) : Q) =0 for 0<i<4, the Vietoris- Begle s theorem implies that Hi (M*; Q) is
siomorphic to Hi(M; @) for i <3, and hence Hi(M; @) = 0 for 0<i < 3. Therefore we have
M =SS,

4. The 6-dimensional manifolds on which SU(3) acts almost effectively

Suppose SU(3) act on M with H as a principal isotropy subgroup. We may assume
dim SU (3)/H <.

Case 1. dim H=4

We may assume H= N(SU(2), SU(3)). Sinace H is maximal subgroup of SU(3)
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possible isotropy subgroups are only H and SU(3). If F(SU(3), M) = ¢, it follows from
lemma 2 that M =SU@B)/HXx M/SU(3) = CP,x S2. If F(SU(3), M)+¢, since there are
presicely two orbits types (H) and SU(3), SU(3)/H must be a sphere, which is impossible.

Case 2. dim H=3

It follows from lemma 5 and the remark following it, that M* = M/SU(3) is homeomor
phic to [0, 1], there are non-principal isotropy subgroups K and L such that M is the union
of the mapping cylinders Mg and M; of mappings SU(3)/H—>SU(3)/K and SU(3)/H
—SU(3)/L respectively. It also follows that K and L are singular isotropy subgroups.

Subcase 1. dim K=4 and dim L=8. It is easy to show that M is CPs.
Subcase 2. dim K=dim L=8. It is clear that M is S5,
Subcase 3. dim K=dim L=4. It is not difficult to see that M is (CP3) # (+CP3).

For the degree of symmetry of (CP3) § (4 CPs), we have the following

ProprosiTioN. N(CP:)$(+CP3)) =09.

Proor. We shall prove the proposition only for M= CP3$CPs;. Since the Euler
characteristic of M is 6, lemma 6 implies that there is no compact connected Lie group
with rank =4 acting almost effectively on M. Assume N(M) =9, in other words, there is
a group G acting almost effectively on M with dim G=9 and rank G<3. Since SO(5)
and SU(2) x SU(2) x SU(2) cannot act on M almost effectively (see section 5), SUB)X T
is only one possible one. It is easy to see that N(SU(3), SU(4)) acts on M almost effec-
tively. This shows that N(M) = 9. Q.E.D.

5. The 6-dimensional manifolds on which SU(2)xSU(2) or SU(2) x SU(2)xSU(2)
acts almost effectively

Suppose G=SU (2) X SU(2) acts on M with H as a principal isotropy subgroup. Then
it is shown that dim H<3. Assume dim H=4. Put H°= H;X Hy, it follows from dim
H =4 and rank H=2 that at least one of the H;’s must be G; = SU(2), which contradicts to
almost effectivity. Hence dim H < 3.

Case A. dim H=3.

It is easy to show that G acts on G/H?° almost effectively. Clearly G/H?9 is a simply
connected 3-dimensional manifold and hence it is a 3-dimensional homotopy sphere. So it
is well known that G/N is just SO(4) where N is the ineffective kernel of the G-action on
G/HYo.

Thus we need only consider the SO(4)-action on M with H as a principal isotropy
subgroup, dim H=3. The inclusion H°= SO(3)—>S0O(4) is a faithful 4-dimensional real
respresentation of SO(3). But such a respresentation is only p@® @ so, that N(SO(3),
S0(4))/SO(3) = Z,. So our action has no exceptional orbit.
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If there is no singular orbit, the SO(4)-action has only one orbit (H) and hence there
is a fibration SO(4)/H—> M—>M*. Hence we have M=S53x S3.

If there are singular orbits, the SO (4)-action has (SO(3)) and SO(4) as orbit types
and the orbit space M* is a simply connected 3-dimensional manifold with boundary bM*
= MG. From consideration of a local representation at a fixed point it follows that dim
MG =2. Moreover, since there is a cross section for the map M— MG— M*— MG (lemma
2), we have a cross section for the orbit map M—— MG ([2], 1. 3. 2)). On the other hand
the standard SO(4)-action on Sé has (SO(3)) and SO(4) as orbit types and the orbit space
S6/SO(4) = D3. Consequently it follows from lemma 4 that M is homeomorphic to S8, and
hence M is diffeomorphic to S6.

Case B. dim H=2.

We may put H°=TxT. Since the principal orbit is of codimension two, it is known
([2], IV 8. 6) that if there are singular orbits, there is no exceptional orbit and M* is a
2-disk with boundary bM* = B*=B/G where B is the union of all singular orbits.

First we consider the case that our action has no singular orbit. Since the action has
uniform dimensional orbit, it follow from lemma 2 that M is homeomorphic to S2x S2x S2,
Thus M is diffeomorphic to S2x S2x S2.

From now on, we assume that the action has singular orbits. Let Gx be a singular
isotropy subgroup. Because of rank Gx=2, we can show that dim Gx is larger than 3, that
is, Gx is either of the form G;Xx N or N x G, where N is possitive dimensional. Let K be
any singular isotropy subgroup. Then there is a fibration G/K—>Bxy* where Bx)
={xeB| (Gx) = (K)} and Bcx * = Bcx>/G, so that we have dim Bx)=< 3 since dim G/K<2
and dim B*g ry=1. There we have dim B<3 and hence =; (M—B) =0. From considera-
tion of the fibration G/ H—> M—B—> M *— B*, it follows that =; (G/H) = 0 and hence H
is connected i.e. H=TXT. On the other hand, the singular isotropy subgroups are either
of the form G;X N or NxX G, where dim N=1 and N/T is contained in Z,. Since the
restricted Gi-action (=1, 2) has no special exceptional orbit ([2], IV. 12), N/T={e}, ie.
N=T. Thusit has shown that the possible orbit types are (T'x T) = (H), (Gi1x T)=(K),
(Tx Gy =) and GiX Go=G.

Consequently there are possible five cases as follows;

i) (H)and (K),or (H) and (L), i) (H), (K) and G, or (H), (L) and G,

iid) (H), (K) and (L), iv) (H) and G

v) (H), (K), (L) and G.

Subcase. i) The action has (H) and (K) as orbit types

Since the restricted G,-action on M has unique orbit type (T), it follows from lemma
2 that M is homeomorphic to S2x M/G2. Moreover the G;-action on M/G, has (T") and G,
as orbit types, and hence it follows from the following lemma that M/G, is homeomerphic
to S4. Thus M is diffeomorphic to S2x S4.
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LemMM. Let N be a simply connected, closed 4-dimensional manifold. If SU(2) acts
almost effectively on N with a principal isotvopy subgroup T and the non-empty fixed point set,
then N is homeomorphic to S.

Proor. There is a cross section for the orbit map N—>N*= N/SU(2) and N*is
2-disk with boundary F(SU(2), N). On the other hand, let SU(2) act on S* regarding
SU(2) as the subgroup SO(3) of SO(5). Then the orbit space is 2-disk whose boundary is
the fixed point set. Thus it follows from the remark following lemma 4 that N is homeo-
morphic to S4.

Subcase ii). The action has (H), (K) and G as orbit types.

Put F=F(G, M)+¢. Itisknown ([2],IV.3.8) that dim F<1. Ifdim F=1, then
F=0bM* and honce Bcg)= ¢ which contradicts to the assumption. Thus F is a finite set.
Let V be a slice at xeF in M and S unit sphere in V. Since the restricted G-action on S has
a principal isotropy subgroup H, it follows from lemma 5 that S5/G is homeomorphic to [0,
1], G/K is coresponding to {0} and {1}, and S5 is homeomorphic to the union of two copies
of the mapping cylinder of G/H = S2x S2——>G/K = S2. But we can easily deduce a con-
tradiction.

Subcase iii). The action has (H), (K) and G as orbit tyces.

In this case bM* = Mxy*UMy*. But M* is connected and hance M(xy*NMry* is not
empty which is impossible.

Subcase iv). The action has (H) and G as orbit types.

Since there are only two orbits around x&F, it is shown in the remark following
lemma 5 that G/H must be sphere, this is impossible.

Subcase v). The action has (H), (K), (1) and G as orbit types.

First of all we show that there is a cross section for the orbit map M—> M* = M/G.
In fact, consider the resricted Gj-action on M, it is easily shown from dim MG; <3 that
M— MG, and hence M* L—MG1 is simply connected where Mi* = M;/G;. Since M— MG,
— M*;— MG, is a fiber bundle with fibre G;/H; = S? and the structure group I' g, = N(T,
SU(2))/T = Z, where H, = HNG, =T, it follows that the associated principal N(T, SU(2))
/T = Z, where Hy; = HNG, = T, the associated principal bundle I" gy, —> M#1— MG1 — M;*
— MG is trivial, and hence there is a cross section C' C MH.:— MG.. Hence it follows
from [2] (1. 3. 2) that there is a cross section for the orbit map M—> M*. Next consider
the G,-action on M;*, then similar arguments show that the orbit map Mi*—> Mi*—>
M;*/Gy= M* has also a cross section. Composing these sections, we have the required
one.
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The same arguments as in subcase ii) show that MG is a finite set. Put MG = {x;*, x,*,

S
-+, 2r*}. Decompose M(x>* and Mzy* into connected components; M¢xy*=\JAi and Mz *
i=1

t —_— e _— —_—
= UBi. We first claim that 7 is even. It is clear that A:NA;(G#j)AiNB; and BiNB; (#7)

i=1 .

are in MG. To prove our assertion it is sufficient to show that for any two components
Aiand Aj (or Bi and By) of Mcxy* (or Mcy*) AinAj (or BiNB)) is empty. Suppose the
contrary, i.e. AiNA; (i#j) = {xx*}. Let V be a slice at xx in M and S a unit sphere in V.
Then G acts on V, and hence on S with a principal isotropy subgroup H and only one
singular orbit (K). The arguments similar to subcase ii) show that this is impossible.
Put r=2k.

21

x*
Mo My*

X+
Fig. 4.

(a) The case y (MG)=2. .
In this case, M* is illustrated as Fig. 1. Let W;“ denote the subset as in Fig. 1, and W;

the inverse image of W;," by the orbit map. We define a G-action on D6 by (g1, &) (x, »)
=(g1x, &) for (g1, &) G and (x, y) € D3x D3~D®6 where g; acts on D3 as an element of
SO(3). Then the orbit space Dé/G is homeomorphic to W:f‘ by a homeomorphism preserv-
ing orbit structures. Then it follows from lemma 4 that W; is homeomorphic to D6 and
hence M is homeomorphic to S6. Thus M si diffeomorphic to S6.
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(b) The case y(MG)=A4.

In this case, M* is illustrated as Fig. 2. Let W:,“ and W: be as above. We define a G-
action on S3x D3 by (g1, £23)(%, ¥) = (&1%, &) for (g1, &) € G and (x, y) € S3x D3 where.
g1 actson S® as an element of SO(4) and g, acts on D3as an element of SO(3). Then the
orbit space S3x D3/G is homeomorphic to W:.“ by a homeomorphism preserving the orbit
structures. The same arguments as above show that M is diffeomorphic to S3x S3.

(¢) The case () MG=6.

In this case, M* is illustrated as Fig.3. From (a) (b) it is easily shown that Wi is_
homeomorphic to S3x S3—Int D6 and hence M is homeomorphic to S3x S34S3x S3. Thus
M is diffeomorphic to S3x S3%#S3x S3. We remark that in this case SU(2) x SU(2) acts on
M in a standard way.

(d) The case y(MG)=2k(k=4).

In this case, M* is illustrated as Fig. 4. It is easily shown as above that W; and We
are homeomorphic to S3x S3—Int D6, and W; is homeomorphic to S3x S3—Int Dé—Int DS
for i=2, ... k—2. Hence M is diffeomorfic to the connected sum of (#—1) copies of S3x S3.

Case C. dim H=1.

First of all we prove the following;

ProposiTioN. Hy«(G/H; Q= Hx«(S52X S3; Q).

Proor. Let HO be the identity component of H and S a maximal torus of G containing
H°=T!. Consider the fibration S/H9=T1—>G/H%—>G/S. It follows from the fact the
second Stiefel-Whitney class wo(G/S) of G/S is zero, that w,(G/H?) =0. Since G/H° is a
simply connected 5-manifold with the second Betti number b,(G/H®) =1, G/H? is diffeo-
morphic to S2x S8 (see [8]). Since G/H? is a finite covering space of G/H, we have
Hy(G/H; Q=Hx(5*x S%; Q). Q.ED.

For the case in which dim H =1, it follows from lemma 5 and the remark following it
that there are two types (K) and (L) of singular isotropy subgroups and M is the union of
mapping cylinders Mg and M;.

We claim that dim K and dim L are smaller than 5. In fact, suppose dim K=5.
Then it is easy to see that K= G. Choose a fixed point x. Since M is the union of map-
ping cylinders My and M;, any small neighborhood of x is homeomorphic to a cone over
G/H, which contradicts to the fact M is a manifold at x.

Consequently there are possible six cases as follows;

1) dim K=dim L=2, 2) dim K=3,dim L=2, 3) dim K=dim L=3,

4) dim K=4,dim L=2, 5) dim K=4, dim L=3, 6) dim K=dim L=4.

Subcase 1. dim K=dim L=2.

Since KO=TX TS KCZN(T, G)X N(T, G,), we have K/K°C Z,®HZ,. Similarly we
have L/LYC=Z,D Z,. Without loss of generality we may assume dim G;NH =0. It is not
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difficult to see that the induced action of G, on M/G; has uniform dimensional orbits and
every isotropy subgroup has maximal rank. Hence it follows from lemma 2 that G, acts
on M/G, with unique orbit G,/7T. This means that K/K?° is either Z, @0 or 0. Similarly
L/Lo is also either Z, @0 or 0. Consequently only the following three cases are possible;
i) K=L=N(T, GDXT, ii) K=N(T,GDOXT,L=TxT, iii) K=L=TxT.

In subcases i) and ii), the restricted Gj-action on M has only two types of isotropy
subgroups, (GiNH) and (N(T)). This contradicts to Corollary to lemma 1.

Subcase iii). From the Gysin’s sequence of the fibre bundle S* — G/H—>G/L it
follows easily that H is connected. Hence we have G/H=S52x S3. By considering the fibre
bundle G;/HNG; —> G/ H— G,/ P;(H ), we have n;(G;/ HNG,) = 0 and Hence HNG; = {e}.
Thus it is easily shown that the above fibre bundle is (S3x S2, S2, S8, pr;). From the
following commutative diagram of fiberings;

Ki/HNK;=S! — K/H=S51 — K,/ P,(H)NK, = a point

| l |

Gi/HNG;=S3 —> G/H=S3xS2 —> G,/P,(H) =S2?
l Hopf map l l
Gi/KNG;=S? —> G/K=52%S2 —> G,/Py(K) =S°

it follows that the projection of the fibre bundle K/H—G/H—G/K is hxid where
k. S3—5? is the Hopf map, so that the mapping cylinder Mg is (CP,—Int D4%)x S2.
Similarly M; is also (CP,—Int D)% S,. Consequently it follows from lemma 5 that M is
homeomorphic to (CP,# CP,)x S2. Thus M is diffeomorphic to (CPy# CP,) x S2.

Subcase 2. dim K=3 and dim L=2.

We may assume dim p,(H)=1. Clearly p,(K) =SU(2) = G,. It is easy to show that
M|/ G, is a simply connected 3-dimensional manifold and the induced action of G, on M/G,
has (p,(H)), ((p2 (L)) and G, as orbit types. From dim(N/G)G:=0 ([2],IV 3. 8) it
follows that M/G;—(M/G,)G: is simply connected. Since G, acts on M/G;—(M/G,)G:
with uniform dimensional orbits, it follow from lemma 2 that p,(H) =p,(L)=T and hence
L is either N(T, SU2)x T or T'x T.

The restricted Gy-action on M has (HNG,), (KNG,) and (LNG,) as orbit types. But
from the relations H/HNG 1= p,(H) =T, K/ KNG = p(H) =T, K/KNG; = p(K) = S3 and
K/H=S2([2]), we have ¥z, (KNG,) < #r,(HNG;) and hence HNG;=KNG;.

So the arguments similar to in subcase 1 show that the case L—N(T, SU(2))x T is
impossible. Hence L=TxT.

Also the same arguments as subcase 1 show that H is connected, HNG;=KNG;={e}
and the mapping cylinder M, is (CP,—Int D4)x S2. As to K, from the following commuta-

tive diagram;
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K/L=S* ~KNG,/HNGyx Py(K)/Py(H) ~ {%}x S?
l [¥}xid
G/H=S3xS2~ Gi/HNG,X Gy/ Py(H)  ~ S3x S
l ' l idxc¢
G/K=S® ~ Gi/KNGixGy/Py(K)  ~ S3x{%}

it follows that the projection of the fibration K/H—>G/H—>G/K is idX ¢ where cis a
constant map, and hence the mapping cylinder Mg is S3x D3. Consequently M= ((CP,
—Int D4 x S2)US8x S2S3x D3. This manifold is clearly obtained from CP,Xx S2 by surgery
based on the homotopy class of the embedding S2——{*} X S;C CP,X S,.

Subcase 3. dim K=dim L=3.

Consider the spectral sequence of the fibration K/K°——G/K°—>G/K. Then we
Hy,(G/K; Q) because of G/Ky=Ss. Similarly Ho,(G/L; @) =0. Therefore the Mayer-
Vietoris’s exact sequence implies that H, (M ; Q) =H,M; Q)=0and H;(M; Q)=2Q, and
hence M is homeomorphic to S3x S3. Thus M is diffeomorphic to S3x S3([8].

Subcase 4. dim K=4 and dim L=2.

We may assume that K=G;x K, where dim K,=1 and L0=TxT.
(@) The case dim p,(H) =1.

Since M/G;j is a simply connented 3-dimensional manifold and G, acts on M/G; with
uniform dimensional orbits, it follows from a result in [3] that the isotropy subgroups are
connected, i.e. K,=7T. Also we can show that A is connected because there is a fibration
K/H—>G/H—>G/K where K/H=S3 and G/K=S2 Similarly L is also connected, i.e.
L=TxT.

Next we show dim HNG,=0. Then the restricted Gy-action on M/G has two orbit
types (Zm), (T'), and the G;-action on M/G, has (T") and G as orbit types. From (M/G,)
/Gi=MG=[0,1] and lemma 3 it follows that there is a cross section for M/G,—
(M]Gy)/G;. Since SU(2) acts naturally on D3 with the principal orbit type (7") and fixed
points, the orbit space D3/SU(2) is [0, 1], the remark following lemma 4 shows that M/G,
is equiviarantly homeomorphic to D3 where bD3 = M(ryk= Mcr)/G,. Consequently we
have Mry~S2x S? since there is a fibre bundle SU(2) /T = S2—> Mry—> Mry* =S2 with
the structure group N (T, SU(2))/T=2Z,. On the other hand the Mayer-Vietoris’s
sequence shows that H2(M; Q) = H4(M; Q) =2Q and H3(M; Q) =0. Moreover from the
fibration G,/Zm—> M— Mpy——>D3—bD?3 it follows that Hy(M— M1); @) = H«(Ga/Zm; Q).
Thus from consideration of the cohomology exact sequence of pair (M, M(r)) we can easily
deduce a contradiction.

Therefore we have dim HNG, =1 and hence H = { e} x (HNGy), so that G/H = G, X G,
J/HNG, = S3x S2.  Since it is easily shown that Mg = D4x S2 and M; = (CP,—Int DH)x S?,
and hance M is diffeomorphic to CP,x S2.
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(b) The case dim p,(H) = 0.
In this case HNG; is one dimensional and HO=(HNG,)*% {e}. Since K=G;xT, K/H
is not S3 which contradicts to the remark following lemma 6.

Suboase 5. dim K=4 and dim L=3.

We may assume K = G; X K, where dim K, =1. It is easily shown that G/K is either
RP, or S?2 and G/L is a rational homology 3-dimensional sphere. If G/K=RP,, the Mayer-
Vietoris’s sequence implies that M is a 6-dimensional 2-connected manifold and y(M) = 1.
which contradicts to the fact that y(M) must be even because of M=5bW?7 for some W.

Thus G/K=S2. From the fibration K/H = S3—>G/H—>G/K it follows immediatel
that H is connected and G/H is homeomorphic to S2x S3.

(a) The case dim p,(H) =1.

In this case we have p,(H) =T and hence HnG; = {¢}. More it is easy to show that
p2(L)—G; and LNG, = {e}. Thus the induced action of G, on M/G; has (T") and G; as orbit
types. By similar arguments to in subcase 4 we can regard M/G; as D3, the G,-action on .
M/ G; = D3 as the sandard one and MG: = S2. Moreover there is a cross section for M—
M/ Gy because there is one for M—— M/G by lemma 3. Consequently M is diffeomorphic
to Sé on which SU(2) acts in the standard way.

(b) The case dim p,(H) =0.
This is impossibe as (b) in subcase 4.

Subcase 6. dim K=dim L=4.

(@) The case K=G;x K, and L =G;X L, where dim Kj and dim L,=1.

As above the case dim p, (H) =0 is shown to be impossible. So we have dim p, (H)
=1. Moreover we may assume as subcase 5 that K, =L,=T, H is connected and HNG;
={e}. Thus G, acts on M with orbit types ({e}) and G;, and G, acts on M/G; with unique
orbit type (T"). Hence it follows from lemma 5 that M/G,—> (M/Gy)/G,=1[0, 1] is a S2-
bundle with the structure group Z,, and consequently M/G;=S2x[0, 1] and MG, = S2x S2.
Note that there is a cross section for the orbit map M——> M/G;.

We define a SU (2)-action on S2x S4 by g(x, ) = («, gy) for g& SU(2) and (x, y)ES?
x 54 where gy is induced from the SU (2)-action on R5 defined by p@® 6. Then this action
has the same orbit space and the same set of fixed points as our Gj-action on M. Conse-
quently M is diffeomorphic to S2x S4.

(b) The case K=G;x K, and L=L;X G, where dim K;=dim L,=1.

First assume dim p,(H)=1. Asabove K, = 7. It is shown that M/G; is simply con-
nected and the induced Gj-action on M/G; has 0-dimensional set of fixed points. Thus,
since G, acts on the simply connected manifold M/G;— (M/G,)G: with uniform dimensional
orbitist follows from lemma 2 that p,( H) is connected and hence H is connected, i.e. H
={e}x T. Hence L/H is not S8, which is a contradiction.
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The case dim p,(2) = 0 is also impossible, because in this case dim p,(H) =1.
(c) The case K=K;X G, and L=L; X G, where dim K; =dim L,=i.

The same arguments as in (@) show that M is diffeomorphic to S4x S2.

The remainder of this section will be devoted to studying SU(2)x SU(2) x SU (2)-
actions.

Suppose G=SU(2)x SU(2) acts on M with H as a principal isotropy subgroup. We
may assume dim H==4. Consider the restricted G;x Gz-action on M (denote by G; the i-th
facter of G). Since we have already determined completely all M s when dim HN(G,
X Gp) =2, we may assume dim HN(G;X Gz) =1. So we need only consider the case dim
H=4, because of ps(H) = H/HN(G1x Gy). |

Since the G-action has a principal orbit of codimension one, lemma 5 shows that it has
two non-principal orbi types (K) and (L), and hence the restricted G; X G,-action on M has
(HN(G1X Gp)), (KN(G1x Gp) and (LN(GyX Gp)) as orbit types. Moreover we need only

consider the case dim KN(G;X G,) is either 2 or 3 and so is dim LN(G;X Gg). Thus we
consider only the three cases as follows;

i) dim K=dim L=5. ii) dim K=6 and dim L=5. iii) dim K=dim L=6.

But among the isotropy subgroups of our action there is no 5-dimensional subgroup,
and hence the cases ¢) and ii) are impossible. Assume dim K=75. Because of K/H =S,
we have rank K >rank H=2. Put K9=K;X K,X K3 it follows from K%(G1X Go) =TX T
that K3=SU(2). From the fibration K3/HK3—> K0/HO = Sl—p(K® /[p(H®) = S,
where p; G—> Gy X Gy is the projection, we have dim K3/HK3z=0 and hence H°N K3
=SU(2). Thus HNG3= SU(2) which contradicts to almost effectivity.

Consider the case iii). Then dim KN(G;X G,) =dim LN(G1X Gy) =3. So M has
already determined to be S3x S3.

6. The 6-dimensional manifolds on which G’ X T~ acts almest effectively

Put G=G'x Tr. Then we may assume 6 <dim G=<11. ’

The case G is either of the form SUQ)xSU@)XSUC) X Tr(r=1) or SU)XSU(2)
X Tr(r=2), is impossible. In fact, consider the restricted SU(2)x SU(2)-action on M,
(M) is easily shown to be positive. Because of rank G=4, lemma 6 shows that the re-
stricted action of a maximal torus of G on M is not almost effective, this is a contradiction.
Similary the case G=SU(3)x Tr (r =2) is impossible.

Casel. G=SU@2)xSU@2)xT.

We need only conside the subcases i) and ii) of the case C in the restricted SU(2)
X SU(2)-action on M. From the relations dim HN(G;X Gz) =1,dim H=2 and H/HN(G,
X Go)p3(H)(denote by H a principal isotropy subgroup of G-action on M has two non-
principal orbit types (K) and (L) with dim K=3 and dim L>=3. Since dim KN(G;1X Gg)
is 2 or 3 in our situation we have dim K<5. Similarly dim L>5.
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If dim K = 3, from consideration of the fibration K/ H\NK——> K°/Ho— p(K%) /p(H®)
where p : G;—>G; X Gz is the projection, and K0/H%=S1, we have Kz= H%K3; which
contradicts to almost effectivity. Similarly dim L+#3.

In the case dim K=dim L =4, we have K/H = S? and rank L = 2, so that dim KN(G;
X Gg)=dim LN(G1X Gz) =3. Hence M is diffeomorphic to S3x S3. .

Case 2. G=SU(2) X Ts.

Suppose G acts on M with H as a principal isotropy subgroup. Then dim H=1. In
fact, since the restricted T3-action is almost effective, we have dim AN7T3=0 so that we
have dim H=dim p;(H)=1 or 3 from H/HNT3=p,(H). If dim H=3, p;(H)=SU(2).
This is impossible.

Subcase 1. The case dim H(ISU(2)=0.

In this case it is known ([2] IV. 4. 7) that M*= M/SU(2) is a simply connected 3-
dimensional manifold with or without boundary. Moreover the ineffective kernel N of
the induced action of 78 on M* is of dimension< 1, since N is a subgroup of N(HNSU(2);
SU(2))/HNSU(2). If dim N=0, that is, T3 acts on M* almost effectively, then T3 is a
principal orbit and hence M* must be 73 which is impossible.

“Thus T2 = T3/ N acts effectively on M* and it follows lemma 5 that M*/T2=[0, 1].

If bM* + ¢, then we have bM* = S1x St from M*/T2={[0, 1], and hence M is homeo-
morphic to S1x D2 which contradicts to simply connctedness of M*.

If bM* = ¢, M* must be homeomorphic to S and the restricted SU(2)-action on M has
neither singular nor exceptional orbit. So from applying the Vietoris-Begle’s theorem to
M— M*, it follows that H2(M; @) =0. Therefore, since y(M) =0, it follows from a
result in [8] that M is diffeomorphic to S3x S3.

Subcase 2. The case dim HNSU(2)=1.

In this case HNSU(2) is either T or N(T; SU(2)). But it follows from corollary of
lemma 1 that the latter case is impossible.

So HNSU(2)=T. Hence it follows from lemma 2 that M is homeomorphic to S2x M*
where M* is a simply connected 4-dimensional manifold with or without boundary. Then
the induced action of 7'3 on M* is also almost effective, and the orbit space M*/T3 is [0, 1].
From this, we can show that, if bM* = ¢, M* is homeomorphic to either S1x S1x S2 or St
x S8, and if bM* +¢, then bM* is homeomorphic to S'x S1x S! and hence M* is homeo-
morphic to S1x S1x D2, But they are not simply connected. So this case is also impossible.

Remark. From this, it follows that all the cases G= SU(2) X Tr(r =4) are impossible.
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7. Classification

Summing up the results in the preceding sections, we have the following table.
In this table N(M) denote the degree of symmetry of M, G compact connected. Lie

group which can act almost effectively on M and ¢ the action of G on M.

{1l
[2]
[3]
[4]
(5]

[61

N(M). M G ®
21 Sé SO transitive
15 Fs S0(6) V
CP; SU4) /”
13 Stx Sz SO(G)x SU(2) ”
12 S8x 8% SO(4)xS0(4) ”
11 CP,x 52 SU(3)%S0(3) ”
10 Q3 SO(5) Y
9 - 52X 52x S2 SO(3)3 Ve
CP#CPs SUBXT union of N(SU(3); SU(4))-action
CPs#(—CPy) } on CP3—Int DS
8 SU)/TxT SU(3) transitive
6 R(SBx S (k=2) SU2)x SU(2) union of SU(2)x SU(2)-action on
S3x S3—Int DS
(CP3CPy) x S2 4 union of SU(2)x SU(2)-action on
S3x D3 S(CP,—Int DX S2 } (CP,—Int Df)x 52

Note that no manifold other than the above has the degree of symmetry < 5.
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